dtrmm
C DTRMM SOURCE BP208322 22/09/16 21:15:09 11454 * * Purpose * ======= * * DTRMM performs one of the matrix-matrix operations * * B := alpha*op( A )*B, or B := alpha*B*op( A ), * * where alpha is a scalar, B is an m by n matrix, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A'. * * Parameters * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) multiplies B from * the left or right as follows: * * SIDE = 'L' or 'l' B := alpha*op( A )*B. * * SIDE = 'R' or 'r' B := alpha*B*op( A ). * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A'. * * TRANSA = 'C' or 'c' op( A ) = A'. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - REAL*8. * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - REAL*8 array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - REAL*8 array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B, and on exit is overwritten by the * transformed matrix. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== $ B, LDB ) * * .. Scalar Arguments .. INTEGER M, N, LDA, LDB * .. Array Arguments .. REAL*8 A( LDA, * ), B( LDB, * ) * .. * * ===================================================================== * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA ** .. Intrinsic Functions .. * INTRINSIC MAX ** .. Local Scalars .. LOGICAL LSIDE, NOUNIT, UPPER INTEGER I, INFO, J, K, NROWA REAL*8 TEMP ** .. Parameters .. ** .. ** .. Executable Statements .. * * Test the input parameters. * IF( LSIDE )THEN NROWA = M ELSE NROWA = N END IF * INFO = 0 IF( ( .NOT.LSIDE ).AND. INFO = 1 ELSE IF( ( .NOT.UPPER ).AND. INFO = 2 INFO = 3 INFO = 4 ELSE IF( M .LT.0 )THEN INFO = 5 ELSE IF( N .LT.0 )THEN INFO = 6 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 9 ELSE IF( LDB.LT.MAX( 1, M ) )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * * And when alpha.eq.zero. * DO 20, J = 1, N DO 10, I = 1, M 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF( LSIDE )THEN * * Form B := alpha*A*B. * IF( UPPER )THEN DO 50, J = 1, N DO 40, K = 1, M DO 30, I = 1, K - 1 B( I, J ) = B( I, J ) + TEMP*A( I, K ) 30 CONTINUE IF( NOUNIT ) $ TEMP = TEMP*A( K, K ) B( K, J ) = TEMP END IF 40 CONTINUE 50 CONTINUE ELSE DO 80, J = 1, N DO 70 K = M, 1, -1 B( K, J ) = TEMP IF( NOUNIT ) $ B( K, J ) = B( K, J )*A( K, K ) DO 60, I = K + 1, M B( I, J ) = B( I, J ) + TEMP*A( I, K ) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*B*A'. * IF( UPPER )THEN DO 110, J = 1, N DO 100, I = M, 1, -1 TEMP = B( I, J ) IF( NOUNIT ) $ TEMP = TEMP*A( I, I ) DO 90, K = 1, I - 1 TEMP = TEMP + A( K, I )*B( K, J ) 90 CONTINUE 100 CONTINUE 110 CONTINUE ELSE DO 140, J = 1, N DO 130, I = 1, M TEMP = B( I, J ) IF( NOUNIT ) $ TEMP = TEMP*A( I, I ) DO 120, K = I + 1, M TEMP = TEMP + A( K, I )*B( K, J ) 120 CONTINUE 130 CONTINUE 140 CONTINUE END IF END IF ELSE * * Form B := alpha*B*A. * IF( UPPER )THEN DO 180, J = N, 1, -1 TEMP = ALPHA IF( NOUNIT ) $ TEMP = TEMP*A( J, J ) DO 150, I = 1, M B( I, J ) = TEMP*B( I, J ) 150 CONTINUE DO 170, K = 1, J - 1 DO 160, I = 1, M B( I, J ) = B( I, J ) + TEMP*B( I, K ) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE ELSE DO 220, J = 1, N TEMP = ALPHA IF( NOUNIT ) $ TEMP = TEMP*A( J, J ) DO 190, I = 1, M B( I, J ) = TEMP*B( I, J ) 190 CONTINUE DO 210, K = J + 1, N DO 200, I = 1, M B( I, J ) = B( I, J ) + TEMP*B( I, K ) 200 CONTINUE END IF 210 CONTINUE 220 CONTINUE END IF ELSE * * Form B := alpha*B*A'. * IF( UPPER )THEN DO 260, K = 1, N DO 240, J = 1, K - 1 DO 230, I = 1, M B( I, J ) = B( I, J ) + TEMP*B( I, K ) 230 CONTINUE END IF 240 CONTINUE TEMP = ALPHA IF( NOUNIT ) $ TEMP = TEMP*A( K, K ) IF( TEMP.NE.ONE )THEN DO 250, I = 1, M B( I, K ) = TEMP*B( I, K ) 250 CONTINUE END IF 260 CONTINUE ELSE DO 300, K = N, 1, -1 DO 280, J = K + 1, N DO 270, I = 1, M B( I, J ) = B( I, J ) + TEMP*B( I, K ) 270 CONTINUE END IF 280 CONTINUE TEMP = ALPHA IF( NOUNIT ) $ TEMP = TEMP*A( K, K ) IF( TEMP.NE.ONE )THEN DO 290, I = 1, M B( I, K ) = TEMP*B( I, K ) 290 CONTINUE END IF 300 CONTINUE END IF END IF END IF * RETURN * * End of DTRMM * END
© Cast3M 2003 - Tous droits réservés.
Mentions légales