dgeev
C DGEEV SOURCE FANDEUR 22/05/02 21:15:05 11359 *> \brief <b> DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DGEEV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeev.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeev.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeev.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, * LDVR, WORK, LWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBVL, JOBVR * INTEGER INFO, LDA, LDVL, LDVR, LWORK, N * .. * .. Array Arguments .. * REAL*8 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), * $ WI( * ), WORK( * ), WR( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DGEEV computes for an N-by-N real nonsymmetric matrix A, the *> eigenvalues and, optionally, the left and/or right eigenvectors. *> *> The right eigenvector v(j) of A satisfies *> A * v(j) = lambda(j) * v(j) *> where lambda(j) is its eigenvalue. *> The left eigenvector u(j) of A satisfies *> u(j)**H * A = lambda(j) * u(j)**H *> where u(j)**H denotes the conjugate-transpose of u(j). *> *> The computed eigenvectors are normalized to have Euclidean norm *> equal to 1 and largest component real. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBVL *> \verbatim *> JOBVL is CHARACTER*1 *> = 'N': left eigenvectors of A are not computed; *> = 'V': left eigenvectors of A are computed. *> \endverbatim *> *> \param[in] JOBVR *> \verbatim *> JOBVR is CHARACTER*1 *> = 'N': right eigenvectors of A are not computed; *> = 'V': right eigenvectors of A are computed. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL*8 array, dimension (LDA,N) *> On entry, the N-by-N matrix A. *> On exit, A has been overwritten. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] WR *> \verbatim *> WR is REAL*8 array, dimension (N) *> \endverbatim *> *> \param[out] WI *> \verbatim *> WI is REAL*8 array, dimension (N) *> WR and WI contain the real and imaginary parts, *> respectively, of the computed eigenvalues. Complex *> conjugate pairs of eigenvalues appear consecutively *> with the eigenvalue having the positive imaginary part *> first. *> \endverbatim *> *> \param[out] VL *> \verbatim *> VL is REAL*8 array, dimension (LDVL,N) *> If JOBVL = 'V', the left eigenvectors u(j) are stored one *> after another in the columns of VL, in the same order *> as their eigenvalues. *> If JOBVL = 'N', VL is not referenced. *> If the j-th eigenvalue is real, then u(j) = VL(:,j), *> the j-th column of VL. *> If the j-th and (j+1)-st eigenvalues form a complex *> conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and *> u(j+1) = VL(:,j) - i*VL(:,j+1). *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> The leading dimension of the array VL. LDVL >= 1; if *> JOBVL = 'V', LDVL >= N. *> \endverbatim *> *> \param[out] VR *> \verbatim *> VR is REAL*8 array, dimension (LDVR,N) *> If JOBVR = 'V', the right eigenvectors v(j) are stored one *> after another in the columns of VR, in the same order *> as their eigenvalues. *> If JOBVR = 'N', VR is not referenced. *> If the j-th eigenvalue is real, then v(j) = VR(:,j), *> the j-th column of VR. *> If the j-th and (j+1)-st eigenvalues form a complex *> conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and *> v(j+1) = VR(:,j) - i*VR(:,j+1). *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> The leading dimension of the array VR. LDVR >= 1; if *> JOBVR = 'V', LDVR >= N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL*8 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,3*N), and *> if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good *> performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = i, the QR algorithm failed to compute all the *> eigenvalues, and no eigenvectors have been computed; *> elements i+1:N of WR and WI contain eigenvalues which *> have converged. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date June 2016 * * @precisions fortran d -> s * *> \ingroup doubleGEeigen * * ===================================================================== $ LDVR, WORK, LWORK, INFO ) * implicit none IMPLICIT INTEGER(I-N) IMPLICIT REAL*8(A-H,O-Z) * * -- LAPACK driver routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * June 2016 * * .. Scalar Arguments .. CHARACTER JOBVL, JOBVR INTEGER INFO, LDA, LDVL, LDVR, LWORK, N * .. * .. Array Arguments .. REAL*8 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), * .. * * ===================================================================== * * .. Parameters .. * .. * .. Local Scalars .. LOGICAL LQUERY, SCALEA, WANTVL, WANTVR CHARACTER SIDE INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K, $ LWORK_TREVC, MAXWRK, MINWRK, NOUT REAL*8 ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM, $ SN * .. * .. Local Arrays .. LOGICAL SELECT( 1 ) REAL*8 DUM( 1 ) * .. * .. External Subroutines .. $ XERBLA * .. * .. External Functions .. LOGICAL LSAME * .. * .. Intrinsic Functions .. * INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) WANTVL = ( JOBVL.EQ. 'V' ) WANTVR = ( JOBVR.EQ. 'V' ) IF( ( .NOT.WANTVL ) .AND. ( .NOT.( JOBVL.EQ. 'N' ) ) ) THEN INFO = -1 ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.( JOBVR.EQ. 'N' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN INFO = -9 ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN INFO = -11 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV. * HSWORK refers to the workspace preferred by DHSEQR, as * calculated below. HSWORK is computed assuming ILO=1 and IHI=N, * the worst case.) * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 ELSE IF( WANTVL ) THEN MINWRK = 4*N $ 'DORGHR', ' ', N, 1, N, -1 ) ) MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK ) $ VL, LDVL, VR, LDVR, N, NOUT, MAXWRK = MAX( MAXWRK, N + LWORK_TREVC ) MAXWRK = MAX( MAXWRK, 4*N ) ELSE IF( WANTVR ) THEN MINWRK = 4*N $ 'DORGHR', ' ', N, 1, N, -1 ) ) MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK ) $ VL, LDVL, VR, LDVR, N, NOUT, MAXWRK = MAX( MAXWRK, N + LWORK_TREVC ) MAXWRK = MAX( MAXWRK, 4*N ) ELSE MINWRK = 3*N MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK ) END IF MAXWRK = MAX( MAXWRK, MINWRK ) END IF * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -13 END IF END IF * IF( INFO.NE.0 ) THEN RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Get machine constants * BIGNUM = ONE / SMLNUM SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * SCALEA = .FALSE. SCALEA = .TRUE. CSCALE = SMLNUM ELSE IF( ANRM.GT.BIGNUM ) THEN SCALEA = .TRUE. CSCALE = BIGNUM END IF IF( SCALEA ) * * Balance the matrix * (Workspace: need N) * IBAL = 1 * * Reduce to upper Hessenberg form * (Workspace: need 3*N, prefer 2*N+N*NB) * ITAU = IBAL + N IWRK = ITAU + N $ LWORK-IWRK+1, IERR ) * IF( WANTVL ) THEN * * Want left eigenvectors * Copy Householder vectors to VL * SIDE = 'L' * * Generate orthogonal matrix in VL * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) * $ LWORK-IWRK+1, IERR ) * * Perform QR iteration, accumulating Schur vectors in VL * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * IWRK = ITAU * IF( WANTVR ) THEN * * Want left and right eigenvectors * Copy Schur vectors to VR * SIDE = 'B' END IF * ELSE IF( WANTVR ) THEN * * Want right eigenvectors * Copy Householder vectors to VR * SIDE = 'R' * * Generate orthogonal matrix in VR * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) * $ LWORK-IWRK+1, IERR ) * * Perform QR iteration, accumulating Schur vectors in VR * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * IWRK = ITAU * ELSE * * Compute eigenvalues only * (Workspace: need N+1, prefer N+HSWORK (see comments) ) * IWRK = ITAU END IF * * If INFO .NE. 0 from DHSEQR, then quit * IF( INFO.NE.0 ) $ GO TO 50 * IF( WANTVL .OR. WANTVR ) THEN * * Compute left and/or right eigenvectors * (Workspace: need 4*N, prefer N + N + 2*N*NB) * END IF * IF( WANTVL ) THEN * * Undo balancing of left eigenvectors * (Workspace: need N) * $ IERR ) * * Normalize left eigenvectors and make largest component real * DO 20 I = 1, N DO 10 K = 1, N 10 CONTINUE END IF 20 CONTINUE END IF * IF( WANTVR ) THEN * * Undo balancing of right eigenvectors * (Workspace: need N) * $ IERR ) * * Normalize right eigenvectors and make largest component real * DO 40 I = 1, N DO 30 K = 1, N 30 CONTINUE END IF 40 CONTINUE END IF * * Undo scaling if necessary * 50 CONTINUE IF( SCALEA ) THEN $ MAX( N-INFO, 1 ), IERR ) $ MAX( N-INFO, 1 ), IERR ) IF( INFO.GT.0 ) THEN $ IERR ) $ IERR ) END IF END IF * RETURN * * End of DGEEV * END
© Cast3M 2003 - Tous droits réservés.
Mentions légales