Numérotation des lignes :

dorg2r
C DORG2R    SOURCE    BP208322  20/09/18    21:16:08     10718          *> \brief \b DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).**  =========== DOCUMENTATION ===========** Online html documentation available at*            http://www.netlib.org/lapack/explore-html/**> \htmlonly*> Download DORG2R + dependencies*> &lt;a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorg2r.f">*> [TGZ]&lt;/a>*> &lt;a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorg2r.f">*> [ZIP]&lt;/a>*> &lt;a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorg2r.f">*> [TXT]&lt;/a>*> \endhtmlonly**  Definition:*  ===========**       SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )**       .. Scalar Arguments ..*       INTEGER            INFO, K, LDA, M, N*       ..*       .. Array Arguments ..*       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )*       ..***> \par Purpose:*  =============*>*> \verbatim*>*> DORG2R generates an m by n real matrix Q with orthonormal columns,*> which is defined as the first n columns of a product of k elementary*> reflectors of order m*>*>       Q  =  H(1) H(2) . . . H(k)*>*> as returned by DGEQRF.*> \endverbatim**  Arguments:*  ==========**> \param[in] M*> \verbatim*>          M is INTEGER*>          The number of rows of the matrix Q. M >= 0.*> \endverbatim*>*> \param[in] N*> \verbatim*>          N is INTEGER*>          The number of columns of the matrix Q. M >= N >= 0.*> \endverbatim*>*> \param[in] K*> \verbatim*>          K is INTEGER*>          The number of elementary reflectors whose product defines the*>          matrix Q. N >= K >= 0.*> \endverbatim*>*> \param[in,out] A*> \verbatim*>          A is DOUBLE PRECISION array, dimension (LDA,N)*>          On entry, the i-th column must contain the vector which*>          defines the elementary reflector H(i), for i = 1,2,...,k, as*>          returned by DGEQRF in the first k columns of its array*>          argument A.*>          On exit, the m-by-n matrix Q.*> \endverbatim*>*> \param[in] LDA*> \verbatim*>          LDA is INTEGER*>          The first dimension of the array A. LDA >= max(1,M).*> \endverbatim*>*> \param[in] TAU*> \verbatim*>          TAU is DOUBLE PRECISION array, dimension (K)*>          TAU(i) must contain the scalar factor of the elementary*>          reflector H(i), as returned by DGEQRF.*> \endverbatim*>*> \param[out] WORK*> \verbatim*>          WORK is DOUBLE PRECISION array, dimension (N)*> \endverbatim*>*> \param[out] INFO*> \verbatim*>          INFO is INTEGER*>          = 0: successful exit*>          &lt; 0: if INFO = -i, the i-th argument has an illegal value*> \endverbatim**  Authors:*  ========**> \author Univ. of Tennessee*> \author Univ. of California Berkeley*> \author Univ. of Colorado Denver*> \author NAG Ltd.**> \date December 2016**> \ingroup doubleOTHERcomputational**  =====================================================================      SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )**  -- LAPACK computational routine (version 3.7.0) --*  -- LAPACK is a software package provided by Univ. of Tennessee,    --*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--*     December 2016       IMPLICIT INTEGER(I-N)      IMPLICIT REAL*8(A-H,O-Z)**     .. Scalar Arguments ..      INTEGER            INFO, K, LDA, M, N*     ..*     .. Array Arguments ..      REAL*8   A( LDA, * ), TAU( * ), WORK( * )*     ..**  =====================================================================**     .. Parameters ..      REAL*8   ONE, ZERO      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )*     ..*     .. Local Scalars ..      INTEGER            I, J, L*     ..*     .. External Subroutines ..*      EXTERNAL           DLARF, DSCAL, XERBLA*     ..*     .. Intrinsic Functions ..*      INTRINSIC          MAX*     ..*     .. Executable Statements ..**     Test the input arguments*      INFO = 0      IF( M.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN         INFO = -2      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN         INFO = -3      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -5      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DORG2R', -INFO )         RETURN      END IF**     Quick return if possible*      IF( N.LE.0 )     $RETURN** Initialise columns k+1:n to columns of the unit matrix* DO 20 J = K + 1, N DO 10 L = 1, M A( L, J ) = ZERO 10 CONTINUE A( J, J ) = ONE 20 CONTINUE* DO 40 I = K, 1, -1** Apply H(i) to A(i:m,i:n) from the left* IF( I.LT.N ) THEN A( I, I ) = ONE CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),$                  A( I, I+1 ), LDA, WORK )         END IF         IF( I.LT.M )     \$      CALL DSCAL( M-I, -TAU( I ), A( I+1, I ), 1 )         A( I, I ) = ONE - TAU( I )**        Set A(1:i-1,i) to zero*         DO 30 L = 1, I - 1            A( L, I ) = ZERO   30    CONTINUE   40 CONTINUE      RETURN**     End of DORG2R*      END   

© Cast3M 2003 - Tous droits réservés.
Mentions légales