Télécharger dgeev.eso

Retour à la liste

Numérotation des lignes :

dgeev
  1. C DGEEV SOURCE FANDEUR 22/05/02 21:15:05 11359
  2. *> \brief <b> DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
  3. *
  4. * =========== DOCUMENTATION ===========
  5. *
  6. * Online html documentation available at
  7. * http://www.netlib.org/lapack/explore-html/
  8. *
  9. *> \htmlonly
  10. *> Download DGEEV + dependencies
  11. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeev.f">
  12. *> [TGZ]</a>
  13. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeev.f">
  14. *> [ZIP]</a>
  15. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeev.f">
  16. *> [TXT]</a>
  17. *> \endhtmlonly
  18. *
  19. * Definition:
  20. * ===========
  21. *
  22. * SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
  23. * LDVR, WORK, LWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBVL, JOBVR
  27. * INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL*8 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  31. * $ WI( * ), WORK( * ), WR( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DGEEV computes for an N-by-N real nonsymmetric matrix A, the
  41. *> eigenvalues and, optionally, the left and/or right eigenvectors.
  42. *>
  43. *> The right eigenvector v(j) of A satisfies
  44. *> A * v(j) = lambda(j) * v(j)
  45. *> where lambda(j) is its eigenvalue.
  46. *> The left eigenvector u(j) of A satisfies
  47. *> u(j)**H * A = lambda(j) * u(j)**H
  48. *> where u(j)**H denotes the conjugate-transpose of u(j).
  49. *>
  50. *> The computed eigenvectors are normalized to have Euclidean norm
  51. *> equal to 1 and largest component real.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] JOBVL
  58. *> \verbatim
  59. *> JOBVL is CHARACTER*1
  60. *> = 'N': left eigenvectors of A are not computed;
  61. *> = 'V': left eigenvectors of A are computed.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] JOBVR
  65. *> \verbatim
  66. *> JOBVR is CHARACTER*1
  67. *> = 'N': right eigenvectors of A are not computed;
  68. *> = 'V': right eigenvectors of A are computed.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The order of the matrix A. N >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in,out] A
  78. *> \verbatim
  79. *> A is REAL*8 array, dimension (LDA,N)
  80. *> On entry, the N-by-N matrix A.
  81. *> On exit, A has been overwritten.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDA
  85. *> \verbatim
  86. *> LDA is INTEGER
  87. *> The leading dimension of the array A. LDA >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WR
  91. *> \verbatim
  92. *> WR is REAL*8 array, dimension (N)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] WI
  96. *> \verbatim
  97. *> WI is REAL*8 array, dimension (N)
  98. *> WR and WI contain the real and imaginary parts,
  99. *> respectively, of the computed eigenvalues. Complex
  100. *> conjugate pairs of eigenvalues appear consecutively
  101. *> with the eigenvalue having the positive imaginary part
  102. *> first.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] VL
  106. *> \verbatim
  107. *> VL is REAL*8 array, dimension (LDVL,N)
  108. *> If JOBVL = 'V', the left eigenvectors u(j) are stored one
  109. *> after another in the columns of VL, in the same order
  110. *> as their eigenvalues.
  111. *> If JOBVL = 'N', VL is not referenced.
  112. *> If the j-th eigenvalue is real, then u(j) = VL(:,j),
  113. *> the j-th column of VL.
  114. *> If the j-th and (j+1)-st eigenvalues form a complex
  115. *> conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
  116. *> u(j+1) = VL(:,j) - i*VL(:,j+1).
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDVL
  120. *> \verbatim
  121. *> LDVL is INTEGER
  122. *> The leading dimension of the array VL. LDVL >= 1; if
  123. *> JOBVL = 'V', LDVL >= N.
  124. *> \endverbatim
  125. *>
  126. *> \param[out] VR
  127. *> \verbatim
  128. *> VR is REAL*8 array, dimension (LDVR,N)
  129. *> If JOBVR = 'V', the right eigenvectors v(j) are stored one
  130. *> after another in the columns of VR, in the same order
  131. *> as their eigenvalues.
  132. *> If JOBVR = 'N', VR is not referenced.
  133. *> If the j-th eigenvalue is real, then v(j) = VR(:,j),
  134. *> the j-th column of VR.
  135. *> If the j-th and (j+1)-st eigenvalues form a complex
  136. *> conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
  137. *> v(j+1) = VR(:,j) - i*VR(:,j+1).
  138. *> \endverbatim
  139. *>
  140. *> \param[in] LDVR
  141. *> \verbatim
  142. *> LDVR is INTEGER
  143. *> The leading dimension of the array VR. LDVR >= 1; if
  144. *> JOBVR = 'V', LDVR >= N.
  145. *> \endverbatim
  146. *>
  147. *> \param[out] WORK
  148. *> \verbatim
  149. *> WORK is REAL*8 array, dimension (MAX(1,LWORK))
  150. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] LWORK
  154. *> \verbatim
  155. *> LWORK is INTEGER
  156. *> The dimension of the array WORK. LWORK >= max(1,3*N), and
  157. *> if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
  158. *> performance, LWORK must generally be larger.
  159. *>
  160. *> If LWORK = -1, then a workspace query is assumed; the routine
  161. *> only calculates the optimal size of the WORK array, returns
  162. *> this value as the first entry of the WORK array, and no error
  163. *> message related to LWORK is issued by XERBLA.
  164. *> \endverbatim
  165. *>
  166. *> \param[out] INFO
  167. *> \verbatim
  168. *> INFO is INTEGER
  169. *> = 0: successful exit
  170. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  171. *> > 0: if INFO = i, the QR algorithm failed to compute all the
  172. *> eigenvalues, and no eigenvectors have been computed;
  173. *> elements i+1:N of WR and WI contain eigenvalues which
  174. *> have converged.
  175. *> \endverbatim
  176. *
  177. * Authors:
  178. * ========
  179. *
  180. *> \author Univ. of Tennessee
  181. *> \author Univ. of California Berkeley
  182. *> \author Univ. of Colorado Denver
  183. *> \author NAG Ltd.
  184. *
  185. *> \date June 2016
  186. *
  187. * @precisions fortran d -> s
  188. *
  189. *> \ingroup doubleGEeigen
  190. *
  191. * =====================================================================
  192. SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
  193. $ LDVR, WORK, LWORK, INFO )
  194. * implicit none
  195. IMPLICIT INTEGER(I-N)
  196. IMPLICIT REAL*8(A-H,O-Z)
  197. *
  198. * -- LAPACK driver routine (version 3.7.0) --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. * June 2016
  202. *
  203. * .. Scalar Arguments ..
  204. CHARACTER JOBVL, JOBVR
  205. INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
  206. * ..
  207. * .. Array Arguments ..
  208. REAL*8 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  209. $ WI( * ), WORK( * ), WR( * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * .. Parameters ..
  215. REAL*8 ZERO, ONE
  216. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  217. * ..
  218. * .. Local Scalars ..
  219. LOGICAL LQUERY, SCALEA, WANTVL, WANTVR
  220. CHARACTER SIDE
  221. INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
  222. $ LWORK_TREVC, MAXWRK, MINWRK, NOUT
  223. REAL*8 ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
  224. $ SN
  225. * ..
  226. * .. Local Arrays ..
  227. LOGICAL SELECT( 1 )
  228. REAL*8 DUM( 1 )
  229. * ..
  230. * .. External Subroutines ..
  231. EXTERNAL DGEBAK, DGEBAL, DGEHRD, DHSEQR,
  232. * ..
  233. * .. External Functions ..
  234. LOGICAL LSAME
  235. INTEGER IDAMAX, ILAENV
  236. EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH,
  237. * ..
  238. * .. Intrinsic Functions ..
  239. * INTRINSIC MAX, SQRT
  240. * ..
  241. * .. Executable Statements ..
  242. *
  243. * Test the input arguments
  244. *
  245. INFO = 0
  246. LQUERY = ( LWORK.EQ.-1 )
  247. WANTVL = ( JOBVL.EQ. 'V' )
  248. WANTVR = ( JOBVR.EQ. 'V' )
  249. IF( ( .NOT.WANTVL ) .AND. ( .NOT.( JOBVL.EQ. 'N' ) ) ) THEN
  250. INFO = -1
  251. ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.( JOBVR.EQ. 'N' ) ) ) THEN
  252. INFO = -2
  253. ELSE IF( N.LT.0 ) THEN
  254. INFO = -3
  255. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  256. INFO = -5
  257. ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  258. INFO = -9
  259. ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  260. INFO = -11
  261. END IF
  262. *
  263. * Compute workspace
  264. * (Note: Comments in the code beginning "Workspace:" describe the
  265. * minimal amount of workspace needed at that point in the code,
  266. * as well as the preferred amount for good performance.
  267. * NB refers to the optimal block size for the immediately
  268. * following subroutine, as returned by ILAENV.
  269. * HSWORK refers to the workspace preferred by DHSEQR, as
  270. * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  271. * the worst case.)
  272. *
  273. IF( INFO.EQ.0 ) THEN
  274. IF( N.EQ.0 ) THEN
  275. MINWRK = 1
  276. MAXWRK = 1
  277. ELSE
  278. MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  279. IF( WANTVL ) THEN
  280. MINWRK = 4*N
  281. MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  282. $ 'DORGHR', ' ', N, 1, N, -1 ) )
  283. CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
  284. $ WORK, -1, INFO )
  285. HSWORK = INT( WORK(1) )
  286. MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  287. CALL DTREVC3( 'L', 'B', SELECT, N, A, LDA,
  288. $ VL, LDVL, VR, LDVR, N, NOUT,
  289. $ WORK, -1, IERR )
  290. LWORK_TREVC = INT( WORK(1) )
  291. MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  292. MAXWRK = MAX( MAXWRK, 4*N )
  293. ELSE IF( WANTVR ) THEN
  294. MINWRK = 4*N
  295. MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  296. $ 'DORGHR', ' ', N, 1, N, -1 ) )
  297. CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  298. $ WORK, -1, INFO )
  299. HSWORK = INT( WORK(1) )
  300. MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  301. CALL DTREVC3( 'R', 'B', SELECT, N, A, LDA,
  302. $ VL, LDVL, VR, LDVR, N, NOUT,
  303. $ WORK, -1, IERR )
  304. LWORK_TREVC = INT( WORK(1) )
  305. MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  306. MAXWRK = MAX( MAXWRK, 4*N )
  307. ELSE
  308. MINWRK = 3*N
  309. CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  310. $ WORK, -1, INFO )
  311. HSWORK = INT( WORK(1) )
  312. MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  313. END IF
  314. MAXWRK = MAX( MAXWRK, MINWRK )
  315. END IF
  316. WORK( 1 ) = MAXWRK
  317. *
  318. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  319. INFO = -13
  320. END IF
  321. END IF
  322. *
  323. IF( INFO.NE.0 ) THEN
  324. CALL XERBLA( 'DGEEV ', -INFO )
  325. RETURN
  326. ELSE IF( LQUERY ) THEN
  327. RETURN
  328. END IF
  329. *
  330. * Quick return if possible
  331. *
  332. IF( N.EQ.0 )
  333. $ RETURN
  334. *
  335. * Get machine constants
  336. *
  337. EPS = DLAMCH( 'P' )
  338. SMLNUM = DLAMCH( 'S' )
  339. BIGNUM = ONE / SMLNUM
  340. CALL DLABAD( SMLNUM, BIGNUM )
  341. SMLNUM = SQRT( SMLNUM ) / EPS
  342. BIGNUM = ONE / SMLNUM
  343. *
  344. * Scale A if max element outside range [SMLNUM,BIGNUM]
  345. *
  346. ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  347. SCALEA = .FALSE.
  348. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  349. SCALEA = .TRUE.
  350. CSCALE = SMLNUM
  351. ELSE IF( ANRM.GT.BIGNUM ) THEN
  352. SCALEA = .TRUE.
  353. CSCALE = BIGNUM
  354. END IF
  355. IF( SCALEA )
  356. $ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  357. *
  358. * Balance the matrix
  359. * (Workspace: need N)
  360. *
  361. IBAL = 1
  362. CALL DGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  363. *
  364. * Reduce to upper Hessenberg form
  365. * (Workspace: need 3*N, prefer 2*N+N*NB)
  366. *
  367. ITAU = IBAL + N
  368. IWRK = ITAU + N
  369. CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  370. $ LWORK-IWRK+1, IERR )
  371. *
  372. IF( WANTVL ) THEN
  373. *
  374. * Want left eigenvectors
  375. * Copy Householder vectors to VL
  376. *
  377. SIDE = 'L'
  378. CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
  379. *
  380. * Generate orthogonal matrix in VL
  381. * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  382. *
  383. CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  384. $ LWORK-IWRK+1, IERR )
  385. *
  386. * Perform QR iteration, accumulating Schur vectors in VL
  387. * (Workspace: need N+1, prefer N+HSWORK (see comments) )
  388. *
  389. IWRK = ITAU
  390. CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
  391. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  392. *
  393. IF( WANTVR ) THEN
  394. *
  395. * Want left and right eigenvectors
  396. * Copy Schur vectors to VR
  397. *
  398. SIDE = 'B'
  399. CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  400. END IF
  401. *
  402. ELSE IF( WANTVR ) THEN
  403. *
  404. * Want right eigenvectors
  405. * Copy Householder vectors to VR
  406. *
  407. SIDE = 'R'
  408. CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
  409. *
  410. * Generate orthogonal matrix in VR
  411. * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  412. *
  413. CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  414. $ LWORK-IWRK+1, IERR )
  415. *
  416. * Perform QR iteration, accumulating Schur vectors in VR
  417. * (Workspace: need N+1, prefer N+HSWORK (see comments) )
  418. *
  419. IWRK = ITAU
  420. CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  421. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  422. *
  423. ELSE
  424. *
  425. * Compute eigenvalues only
  426. * (Workspace: need N+1, prefer N+HSWORK (see comments) )
  427. *
  428. IWRK = ITAU
  429. CALL DHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  430. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  431. END IF
  432. *
  433. * If INFO .NE. 0 from DHSEQR, then quit
  434. *
  435. IF( INFO.NE.0 )
  436. $ GO TO 50
  437. *
  438. IF( WANTVL .OR. WANTVR ) THEN
  439. *
  440. * Compute left and/or right eigenvectors
  441. * (Workspace: need 4*N, prefer N + N + 2*N*NB)
  442. *
  443. CALL DTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  444. $ N, NOUT, WORK( IWRK ), LWORK-IWRK+1, IERR )
  445. END IF
  446. *
  447. IF( WANTVL ) THEN
  448. *
  449. * Undo balancing of left eigenvectors
  450. * (Workspace: need N)
  451. *
  452. CALL DGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
  453. $ IERR )
  454. *
  455. * Normalize left eigenvectors and make largest component real
  456. *
  457. DO 20 I = 1, N
  458. IF( WI( I ).EQ.ZERO ) THEN
  459. SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
  460. CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  461. ELSE IF( WI( I ).GT.ZERO ) THEN
  462. SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
  463. $ DNRM2( N, VL( 1, I+1 ), 1 ) )
  464. CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  465. CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
  466. DO 10 K = 1, N
  467. WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
  468. 10 CONTINUE
  469. K = IDAMAX( N, WORK( IWRK ), 1 )
  470. CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
  471. CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
  472. VL( K, I+1 ) = ZERO
  473. END IF
  474. 20 CONTINUE
  475. END IF
  476. *
  477. IF( WANTVR ) THEN
  478. *
  479. * Undo balancing of right eigenvectors
  480. * (Workspace: need N)
  481. *
  482. CALL DGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
  483. $ IERR )
  484. *
  485. * Normalize right eigenvectors and make largest component real
  486. *
  487. DO 40 I = 1, N
  488. IF( WI( I ).EQ.ZERO ) THEN
  489. SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
  490. CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  491. ELSE IF( WI( I ).GT.ZERO ) THEN
  492. SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
  493. $ DNRM2( N, VR( 1, I+1 ), 1 ) )
  494. CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  495. CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
  496. DO 30 K = 1, N
  497. WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
  498. 30 CONTINUE
  499. K = IDAMAX( N, WORK( IWRK ), 1 )
  500. CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
  501. CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
  502. VR( K, I+1 ) = ZERO
  503. END IF
  504. 40 CONTINUE
  505. END IF
  506. *
  507. * Undo scaling if necessary
  508. *
  509. 50 CONTINUE
  510. IF( SCALEA ) THEN
  511. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
  512. $ MAX( N-INFO, 1 ), IERR )
  513. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
  514. $ MAX( N-INFO, 1 ), IERR )
  515. IF( INFO.GT.0 ) THEN
  516. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
  517. $ IERR )
  518. CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  519. $ IERR )
  520. END IF
  521. END IF
  522. *
  523. WORK( 1 ) = MAXWRK
  524. RETURN
  525. *
  526. * End of DGEEV
  527. *
  528. END
  529.  
  530.  
  531.  
  532.  
  533.  

© Cast3M 2003 - Tous droits réservés.
Mentions légales