* fichier : shearfmm.dgibi ************************************************************************ ************************************************************************ ********************************************************************* * * * Shear layer. * * * * Methode implicite sans matrice * * * * BECCANTINI A., SFME/LTMF, Juin 2006 * * * ********************************************************************* * * This file is divided into several parts * * I) PROCEDURES * II) MESH * III) INITIAL CONDITIONS * IV) COMPUTATION OF THE SOLUTIONS * V) POST-TREATMENT * VI) COMPARISON WITH A NUMERICAL SOLUTION ON A FINER MESH * (AND WITH A LIKE-PRANDTL ANALYTICAL SOLUTION) * 'OPTION' 'DIME' 2 'ECHO' 1 'ELEM' 'QUA4' 'ISOV' 'SULI' 'TRAC' 'X'; ************************************************************************* ************************************************************************* * I) PROCEDURES ********************************************************* ************************************************************************* ************************************************************************* ************************************************************************* ******PROCEDURE PROCPT ************************************************** ************************************************************************* * * 'DEBPROC' PROCPT ; 'FINPROC' ; ************************************************************************* *********** PROCEDURE PNSSM : ******************** *********** SOLUTION OF THE NAVIER-STOKES EQUATIONS ******************** *********** FMM ******************** ************************************************************************* * * RVX . 'RESULTS' : table containing the results * * RVX . 'FREQI' : frequency of presenting the results * * RVX . 'MODEL' : model object * RVX . 'RN0' : density * RVX . 'GN0' : qdm * RVX . 'RET0' : total energy * * RVX . 'PGAS' : table containing the gas model * RVX . 'PGAS' . 'GAMN' : gamma * RVX . 'PGAS' . 'MU' : dynamic viscosity (kg/m^3 x m^2/s) * RVX . 'PGAS' . 'LAMBDA' : heat diffusion (W/K/m) * * * RVX . 'GRAVITY' : gravity * * RVX . 'LISTCONS' : name of the conservative variables * RVX . 'LISTPRIM' : name of the primitive variables * * RVX . 'LISTERR' : name of the error variables * * RVX . 'METHOD' : numerical scheme * RVX . 'CUTOFF' : cut off speed * * RVX . 'SPACEA' : space accuracy * RVX . 'LIMITER' : limiter type * RVX . 'TIMEA' : time accuracy * * RVX . 'T0' : initial time * RVX . 'TFINAL' : final time * RVX . 'DTPS' ('CFL') : time step or CFL number * * RVX . 'DCFL' : CFL number for dual time * * Error criteria for dual time loop: * RVX . 'NDTITER' : number of iterations * RVX . 'RELERR' : Logical (Relative error or absolute error) * RVX . 'EPSDT' : error at which dual time iterations are stopped * * RVX . 'NJAC' : Jacobi iterations * * RVX . 'PROLIM' : table called by the procedure PROLIM, * procedure to compute boundary conditions * * RVX . 'DIFTIMP' : boundary condition on temperature * RVX . 'DIFGTIMP' : boundary condition on gradient of temperature * RVX . 'MDIFCT' : mesh in which we impose the temperature * arising from the convective BC * RVX . 'DIFVIMP' : boundary condition on speed * RVX . 'DIFGVIMP' : boundary condition on gradient of speed * RVX . 'MDIFCV' : mesh in which we impose the velocity * arising from the convective BC * RVX . 'DIFTAUI' : boundary condition on constraint tensor * RVX . 'DIFQIMP' : boundary condition on heat flux * * 'DEBPROC' PNSSM ; 'ARGUMENT' RVX*TABLE ; * * 'SI' ('EXISTE' RVX 'RESULTS') ; 'MESS' 'Table RESULTS already exists' ; 'SINON' ; RVX . 'RESULTS' = 'TABLE' ; RVX . 'RESULTS' . 'TPS' = RVX . 'T0' ; RVX . 'RESULTS' . 'RN' = 'COPIER' (RVX . 'RN0') ; RVX . 'RESULTS' . 'GN' = 'COPIER' (RVX . 'GN0') ; RVX . 'RESULTS' . 'RET' = 'COPIER' (RVX . 'RET0') ; RVX . 'RESULTS' . 'NITER' = 0 ; 'FINSI' ; MDOMINT = RVX . 'MODEL' ; * ***** Physical properties * GAMN = RVX . 'PGAS' . 'GAMN' ; GAMSCA1 = 'MAXIMUM' GAMN ; GAMSCA2 = 'MINIMUM' GAMN ; 'SI' ('EGA' GAMSCA2 GAMSCA1 0.0001) ; GAMSCAL = GAMSCA1 ; 'SINON' ; 'MESSAGE' ; 'MESSAGE' 'Gamma is not constant' ; 'ERREUR' 21 ; 'FINSI' ; * MU = (RVX . 'PGAS' . 'MU') ; LAMBDA = (RVX . 'PGAS' . 'LAMBDA') ; R = (RVX . 'PGAS' . 'R') ; CV = R '/' (GAMSCAL '-' 1.) ; * LISTINCO = RVX . 'LISTCONS' ; LISTPRIM = RVX . 'LISTPRIM' ; LISTERR = RVX . 'LISTERR' ; * Names of the gradient of temperature * Names of the gradient of speed * * Upwind scheme * METO = RVX . 'METHOD' ; * Space accuracy (1 or 2) and limiter * Time accuracy (1 or 2) ORDESP = RVX . 'SPACEA' ; TYPELIM = RVX . 'LIMITER' ; ORDTPS = RVX . 'TIMEA' ; * Initial/final time * Deltat or CFL TPS = RVX . 'RESULTS' . 'TPS' ; TFINAL = RVX . 'TFINAL' ; 'SI' ('EXISTE' RVX 'DTPS') ; 'MESSAGE' 'DTPS or CFL ???' ; 'ERREUR' 21 ; 'FINSI' ; DTPS = RVX . 'DTPS' ; 'SINON' ; 'FINSI' ; * Dual time iterations NDT = RVX . 'NDTITER' ; * Relative error EPSDT = RVX . 'EPSDT' ; * Jacobi iterations * NJAC = RVX . 'NJAC' ; * Cut off speed ICO = RVX . 'CUTOFF' ; * To compute the diffusive cut-off USDELTAX = 'INVERSE' DELTAX ; * **** Conservative variables * * MOT1 = 'EXTRAIRE' LISTINCO 1 ; NOMMOM = 'EXTRAIRE' LISTINCO MOT2 = 'EXTRAIRE' LISTINCO 4 ; 'SINON' ; NOMMOM = 'EXTRAIRE' LISTINCO MOT2 = 'EXTRAIRE' LISTINCO 5 ; 'FINSI' ; * **** Primitive variables * TN0 = PN0 '/' (R '*' RN0) ; MOTRN = 'EXTRAIRE' LISTPRIM 1 ; MOTVN = 'EXTRAIRE' LISTPRIM MOTPN = 'EXTRAIRE' LISTPRIM 4 ; 'SINON' ; MOTVN = 'EXTRAIRE' LISTPRIM MOTPN = 'EXTRAIRE' LISTPRIM 5 ; 'FINSI' ; * ******************************************************************** **** Coeff to compute gradients for convective term (MCHSCA, MCHVEC) **** and for diffusive terms (MCHDIT, MCHVEC) ******************************************************************** * * Boundary conditions have to be taken into account * RCHLIM RESLIM = PROLIM (RVX . 'PROLIM') MDOMINT LISTINCO LISTPRIM RN0 VN0 PN0 GAMN ; MAILLIM = 'EXTRAIRE' RCHLIM 'MAILLAGE' ; * * If only wall conditions (Maillim is then empty) * 'SI' (MAILLIM 'EGA' 0) ; * Convective geometric coefficients GRADRN ALRN MCHSCA = 'PENT' MDOMINT 'CENTRE' 'EULESCAL' 'NOLIMITE' GRADVN ALVN MCHVEC = 'PENT' MDOMINT 'CENTRE' 'EULEVECT' 'NOLIMITE' NOMVEL GN0 'CLIM' (RVX . 'DIFVIMP') ; * Diffusive geometric coefficients LMGTEMP TN0 (RVX . 'DIFTIMP') (RVX . 'DIFGTIMP') ; VN0 (RVX . 'DIFVIMP') (RVX . 'DIFGVIMP') ; * * If other imposed Boudary conditions we create false Chpoints * 'SINON' ; * Convective false champoints 'NATU' 'DISCRET' ; VECTBC = 'MANUEL' 'CHPO' MAILLIM 2 'UX' 0.0 'UY' 0.0 'NATU' 'DISCRET' ; * Same name as NOMVEL 'SINON' ; VECTBC = 'MANUEL' 'CHPO' MAILLIM 3 'UX' 0.0 'UY' 0.0 'UZ' 0.0 'NATU' 'DISCRET' ; 'FINSI' ; VECTBC = VECTBC '+' (RVX . 'DIFVIMP') ; * Convective geometric coefficients GRADRN ALRN MCHSCA = 'PENT' MDOMINT 'CENTRE' 'EULESCAL' 'NOLIMITE' GRADVN ALVN MCHVEC = 'PENT' MDOMINT 'CENTRE' 'EULEVECT' 'NOLIMITE' NOMVEL VN0 'CLIM' VECTBC ; 'FINSI' ; * * Diffusive false champoints * * We have several possibility * We decide to impose the temperature given by the convective boundary * condition on (RVX . 'MDIFCT') and the velocity given by the * convective boundary condition on (RVX . 'MDIFCV') * * We check that (RVX . 'MDIFCT') belongs to MAILLIM * 'SI' (('NEG' NN1 0) 'ET' ('NEG' NN2 0)) ; * *** If both meshes contain at least one element NN1 is equal * to the number of elements belonging to the intersection. * Otherwise NN1 = 0 * 'FINSI' ; 'SI' ('NEG' NN1 NN2) ; 'MESSAGE' 'Problem in MDIFCT' ; 'ERREUR' 21 ; 'FINSI' ; 'NATU' 'DISCRET' ; SCALBC = SCALBC '+' (RVX . 'DIFTIMP') ; 'SI' (('NEG' NN1 0) 'ET' ('NEG' NN2 0)) ; 'FINSI' ; 'SI' ('NEG' NN1 NN2) ; 'MESSAGE' 'Problem in MDIFCV' ; 'ERREUR' 21 ; 'FINSI' ; 2 'UX' 0.0 'UY' 0.0 'NATU' 'DISCRET' ; 'SINON' ; 3 'UX' 0.0 'UY' 0.0 'UZ' 0.0 'NATU' 'DISCRET' ; 'FINSI' ; * VECTBC = VECTBC '+' (RVX . 'DIFVIMP') ; * * Diffusive geometric coefficients LMGTEMP TN0 SCALBC (RVX . 'DIFGTIMP') ; * VN0 VECTBC (RVX . 'DIFGVIMP') ; * *************************************************************** *** After each dual time loop, we could display * the evolution of the error in the dual time loop * the evolution of the dual time step (the safety factor) *************************************************************** * LISTLINF = RVX . 'RESULTS' . 'LISTLINF' ; LISTITDT = RVX . 'RESULTS' . 'LISTITDT' ; LISTITER = RVX . 'RESULTS' . 'LISTITER' ; * 'MESSAGE' ; 'MESSAGE' ('CHAINE' 'Methode = ' METO) ; 'MESSAGE' ; * 'TEMPS' 'ZERO' ; * ************************************************************************ ************************************************************************ **** Temporal loop ***************************************************** ************************************************************************ ************************************************************************ RN_N1M1 = 'COPIER' RN0 ; GN_N1M1 = 'COPIER' GN0 ; RET_N1M1 = 'COPIER' RET0 ; 'SI' (AA > 0) ; PTITER = 'EXTRAIRE' LISTITER AA ; 'SINON' ; PTITER = 0 ; 'FINSI' ; DUSDT = 0.0D0 ; 'REPETER' BLITER (RVX . 'NITER') ; PTITER = PTITER '+' 1 ; * **** Personal procedure * PROCPT RVX ; * * **** _N1M = (t^n,\tau^m) * _N1M1 = (t^n,\tau^{m+1}) * * ************************************************************************ ****** Loop on dual time*********************************************** ************************************************************************ * * *** DUSDT0 is the increment of DUSDT in the previous (physical) time * iteration. * DUSDT0 = DUSDT ; DUSDT = 0.0D0 ; 'REPETER' BLDT NDT ; RN_N1M = RN_N1M1 ; GN_N1M = GN_N1M1 ; RET_N1M = RET_N1M1 ; * **** Primitive variables * * *** Boundary conditions * RCHLIM RESLIM = PROLIM (RVX . 'PROLIM') MDOMINT LISTINCO LISTPRIM RN_N1M VN_N1M PN_N1M GAMN ; * ****** First/second order reconstruction * 'SI' (ORDESP 'EGA' 2) ; * 'SI' (NNLIM 'EGA' 0) ; RNLIM = CHPVID ; PNLIM = CHPVID ; VNLIM = RVX . 'DIFVIMP' ; 'SINON' ; '+' (RVX . 'DIFVIMP') ; 'FINSI' ; GRADRN ALRN0 = 'PENT' MDOMINT 'CENTRE' 'EULESCAL' TYPELIM 'CLIM' RNLIM 'GRADGEO' MCHSCA ; GRADPN ALPN0 = 'PENT' MDOMINT 'CENTRE' 'EULESCAL' TYPELIM 'CLIM' PNLIM 'GRADGEO' MCHSCA ; GRADVN ALVN0 = 'PENT' MDOMINT 'CENTRE' 'EULEVECT' TYPELIM 'CLIM' VNLIM 'GRADGEO' MCHVEC ; * 'SI' (&BLDT < NLCB) ; * ALRN0 = 'COPIER' ALRN ; * ALPN0 = 'COPIER' ALPN ; * ALVN0 = 'COPIER' ALVN ; * 'SINON' ; * 'SI' (&BLDT 'EGA' NLCB) ; * 'MESSAGE' ; * 'MESSAGE' 'On gele les limiteurs!!!' ; * 'MESSAGE' ; * 'FINSI' ; * 'FINSI' ; MDOMINT RN_N1M GRADRN ALRN0 VN_N1M GRADVN ALVN0 PN_N1M GRADPN ALPN0 GAMN ; 'SINON' ; MDOMINT RN_N1M VN_N1M PN_N1M GAMN ; 'FINSI' ; MDOMINT LISTINCO ROF VITF PF GAMF MAILLIM * ICO (MU '*' ('INVERSE' RN_N1M) '*' USDELTAX) ; ICO ICO ; RESIDU = RESIDU '+' RESLIM ; * **** La gravite * RN_N1M GN_N1M1 (RVX . 'GRAVITY') ; RESIDU = RESIDU '+' RESGRA ; * ************************************** **** Diffusive terms ***************** ************************************** * TN_N1M = PN_N1M '/' (R '*' RN_N1M) ; * * Computation of the CHPOINTS at the boundary of the domain * 'SI' (NN1 > 0) ; TNLIM = (PNLIM '/' (RNLIM '*' R) ) ; (RVX . 'DIFVIMP') ; (RVX . 'DIFTIMP') ; 'SINON' ; VNLIM = (RVX . 'DIFVIMP') ; TNLIM = (RVX . 'DIFVIMP') ; 'FINSI' ; * LMGTEMP TN_N1M TNLIM (RVX . 'DIFGTIMP') 'GRADGEO' MCHDIT ; * * 'LIST' (RVX . 'DIFGVIMP') ; LMGVIT VN_N1M VNLIM (RVX . 'DIFGVIMP') 'GRADGEO' MCHDIV ; * * NOMVEL = 'MOTS' 'UX' 'UY' ; * MDOMINT MU LAMBDA CV RN_N1M VN_N1M TN_N1M GRADVN GRADTN LISTINCO 'VIMP' VNLIM 'TAUI' (RVX . 'DIFTAUI') 'QIMP' (RVX . 'DIFQIMP') ; RESIDU = RESIDU '+' RESIDI ; * ***** Spectral radious of the viscosity matrix * COEFV1 = (0.0 '*' RN_N1M) '+' 1.0 ; COEFV1 = COEFV1 '*' (lambda '*' (gamscal '-' 1.)) ; COEFV1 = COEFV1 '/' (R '*' RN_N1M) ; COEFV2 = (0.0 '*' RN_N1M) '+' ((4. '/' 3.) '*' MU) ; COEFV2 = COEFV2 '/' RN_N1M ; COEFV = 0.5 '*' (COEFV1 '+' COEFV2) ; COEFV = COEFV '+' (0.5 '*' ((COEFV1 '-' COEFV2) 'ABS')) ; * 'MESSAGE' ; * 'MESSAGE' 'Je fais n importe' ; * COEFV = COEFV '*' 0.25 ; * ****** Residuum for dual tims stepping also involved the * variation of the conserved variables with respect * to time 'SI' ((&BLITER 'EGA' 1) 'OU' (ORDTPS 'EGA' 1)) ; RESIDU = RESIDU '-' DUSDT ; 'SINON' ; RESIDU = RESIDU '-' ((1.5 '*' DUSDT) '-' (0.5 '*' DUSDT0)) ; 'FINSI' ; * *** Time step at the first iteration/jacobi iteration * 'SI' (&BLDT 'EGA' 1) ; 'SINON' ; DTPS = RVX . 'DTPS' ; 'FINSI' ; TPS = TPS '+' DTPS ; * NJAC = 'ENTIER' ('MINIMUM' (RVX . 'NJACITER')) ; NJAC0 = NJAC ; 'SINON' ; (RVX . 'NJACLERR') (RVX . 'NJACITER') ; NJAC = 'ENTIER' NJAC ; NJAC0 = NJAC ; 'FINSI' ; * *** JACOBI * * **** CFL dual * 'SI' (&BLDT 'EGA' 1) ; SAFFACD = ('MINIMUM' (RVX . 'DCFL')) '*' 2 ; 'SINON' ; (RVX . 'DCFLERR') (RVX . 'DCFL')) '*' 2 ; 'FINSI' ; 'SI' ((&BLITER 'EGA' 1) 'OU' (ORDTPS 'EGA' 1)) ; * DUN IPRO = 'DETO' (RVX . 'TYPEJAC') LISTINCO MDOMINT RESIDU RN_N1M GN_N1M RET_N1M GAMN ICO DTPS SAFFACD NJAC 'CLIM' LISTPRIM RCHLIM COEFV ; 'SINON' ; * DUN IPRO = 'DETO' (RVX . 'TYPEJAC') LISTINCO MDOMINT RESIDU RN_N1M GN_N1M RET_N1M GAMN ICO (DTPS '/' 1.5) SAFFACD NJAC 'CLIM' LISTPRIM RCHLIM COEFV ; 'FINSI' ; * 'FINSI' ; 'SI' (IPRO 'NEG' 0) ; 'MESSAGE' ; 'MESSAGE' 'Probleme dans FMM' ; 'MESSAGE' ; 'ERREUR' 21 ; 'FINSI' ; * **** We compute DUSDT for the future loop * DUSDT = DUSDT '+' (DUN '/' DTPS) ; * **** We evaluate the conservative variables at t^{n+1}, \tau^{m+1} * RN_N1M1 = RN_N1M '+' DRN ; GN_N1M1 = GN_N1M '+' DGN ; RET_N1M1 = RET_N1M '+' DRET ; ERRINF = 'MAXIMUM' DUN 'ABS' LISTERR ; 'SI' ((&BLDT 'EGA' 1) 'OU' (((&BLDT '/' (RVX . 'FREQI')) '*' (RVX . 'FREQI')) 'EGA' &BLDT)) ; 'MESSAGE' ; 'MESSAGE' ('CHAINE' 'ITER =' PTITER ' TPS =' TPS ' DTITER =' &BLDT ' LINF =' ERRINF ' DCFL =' SAFFACD ' NJAC =' NJAC) ; 'MESSAGE' ; 'FINSI' ; * * *** Update of RVX . 'RESULTS' * RVX . 'RESULTS' . 'RN' = RN_N1M1 ; RVX . 'RESULTS' . 'GN' = GN_N1M1 ; RVX . 'RESULTS' . 'RET' = RET_N1M1 ; RVX . 'RESULTS' . 'LISTITDT' = LISTITDT ; RVX . 'RESULTS' . 'LISTITER' = LISTITER ; RVX . 'RESULTS' . 'LISTLINF' = LISTLINF ; * 'SI' (RVX . 'RELERR') ; * Relative error 'SI' (&BLDT 'EGA' 1) ; ERRINF0 = ERRINF ; 'SINON' ; 'SI' (ERRINF < (EPSDT '*' ERRINF0)) ; 'QUITTER' BLDT ; 'FINSI' ; 'FINSI' ; 'SINON' ; 'SI' (ERRINF < EPSDT) ; 'QUITTER' BLDT ; 'FINSI' ; 'FINSI' ; 'FIN' BLDT ; ************************************************************************ ****** End of the loop on dual time************************************* ************************************************************************ * *** Update of RVX . 'RESULTS' * RVX . 'RESULTS' . 'TPS' = TPS ; RVX . 'RESULTS' . 'NITER' = (RVX . 'RESULTS' . 'NITER') '+' 1 ; * 'SI' (TPS '>EG' TFINAL) ; 'QUITTER' BLITER ; 'FINSI' ; 'FIN' BLITER ; TCPU = 'TEMPS' 'NOEC' ; RVX . 'RESULTS' . 'TCPU' = TCPU ; 'FINPROC' ; ************************************************************************* ****** FIN PROCEDURE PNSSM ********************************************** ************************************************************************* ************************************************************************* ******PROCEDURE PROLIM ************************************************** ************************************************************************* * 'DEBPROC' PROLIM ; 'ARGUMENT' RVX*'TABLE' MDOMINT*'MMODEL' LISTINCO*'LISTMOTS' LISTPRIM*'LISTMOTS' RN*'CHPOINT' VN*'CHPOINT' PN*'CHPOINT' GAMN*'CHPOINT' ; * * Récupération du nombres de CL imposées * NCL = RVX . 'N' ; * * Initialisation de RESLIM et de RCHLIM * * * Boucle d'évaluation des résidus et des CHPOINTS aux limites * 'REPETER' BCLIM NCL ; MOTCLI = 'EXTRAIRE' (RVX . 'CLN' . &BCLIM) 1 ; MODELI = RVX . 'MODELN' . &BCLIM ; CHPOLI = RVX . 'CHPOLN' . &BCLIM ; MDOMINT MODELI LISTINCO LISTPRIM RN VN PN GAMN CHPOLI MOTCLI ; RCHLIM = RCHLIM '+' RCHLI ; RESLIM = RESLIM '+' RESLI ; 'FIN' BCLIM ; 'RESPRO' RCHLIM RESLIM ; 'FINPROC' ; ************************************************************************* ****** FIN PROCEDURE PROLIM ********************************************* ************************************************************************* ************************************************************************* ************************************************************************* ***************FIN PROCEDURES ******************************************* ************************************************************************* ************************************************************************* ************************************************************************* ************************************************************************* * II) MESH ************************************************************* ************************************************************************* ************************************************************************* GRAPH = FAUX ; NRAFF = 20 ; L1 = 0.5 ; L2 = 2.; H1= 1.; H2 = 1. ; DX1 = 2.0 '/' NRAFF ; DX2 = 0.5 '/' NRAFF ; DY1 = 0.5 '*' DX2 ; DY2 = 2.0 '*' DX1 ; * * P6 P5 P4 * DX1 DY2 * * DOM1 DOM2 * * * DX1 DY1 DX2 DX2 DX1 * P1 ---------------------| * wall P2 P3 * P1A---------------------| * DX1 DY1 * * * DOM1A DOM2A * * * DX1 DY2 * P6A P5A P4A * * P1 = (0.0 '-' L1) 0.0 ; P2 = (L1 '-' L1) 0.0 ; P3 = (L1 '+' L2 '-' L1) 0.0 ; P4 = (L1 '+' L2 '-' L1) H1 ; P5 = (L1 '-' L1) H1 ; P6 = (0.0 '-' L1) H1 ; P1A = (0.0 '-' L1) 0.0 ; P4A = (L1 '+' L2 '-' L1) (-1 * H2) ; P5A = (L1 '-' L1) (-1 * H2) ; P6A = (0.0 '-' L1) (-1 * H2) ; * Top P1P2 = P1 'DROIT' P2 'DINI' DX1 'DFIN' DX2 ; P2P3 = P2 'DROIT' P3 'DINI' DX2 'DFIN' DX1 ; P6P5 = P6 'DROIT' P5 'DINI' DX1 'DFIN' DX2 ; P5P4 = P5 'DROIT' P4 'DINI' DX2 'DFIN' DX1 ; P6P4 = P6P5 'ET' P5P4 ; DOM1 = 'REGLER' P1P2 P6P5 'DINI' DY1 'DFIN' DY2 ; DOM2 = 'REGLER' P2P3 P5P4 'DINI' DY1 'DFIN' DY2 ; 'ELIMINATION' DOM1 (DY1 '/' 100) DOM2 ; CONT1 = 'CONTOUR' DOM1 ; CONT2 = 'CONTOUR' DOM2 ; * Bottom P1AP2 = P1A 'DROIT' P2 'DINI' DX1 'DFIN' DX2 ; P6AP5A = P6A 'DROIT' P5A 'DINI' DX1 'DFIN' DX2 ; P5AP4A = P5A 'DROIT' P4A 'DINI' DX2 'DFIN' DX1 ; P6AP4A = P6AP5A 'ET' P5AP4A ; DOM1A = 'REGLER' P1AP2 P6AP5A 'DINI' DY1 'DFIN' DY2 ; DOM2A = 'REGLER' P2P3 P5AP4A 'DINI' DY1 'DFIN' DY2 ; 'ELIMINATION' DOM1A (DY1 '/' 100) DOM2A ; CONT1 = 'CONTOUR' DOM1A ; CONT2 = 'CONTOUR' DOM2A ; * DOMINT = DOM1 'ET' DOM2 'ET' DOM1A 'ET' DOM2A ; 'SI' GRAPH ; 'TRACER' (DOMINT 'ET' (P6P1 'COULEUR' 'ROUG')) 'TITRE' 'P6P1' ; 'TRACER' (DOMINT 'ET' (P3P4 'COULEUR' 'ROUG')) 'TITRE' 'P3P4' ; 'TRACER' (DOMINT 'ET' (P1AP6A 'COULEUR' 'ROUG')) 'TITRE' 'P1AP6A' ; 'TRACER' (DOMINT 'ET' (P3P4A 'COULEUR' 'ROUG')) 'TITRE' 'P3P4A' ; aa = 'CONTOUR' DOMINT 'COULEUR' ROUG ; 'TRACER' (DOMINT 'ET' aa) 'TITRE' 'FINSI' ; * **** Model objs * MDOMINT = 'MODELISER' DOMINT 'EULER' ; MDOM1 = 'MODELISER' DOM1 'EULER' ; MDOM2 = 'MODELISER' DOM2 'EULER' ; MDOM1A = 'MODELISER' DOM1A 'EULER' ; MDOM2A = 'MODELISER' DOM2A 'EULER' ; * * P1P6, P1AP6A = inlet (on the left) * P1P2, P12P2 = separating (infinitely thin) slip wall * P3P4, P3P4A = outlet (on the left) * P6P4, P6AP4A = inlet/outlet (top/bottom) * MP1P6 = 'MODELISER' P6P1 'EULER' ; MP1P2 = 'MODELISER' P1P2 'EULER' ; MP3P4 = 'MODELISER' P3P4 'EULER' ; MP6P4 = 'MODELISER' P6P4 'EULER' ; * MP1AP6A = 'MODELISER' P1AP6A 'EULER' ; MP1AP2 = 'MODELISER' P1AP2 'EULER' ; MP3P4A = 'MODELISER' P3P4A 'EULER' ; MP6AP4A = 'MODELISER' P6AP4A 'EULER' ; * * * * * **** Elimination of QUAF points slightly difficult * 'ELIMINATION' (TDOMINT . 'CENTRE') (DY1 '/' 100) (TDOM1 .'CENTRE') ; 'ELIMINATION' (TDOMINT . 'CENTRE') (DY1 '/' 100) (TDOM2 .'CENTRE') ; 'ELIMINATION' (TDOMINT . 'CENTRE') (DY1 '/' 100) (TDOM1A .'CENTRE') ; 'ELIMINATION' (TDOMINT . 'CENTRE') (DY1 '/' 100) (TDOM2A .'CENTRE') ; * 'ERREUR' 21 ; 'FINSI' ; 'ERREUR' 21 ; 'FINSI' ; 'ERREUR' 21 ; 'FINSI' ; 'ERREUR' 21 ; 'FINSI' ; 'ELIMINATION' QQDOM1 (DY1 '/' 100) QDOM1 ; 'ELIMINATION' QQDOM2 (DY1 '/' 100) QDOM2 ; 'ELIMINATION' QQDOM1A (DY1 '/' 100) QDOM1A ; 'ELIMINATION' QQDOM2A (DY1 '/' 100) QDOM2A ; 'ELIMINATION' (QQDOM1 'ET' QQDOM2) (DY1 '/' 100) (QP1P6 'ET' QP6P4 'ET' QP3P4) ; 'ELIMINATION' (QQDOM1A 'ET' QQDOM2A) (DY1 '/' 100) (QP1AP6A 'ET' QP6AP4A 'ET' QP3P4A); 'ELIMINATION' QP1P2 (DY1 '/' 100) QDOM1 ; 'ELIMINATION' QP1AP2 (DY1 '/' 100) QDOM1A ; * 'OPTION' 'SAUV' ('CHAINE' './Dsauv/mail' NRAFF '.sauv') ; * 'SAUVER' ; 'SI' VRAI ; * **** We check how the mesh of infinetely thin wall is * ELTCOM = 'MANUEL' 'POI1' P2 ; 'ERREUR' 21 ; 'FINSI' ; 'SI' GRAPH ; 'TRACER' ((QP1P2 'ET' QP1AP2) 'ET' (AA 'COULEUR' 'ROUG') 'ET' 'FINSI' ; 'ERREUR' 21 ; 'FINSI' ; 'FINS' ; * ************************************************************************* ************************************************************************* * III) INITIAL CONDITIONS ********************************************** ************************************************************************* ************************************************************************* * * 'OPTION' 'RESTITUER' ('CHAINE' './Dsauv/mail' NRAFF '.sauv') ; * 'RESTITUER' ; * ****************************************** **** Non-dimensional numbers ************* ****************************************** * * 2 * * --------------------- * * 1 * * We take as reference scales * * l_{ref} = \frac{\nu_1}{u_1} * u_{ref} = u_1 * \rho_{\ref} = \rho_1 * T_{ref} = T_1 * * It can be shown that the non-dimensional solution depends on * * x^*,y^*,u_2/u_1,T_2/T_1,\gamma,Ma,Pr * * Note that, with this adimensional variables, * * x^* = Re_x * y^* = Re_y * * and Re_x(max) = L2 * Re_y(max) = H1 * * gamscal = 1.4 ; T2ST1 = 0.5 ; MACH = 1.0D-3 ; U2SU1 = 1.1 ; Pr = 0.7 ; * * We fix 4 arbitrary physical quantities * RAIR = 288. ; p12 = 1.0D5 ; T1 = 600 ; * and L1 = 2 already considered! Remax = 200. ; * ro1 = P12 '/' (RAIR * T1) ; T2 = T2ST1 * T1 ; ro2 = P12 '/' (RAIR * T2) ; c1 = (gamscal * P12 '/' ro1) '**' 0.5 ; u1 = Mach * c1 ; u2 = u2su1 * u1 ; * * Remax = ro1 * u1 * L1 '/' mu1 ; * mu = (ro1 * u1 * L1) '/' Remax ; * Pr = 0.72 ; * lambda = mu * cp '/' pr ; lambda = mu '*' (gamscal '*' RAIR '/' (gamscal '-' 1.0)) '/' Pr ; * Names of conserved variables MOTRN = 'RN' ; MOTGNX = 'RUX' ; MOTGNY = 'RUY' ; MOTVNX = 'UX' ; MOTVNY = 'UY' ; MOTRET = 'RETN' ; MOTPN = 'PN' ; * * Non-dimensional * * * s1 = p12 '/' (ro1 '**' gamscal) ; s2 = p12 '/' (ro2 '**' gamscal) ; * gsgm1 = gamscal '/' (gamscal '-' 1.0) ; ht1 = (gsgm1 '*' (p12 '/' ro1)) '+' (0.5D0 '*' u1 '*' u1) ; ht2 = (gsgm1 '*' (p12 '/' ro2)) '+' (0.5D0 '*' u2 '*' u2) ; * * *** Gravity * 'UY' 0.0 ; * 'DISCRET') 'ET' 'DISCRET') 'ET' 'DISCRET') 'ET' 'DISCRET') ; 'DISCRET') 'ET' 'DISCRET') 'ET' 'DISCRET') 'ET' 'DISCRET') ; TN0 = PN0 '/' (Rair * RN0) ; 'DISCRET') 'ET' 'DISCRET') 'ET' 'DISCRET') 'ET' 'DISCRET') 'ET' 'DISCRET') ; * RECIN = 0.5 '*' RN0 '*' ('PSCAL' VN0 VN0 MOTVN MOTVN) ; GN0 = RN0 '*' VN0 ; * RET0 = ((1. '/' (gamscal '-' 1)) '*' PN0) '+' RECIN ; * CN0 = (GAMN * PN0 '/' RN0) '**' 0.5 ; MACHN0 = VN0 '/' CN0 ; * * We create an empty CHPOINT * 'OPTION' 'SAUVER' * ('CHAINE' './Dsauv/icns' NRAFF '.sauv') ; * 'SAUV' ; * ******************************************************** *** IC plot ******************************************* ******************************************************** 'SI' GRAPH ; * 'SI' FAUX ; 'TRACER' CHM_RN MDOMINT 'TRACER' CHM_MN MDOMINT 'TRACER' CHM_TN MDOMINT 'TRACER' CHM_PN MDOMINT 'TRACER' CHM_VN MDOMINT 'FINSI' ; ************************************************************************* ************************************************************************* * IV) COMPUTATION OF THE SOLUTION *************************************** ************************************************************************* ************************************************************************* * 'OPTION' 'RESTITUER' ('./Dsauv/icns150.sauv') ; * 'RESTITUER' ; RV = 'TABLE' ; RV . 'FREQI' = 1 ; RV . 'MODEL' = MDOMINT ; * **** Conservative variables / primitive variables * * RV . 'LISTCONS' = LISTCONS ; RV . 'LISTPRIM' = LISTP ; * RV . 'RN0' = RN0 ; RV . 'GN0' = GN0 ; RV . 'RET0' = RET0 ; * **** Gas property/gravity * RV . 'PGAS' = 'TABLE' ; RV . 'PGAS' . 'GAMN' = GAMN ; RV . 'PGAS' . 'MU' = mu ; RV . 'PGAS' . 'R' = RAIR ; RV . 'PGAS' . 'LAMBDA' = lambda ; RV . 'GRAVITY' = GRAVITE ; * * Table for BC * RV . 'PROLIM' = 'TABLE' ; RV . 'PROLIM' . 'N' = 6 ; RV . 'PROLIM' . 'CLN' = 'TABLE' ; RV . 'PROLIM' . 'MODELN' = 'TABLE' ; RV . 'PROLIM' . 'MODELN' . 1 = MP1P6 ; RV . 'PROLIM' . 'MODELN' . 2 = MP1AP6A ; RV . 'PROLIM' . 'MODELN' . 3 = MP6P4 ; RV . 'PROLIM' . 'MODELN' . 4 = MP6AP4A ; RV . 'PROLIM' . 'MODELN' . 5 = MP3P4 ; RV . 'PROLIM' . 'MODELN' . 6 = MP3P4A ; RV . 'PROLIM' . 'CHPOLN' = 'TABLE' ; 'CENTRE') 2 'HT' ht1 'S' s1 ; ; 'CENTRE') 2 'HT' ht2 'S' s2 ; 'CENTRE') 1 'PN' p12 ; 'CENTRE') 1 'PN' p12 ; 'CENTRE') 1 'PN' p12 ; 'CENTRE') 1 'PN' p12 ; * * Table for BC * * RVX . 'DIFTIMP' : boundary condition on temperature * RVX . 'MDIFCT' : mesh in which we impose the temperature * arising from the convective BC * RVX . 'DIFGTIMP' : boundary condition on gradient of temperature * RVX . 'DIFVIMP' : boundary condition on speed * RVX . 'MDIFCV' : mesh in which we impose the velocity * arising from the convective BC * RVX . 'DIFGVIMP' : boundary condition on gradient of speed * RVX . 'DIFTAUI' : boundary condition on constraint tensor * RVX . 'DIFQIMP' : boundary condition on heat flux * * RV . 'DIFTIMP' = CHPVID ; RV . 'MDIFCT' = MAILBC ; RV . 'DIFVIMP' = CHPVID ; RV . 'MDIFCV' = MAILBC ; 'P2DX' 0.0 'P2DY' 0.0 ; 'TYY' 0.0 ; * **** Numerical parameters * * * Variable to compute Linf error * * RV . 'LISTERR' = 'MOTS' MOTRET ; * * Upwind scheme * * RV . 'METHOD' = 'RUSANOLM' ; RV . 'METHOD' = 'ROELM' ; * * Low-Mach Cut off * CO = u1 '*' 10.D-1 ; 'NATURE' 'DISCRET' ; * * Reconstruction/limiter * Time accuracy (1 or 2) * Iterations * Final time RV . 'SPACEA' = 2 ; RV . 'LIMITER' = 'NOLIMITE' ; * RV . 'LIMITER' = 'LIMITEUR' ; RV . 'TIMEA' = 1 ; * **** Physical time * RV . 'T0' = 0 ; RV . 'TFINAL' = 20. '*' (L1 '/' u1) ; RV . 'NITER' = -1 ; * RV . 'DTPS' = (L1 '/' u1) ; * **** Dual time * * Safety factor for the dual time step * Max. Dual time iterations * Relative error * RV . 'NDTITER' = 1 ; RV . 'RELERR' = FAUX ; RV . 'EPSDT' = 1.0D-30 ; * **** Jacobi iterations * * RV . 'TYPEJAC' = 'PJACO' ; * RV . 'TYPEJAC' = 'LJACOB' ; * RV . 'TYPEJAC' = 'LJACOF' ; RV . 'TYPEJAC' = 'LJACOFB' ; * **** Parameters for PROCPT * RV . 'PROCPT' = 'TABLE' ; * PNSSM RV ; ************************************************************************* ************************************************************************* * V) POST TREATMENT **************************************************** ************************************************************************* ************************************************************************* * 'OPTION' 'REST' * ('CHAINE' './fmm_mono' 150 '.sauv') ; * 'REST' ; * RN = RV . 'RESULTS' . 'RN' ; GN = RV . 'RESULTS' . 'GN' ; RET = RV . 'RESULTS' . 'RET' ; GAMN = RV . 'PGAS' . 'GAMN' ; * *** Convergence evolution inside of each iteration * LISTITER = RV . 'RESULTS' . 'LISTITER' ; LISTITDT = RV . 'RESULTS' . 'LISTITDT' ; LISTLINF = RV . 'RESULTS' . 'LISTLINF' ; * TAB1 = 'TABLE' ; TAB1 . 'TITRE' = 'TABLE' ; 'SI' GRAPH ; (('LOG' (LISTLINF '+' '/' ('LOG' 10.)) ; 'DESSIN' everr 'TITRE' ('CHAINE' 'Convergence') 'MIMA' 'LEGE' TAB1 ; 'FINSI' ; erfin = 'MINIMUM' (LISTLINF) ; 'SI' (erfin > 1.0D-6) ; 'ERREUR' 'Probleme de convergence' ; 'FINSI' ; * **** The mesh * 'SI' GRAPH ; 'TRACER' DOMINT 'TITR' 'Maillage' ; 'FINSI' ; * **** Initial conditions * RN0 = RV . 'RN0' ; GN0 = RV . 'GN0' ; RET0 = RV . 'RET0' ; VN PN0 = 'PRIM' 'PERFMONO' RN0 GN0 RET0 GAMN 'TRICHE' ; * 'SI' GRAPH ; 'SI' FAUX ; 'FINSI' ; * **** The 2D graphics * CN2 = GAMN '*' (PN '/' RN) ; VN2 = 'PSCAL' VN VN NOMVEL NOMVEL ; MACHN2 = VN2 '/' CN2 ; MACHN = MACHN2 '**' 0.5 ; * HTN = (GAMN '/' (GAMN '-' 1.0)) '*' (PN '/' RN) ; ECIN = 0.5 '*' ('PSCAL' VN VN NOMVEL NOMVEL) ; HTN = HTN '+' ECIN ; * SN = PN '/' (RN '**' 1.4) ; * TPS = RV . 'RESULTS' . 'TPS' ; * 'SI' FAUX ; VECN = 'VECTEUR' VN (1. '/' NRAFF) 'UX' 'UY' 'JAUNE' ; ('CHAINE' 'v at t= ' TPS) ; 'FINSI' ; * GRADRN ALRN MCHSCA = 'PENT' MDOMINT 'CENTRE' 'EULESCAL' 'NOLIMITE' GRADPN ALPN MCHSCA = 'PENT' MDOMINT 'CENTRE' 'EULESCAL' 'NOLIMITE' TNV = PNV '/' (RAIR * RNV) ; 'SI' GRAPH ; 'TRACER' DOMINT RNV ('CONTOUR' DOMINT) 15 'TITRE' 'ro'; 'TRACER' DOMINT PNV ('CONTOUR' DOMINT) 15 'TITRE' 'p' ; 'TRACER' DOMINT TNV ('CONTOUR' DOMINT) 15 'TITRE' 'T' ; 'TRACER' DOMINT VNXV ('CONTOUR' DOMINT) 15 'TITRE' 'vx' ; 'TRACER' DOMINT VNYV ('CONTOUR' DOMINT) 15 'TITRE' 'vy' ; 'FINSI' ; * xl = (L2 * 0.8) ; PL1 = xl -0.4 ; PL2 = xl 0.0 ; PL3 = xl 0.4 ; LIGPOST = (PL1 'DROIT' PL2 'DINI' DY2 'DFIN' DY1) 'ET' (PL2 'DROIT' PL3 'DINI' DY1 'DFIN' DY2) ; CHM_RNV = 'CHANGER' 'CHAM' RNV DOMINT ; YY = 'COORDONNEE' 2 LIGPOST ; 'SI' GRAPH ; 'DESSIN' EVOLRN 'TITR' 'Rho' 'GRIL' 'MIMA' ; 'FINSI' ; * CHM_TNV = 'CHANGER' 'CHAM' TNV DOMINT ; 'SI' GRAPH ; 'DESSIN' EVOLTN 'TITR' 'T' 'GRIL' 'MIMA' ; 'FINSI' ; * CHM_PNV = 'CHANGER' 'CHAM' PNV DOMINT ; 'SI' GRAPH ; 'DESSIN' EVOLPN 'TITR' 'P' 'GRIL' 'MIMA' ; 'FINSI' ; * CHM_VNXV = 'CHANGER' 'CHAM' VNXV DOMINT ; 'SI' GRAPH ; 'DESSIN' EVOLVNX 'TITR' 'vx' 'GRIL' 'MIMA' ; 'FINSI' ; * CHM_VNYV = 'CHANGER' 'CHAM' VNYV DOMINT ; 'SI' GRAPH ; 'DESSIN' EVOLVNY 'TITR' 'vy' 'GRIL' 'MIMA' ; 'FINSI' ; * 'SI' FAUX ; * * File for gnuplot * 'OPTION' 'ECHO' 0 'IMPR' 10 'IMPR' ('CHAINE' 'Ty' NRAFF '.txt') ; aa = 'EXTRAIRE' EVOLTN 'ABSC' ; * 'REPETER' BL1 nn ; xx = 'CHAINE' 'FORMAT' '(E12.6)' ('EXTRAIRE' aa &bl1) ; yy = 'CHAINE' 'FORMAT' '(E12.6)' ('EXTRAIRE' bb &bl1) ; 'MESSAGE' ('CHAINE' yy ' ' xx ) ; 'FIN' BL1 ; * 'OPTION' IMPR 6 ; 'OPTION' ECHO 1 ; 'FINSI' ; ************************************************************************* ************************************************************************* * VI) TEST ************************************************************** ************************************************************************* ************************************************************************* -.2854E+00 -.2839E+00 -.2825E+00 -.2810E+00 -.2796E+00 -.2781E+00 -.2767E+00 -.2752E+00 -.2737E+00 -.2723E+00 -.2708E+00 -.2694E+00 -.2679E+00 -.2665E+00 -.2650E+00 -.2635E+00 -.2621E+00 -.2606E+00 -.2592E+00 -.2577E+00 -.2562E+00 -.2548E+00 -.2533E+00 -.2519E+00 -.2504E+00 -.2490E+00 -.2475E+00 -.2460E+00 -.2446E+00 -.2431E+00 ) ; -.2417E+00 -.2402E+00 -.2387E+00 -.2373E+00 -.2358E+00 -.2344E+00 -.2329E+00 -.2315E+00 -.2300E+00 -.2285E+00 -.2271E+00 -.2256E+00 -.2242E+00 -.2227E+00 -.2212E+00 -.2198E+00 -.2183E+00 -.2169E+00 -.2154E+00 -.2139E+00 -.2125E+00 -.2110E+00 -.2096E+00 -.2081E+00 -.2066E+00 -.2052E+00 -.2037E+00 -.2023E+00 -.2008E+00 -.1993E+00 ) ; -.1979E+00 -.1964E+00 -.1949E+00 -.1935E+00 -.1920E+00 -.1905E+00 -.1891E+00 -.1876E+00 -.1861E+00 -.1847E+00 -.1832E+00 -.1817E+00 -.1802E+00 -.1788E+00 -.1773E+00 -.1758E+00 -.1744E+00 -.1729E+00 -.1714E+00 -.1699E+00 -.1685E+00 -.1670E+00 -.1655E+00 -.1640E+00 -.1625E+00 -.1611E+00 -.1596E+00 -.1581E+00 -.1566E+00 -.1551E+00 ) ; -.1536E+00 -.1521E+00 -.1506E+00 -.1492E+00 -.1477E+00 -.1462E+00 -.1447E+00 -.1431E+00 -.1416E+00 -.1401E+00 -.1386E+00 -.1371E+00 -.1356E+00 -.1341E+00 -.1326E+00 -.1311E+00 -.1295E+00 -.1280E+00 -.1265E+00 -.1250E+00 -.1234E+00 -.1219E+00 -.1203E+00 -.1188E+00 -.1172E+00 -.1157E+00 -.1141E+00 -.1126E+00 -.1110E+00 -.1095E+00 ) ; -.1079E+00 -.1063E+00 -.1047E+00 -.1031E+00 -.1016E+00 -.9996E-01 -.9836E-01 -.9676E-01 -.9515E-01 -.9353E-01 -.9191E-01 -.9029E-01 -.8866E-01 -.8702E-01 -.8537E-01 -.8372E-01 -.8207E-01 -.8040E-01 -.7873E-01 -.7705E-01 -.7537E-01 -.7368E-01 -.7198E-01 -.7027E-01 -.6855E-01 -.6683E-01 -.6510E-01 -.6336E-01 -.6161E-01 -.5985E-01 ) ; -.5809E-01 -.5631E-01 -.5453E-01 -.5273E-01 -.5093E-01 -.4911E-01 -.4729E-01 -.4545E-01 -.4361E-01 -.4175E-01 -.3988E-01 -.3801E-01 -.3612E-01 -.3422E-01 -.3230E-01 -.3038E-01 -.2845E-01 -.2650E-01 -.2454E-01 -.2256E-01 -.2058E-01 -.1858E-01 -.1657E-01 -.1455E-01 -.1251E-01 -.1046E-01 -.8394E-02 -.6316E-02 -.4225E-02 -.2119E-02 ) ; .0000E+00 .2148E-02 .4309E-02 .6485E-02 .8676E-02 .1088E-01 .1310E-01 .1533E-01 .1758E-01 .1985E-01 .2212E-01 .2442E-01 .2672E-01 .2904E-01 .3138E-01 .3373E-01 .3610E-01 .3848E-01 .4087E-01 .4328E-01 .4570E-01 .4814E-01 .5059E-01 .5305E-01 .5553E-01 .5802E-01 .6052E-01 .6304E-01 .6557E-01 .6812E-01 ) ; .7067E-01 .7324E-01 .7582E-01 .7842E-01 .8102E-01 .8364E-01 .8627E-01 .8890E-01 .9155E-01 .9421E-01 .9689E-01 .9957E-01 .1023E+00 .1050E+00 .1077E+00 .1104E+00 .1131E+00 .1158E+00 .1186E+00 .1213E+00 .1241E+00 .1269E+00 .1296E+00 .1324E+00 .1352E+00 .1380E+00 .1408E+00 .1436E+00 .1464E+00 .1492E+00 ) ; .1521E+00 .1549E+00 .1577E+00 .1606E+00 .1634E+00 .1663E+00 .1691E+00 .1720E+00 .1748E+00 .1777E+00 .1805E+00 .1834E+00 .1863E+00 .1892E+00 .1920E+00 .1949E+00 .1978E+00 .2007E+00 .2036E+00 .2065E+00 .2093E+00 .2122E+00 .2151E+00 .2180E+00 .2209E+00 .2238E+00 .2267E+00 .2296E+00 .2325E+00 .2354E+00 ) ; .2383E+00 .2412E+00 .2441E+00 .2470E+00 .2499E+00 .2528E+00 .2557E+00 .2586E+00 .2616E+00 .2645E+00 .2674E+00 .2703E+00 .2732E+00 .2761E+00 .2790E+00 .2819E+00 .2848E+00 .2878E+00 .2907E+00 .2936E+00 .2965E+00 .2994E+00 .3023E+00 .3052E+00 .3081E+00 .3110E+00 .3140E+00 .3169E+00 .3198E+00 .3227E+00 ) ; .3256E+00 .3285E+00 .3315E+00 .3344E+00 .3373E+00 .3402E+00 .3431E+00 .3460E+00 .3489E+00 .3518E+00 .3548E+00 .3577E+00 .3606E+00 .3635E+00 .3664E+00 .3693E+00 .3722E+00 .3752E+00 .3781E+00 .3810E+00 .3839E+00 .3868E+00 .3897E+00 .3926E+00 .3956E+00 .3985E+00 .4014E+00 .4043E+00 .4072E+00 .4101E+00 ) ; .3000E+03 .3000E+03 .3000E+03 .3000E+03 .3000E+03 .3000E+03 .3000E+03 .3000E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3001E+03 .3002E+03 .3002E+03 .3002E+03 .3002E+03 .3002E+03 ) ; .3002E+03 .3002E+03 .3003E+03 .3003E+03 .3003E+03 .3003E+03 .3003E+03 .3004E+03 .3004E+03 .3004E+03 .3004E+03 .3005E+03 .3005E+03 .3005E+03 .3006E+03 .3006E+03 .3006E+03 .3007E+03 .3007E+03 .3008E+03 .3008E+03 .3009E+03 .3009E+03 .3010E+03 .3011E+03 .3011E+03 .3012E+03 .3012E+03 .3013E+03 .3014E+03 ) ; .3015E+03 .3016E+03 .3017E+03 .3018E+03 .3019E+03 .3020E+03 .3021E+03 .3022E+03 .3023E+03 .3024E+03 .3026E+03 .3027E+03 .3029E+03 .3030E+03 .3032E+03 .3034E+03 .3035E+03 .3037E+03 .3039E+03 .3041E+03 .3043E+03 .3045E+03 .3048E+03 .3050E+03 .3052E+03 .3055E+03 .3058E+03 .3061E+03 .3064E+03 .3066E+03 ) ; .3070E+03 .3073E+03 .3076E+03 .3080E+03 .3084E+03 .3088E+03 .3091E+03 .3096E+03 .3100E+03 .3104E+03 .3109E+03 .3114E+03 .3119E+03 .3124E+03 .3129E+03 .3135E+03 .3140E+03 .3146E+03 .3152E+03 .3159E+03 .3165E+03 .3172E+03 .3179E+03 .3186E+03 .3194E+03 .3201E+03 .3209E+03 .3217E+03 .3226E+03 .3234E+03 ) ; .3243E+03 .3252E+03 .3262E+03 .3271E+03 .3281E+03 .3292E+03 .3302E+03 .3313E+03 .3324E+03 .3336E+03 .3348E+03 .3360E+03 .3372E+03 .3385E+03 .3398E+03 .3411E+03 .3425E+03 .3439E+03 .3454E+03 .3469E+03 .3484E+03 .3499E+03 .3515E+03 .3531E+03 .3548E+03 .3565E+03 .3583E+03 .3600E+03 .3619E+03 .3637E+03 ) ; .3656E+03 .3675E+03 .3695E+03 .3715E+03 .3735E+03 .3756E+03 .3777E+03 .3799E+03 .3821E+03 .3843E+03 .3866E+03 .3889E+03 .3913E+03 .3937E+03 .3961E+03 .3985E+03 .4010E+03 .4036E+03 .4061E+03 .4087E+03 .4114E+03 .4140E+03 .4167E+03 .4194E+03 .4222E+03 .4250E+03 .4278E+03 .4306E+03 .4334E+03 .4363E+03 ) ; .4392E+03 .4421E+03 .4451E+03 .4480E+03 .4510E+03 .4539E+03 .4569E+03 .4599E+03 .4629E+03 .4659E+03 .4689E+03 .4719E+03 .4749E+03 .4780E+03 .4809E+03 .4839E+03 .4869E+03 .4899E+03 .4928E+03 .4958E+03 .4987E+03 .5016E+03 .5044E+03 .5073E+03 .5101E+03 .5129E+03 .5156E+03 .5184E+03 .5210E+03 .5237E+03 ) ; .5263E+03 .5289E+03 .5314E+03 .5339E+03 .5363E+03 .5387E+03 .5410E+03 .5433E+03 .5455E+03 .5477E+03 .5499E+03 .5519E+03 .5540E+03 .5559E+03 .5579E+03 .5597E+03 .5615E+03 .5633E+03 .5650E+03 .5666E+03 .5682E+03 .5698E+03 .5712E+03 .5727E+03 .5741E+03 .5754E+03 .5767E+03 .5779E+03 .5791E+03 .5802E+03 ) ; .5813E+03 .5823E+03 .5833E+03 .5843E+03 .5852E+03 .5860E+03 .5869E+03 .5876E+03 .5884E+03 .5891E+03 .5898E+03 .5904E+03 .5910E+03 .5916E+03 .5921E+03 .5926E+03 .5931E+03 .5936E+03 .5940E+03 .5944E+03 .5948E+03 .5951E+03 .5955E+03 .5958E+03 .5961E+03 .5964E+03 .5966E+03 .5969E+03 .5971E+03 .5973E+03 ) ; .5975E+03 .5977E+03 .5979E+03 .5981E+03 .5982E+03 .5984E+03 .5985E+03 .5986E+03 .5987E+03 .5988E+03 .5989E+03 .5990E+03 .5991E+03 .5992E+03 .5992E+03 .5993E+03 .5994E+03 .5994E+03 .5995E+03 .5995E+03 .5996E+03 .5996E+03 .5996E+03 .5997E+03 .5997E+03 .5997E+03 .5998E+03 .5998E+03 .5998E+03 .5998E+03 ) ; .5998E+03 .5999E+03 .5999E+03 .5999E+03 .5999E+03 .5999E+03 .5999E+03 .5999E+03 .5999E+03 .5999E+03 .5999E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 .6000E+03 ) ; -.26639 -.24859 -.23188 -.21618 -.20143 -.18757 -.17455 -.16232 -.15083 -.14004 -.12990 -.12038 -.11143 -.10302 -9.51266E-2 -8.77085E-2 -8.07397E-2 -7.41931E-2 -6.80431E-2 -6.22656E-2 -5.68381E-2 -5.17394E-2 -4.69495E-2 -4.24498E-2 ; -2.70167E-2 -2.37245E-2 -2.06317E-2 -1.77262E-2 -1.49968E-2 -1.24327E-2 -1.00240E-2 -7.76114E-3 -5.63538E-3 -3.63839E-3 -1.76237E-3 0.0000 1.76237E-3 3.63839E-3 5.63538E-3 7.76114E-3 1.00240E-2) ; 2.06317E-2 2.37245E-2 2.70167E-2 3.05212E-2 3.42517E-2 3.82227E-2 4.24498E-2 4.69495E-2 5.17394E-2 5.68381E-2 6.22656E-2 6.80431E-2 7.41931E-2 8.07397E-2 8.77085E-2 9.51266E-2 .10302 .11143 .12038 .12990 .14004 .15083 .16232) ; .23188 .24859 .26639 .28533 .30549 .32695 .34980 .37411 .40000) ; 300.01 300.03 300.08 300.19 300.39 300.75 301.34 302.23 303.51 305.24 307.48 310.26 313.57 317.40 321.71 326.44 331.51 336.85 342.39 348.04 353.77 359.49 365.15 370.71 376.15 ; 396.09 400.57 404.83 408.88 412.73 416.36 419.79 423.04 426.10 428.98 431.69 434.24 436.64 439.04 441.59 444.31 447.20 450.27 453.54 457.00 460.66 464.54 468.65 472.97 477.53 ) ; 498.05 503.73 509.59 515.62 521.79 528.06 534.38 540.71 546.99 553.16 559.15 564.90 570.32 575.36 579.96 584.07 587.66 590.71 593.23 595.24 596.79 597.92 598.72 599.26 599.60 599.80 599.90 599.96 599.98) ; 'SI' GRAPH ; TAB1 = 'TABLE' ; TAB1 . 'TITRE' = 'TABLE' ; 'GRIL' 'MIMA' 'LEGE' TAB1 'XBOR' -0.3 0.3 ; 'FINSI' ; ERRO = 'ABS' ERRO ; 'SI' GRAPH ; 'DESSIN' EVERRO 'TITR' 'Error on temperature' ; 'FINSI' ; * ERRL1 = ERRL1 '/' CAC ; * * ERRL1 in degree * 'SI' (ERRL1 > 10) ; 'ERREUR' 5 ; 'FINSI' ; * 'FIN' ;
© Cast3M 2003 - Tous droits réservés.
Mentions légales