Télécharger pressupp.dgibi

Retour à la liste

Numérotation des lignes :

  1. * fichier : pressupp.dgibi
  2. *
  3. * Containment pressurization (Phebus size)
  4. *
  5. * 3D mesh of a 14.5 m3 cylindrical containment with a 10cm in depth vertical wall.
  6. * Initial pressure and temperature are 1bar and 40oC with the wall at 60oC.
  7. * Steam is injected at a constant 50g/s mass flow rate and a temperature of 150oC.
  8. *
  9. * Transient is computed for 50s. We check the pressure, the averaged temperature,
  10. * the velocity ans the condensation mass flow rate (that starts at 20s) evolutions.
  11. *
  12. * Compare to pressu2.dgibi, it is a not sequential version.
  13. *
  14. * Auteurs : E. Studer, J.P. Magnaud Novembre 1999
  15. *
  16. 'OPTI' 'DIME' 3 'ELEM' 'CU20' 'TRAC' 'PSC' ;
  17. 'DENS' 1. ;
  18. *
  19. COMPLET = FAUX ;
  20. GRAPH = FAUX ;
  21. 'SI' COMPLET ;
  22. nbit = 100 ;
  23. DT0 = 1. ;
  24. n1 = 1 ;
  25. n2 = 4 ;
  26. n3 = 4 ;
  27. nn = 2 ;
  28. 'SINO' ;
  29. nbit = 5 ;
  30. DT0 = 10. ;
  31. n1 = 1 ;
  32. n2 = 2 ;
  33. n3 = 4 ;
  34. nn = 1 ;
  35. 'FINS' ;
  36. epsi = 1.D-2 ;
  37. *
  38. *
  39. * Mesh
  40. *
  41. *
  42. * ri=cavity radius, h1=cavity height, sp=wall depth,
  43. * fg1=break to cavity radius ratio
  44. ri = 1.052 ;
  45. h1 = 4.163 ;
  46. sp = 0.10 ;
  47. fg1 = 0.25 ;
  48. fg2 = fg1 * (2.0 ** 0.5) / 2. ;
  49. *
  50. p0 = 0.000 0.000 0.000 ;
  51. p1 = (ri*fg1) 0.000 0.000 ;
  52. p2 = (ri*fg2) (ri*fg2) 0.000 ;
  53. p3 = 0.000 (ri*fg1) 0.000 ;
  54. p4 = ri 0.000 0.000 ;
  55. p5 = 0.000 ri 0.000 ;
  56. p6 = (ri+sp) 0.000 0.000 ;
  57. p7 = 0.000 (ri+sp) 0.000 ;
  58. *
  59. * Fluid and structure basement surfaces
  60. * (built by symetry)
  61. l1 = 'DROI' p0 p1 n1 ;
  62. l2 = 'DROI' p1 p2 n1 ;
  63. l3 = 'DROI' p2 p3 n1 ;
  64. l4 = 'DROI' p3 p0 n1 ;
  65. l5 = 'CERC' p4 p0 p5 (2*n1) ;
  66. l6 = 'CERC' p6 p0 p7 (2*n1) ;
  67. basf0 = 'DALL' l1 l2 l3 l4 'PLAN' ;
  68. basf1 = ('REGL' (l2 'ET' l3) l5 n2) ;
  69. *
  70. l44 = 'COTE' 2 basf1;
  71. ax4 = ('INVE' l4) 'ET' l44 ;
  72. l11 = 'COTE' 4 basf1;
  73. ax1 = l11 'ET' ('INVE' l1) ;
  74. basf = basf0 'ET' ('REGL' (l2 'ET' l3) l5 n2) ;
  75. 'ELIM' basf epsi ;
  76. basf = basf 'ET' ('SYME' basf 'DROI' p0 p3) ;
  77. ax11 = ('SYME' ax1 'DROI' p0 p3) 'ET' ('INVE' ax1) ;
  78. 'ELIM' basf epsi ;
  79. basf = basf 'ET' ('SYME' basf 'DROI' p0 p1) ;
  80. ax44 = ('INVE' ax4) 'ET' ('SYME' ax4 'DROI' p0 p4) ;
  81. 'ELIM' basf epsi ;
  82. basm = 'REGL' l5 l6 n3 ;
  83. basm = basm 'ET' ('SYME' basm 'DROI' p0 p3) ;
  84. 'ELIM' basm epsi ;
  85. basm = basm 'ET' ('SYME' basm 'DROI' p0 p1) ;
  86. 'ELIM' basm epsi ;
  87. *
  88. * Fluid and structure volumes
  89. * (built by translation)
  90. nz1 = ('ENTI' (h1 '/' (ri '/' 2.))) '*' nn ;
  91. v1 = 0. 0. h1 ;
  92. mt = basf 'VOLU' nz1 'TRAN' v1 ;
  93. wall = (basm 'VOLU' nz1 'TRAN' v1) 'COUL' 'ROUG' ;
  94. plan1 = ax11 'TRAN' nz1 v1 ;
  95. plan4 = ax44 'TRAN' nz1 v1 ;
  96. 'ELIM' (mt et wall 'ET' plan1 'ET' plan4) epsi ;
  97. *
  98. * Break at the basement if any
  99. pjg = 'POIN' basf 'PROC' (0. 0. 0.) ;
  100. breche = ('ELEM' basf 'APPUIE' 'LARGEMENT' pjg) 'COUL' 'VERT' ;
  101. *
  102. *
  103. * Data for execrxt.procedur
  104. *
  105. *
  106. rxt = 'TABLE' ;
  107. rxt . 'VERSION' = 'V0' ;
  108. rxt . 'vtf' = mt ;
  109. rxt . 'epsi' = epsi ;
  110. rxt . 'pi' = 0. 0. 0.5 ;
  111. *
  112. rxt . 'DISCR' = 'MACRO';
  113. rxt . 'KPRE' = 'CENTRE';
  114. rxt . 'DT0' = DT0 ;
  115. *
  116. rxt . 'MODTURB' = 'NUTURB' ;
  117. rxt . 'NUT' = 1.D-2 ;
  118. *
  119. rxt . 'THERMP' = VRAI ;
  120. rxt . 'vtp' = wall ;
  121. rxt . 'LAMBDA' = 15. ;
  122. rxt . 'ROCP' = 3.9E6 ;
  123. rxt . 'Tp0' = 60. ;
  124. rxt . 'ECHAN' = 10. ;
  125. *
  126. rxt . 'VAPEUR' = VRAI ;
  127. rxt . 'TF0' = 40.0 ;
  128. rxt . 'PT0' = 1.0e5 ;
  129. rxt . 'Yvap0' = 0.0023 ;
  130. *
  131. rxt . 'Breches' = 'TABLE' ;
  132. rxt . 'Breches' . 'A' = 'TABLE' ;
  133. rxt . 'Breches' . 'A' . 'scenario' = 'TABLE' ;
  134. rxt . 'Breches' . 'A' . 'Maillage' = breche ;
  135. rxt . 'Breches' . 'A' . 'diru' = (0. 0. 1.) ;
  136. rxt . 'Breches' . 'A' . 'scenario' . 't' = 'PROG' 0.0 1000.0 ;
  137. rxt . 'Breches' . 'A' . 'scenario' . 'qeau' = 'PROG' 0.050 0.050 ;
  138. rxt . 'Breches' . 'A' . 'scenario' . 'qair' = 'PROG' 0.000 0.000 ;
  139. rxt . 'Breches' . 'A' . 'scenario' . 'tinj' = 'PROG' 150.0 150.0 ;
  140. *
  141. rxt . 'GRAPH' = GRAPH ;
  142. rxt . 'DETMAT' = VRAI ;
  143. rxt . 'FRPREC' = 5 ;
  144. rxt . 'RENU' = 'RIEN' ;
  145. rxt . 'TKPR' = vrai ;
  146. *
  147. *
  148. * Transient (with restart after 2 time steps)
  149. *
  150. *
  151. EXECRXT 2 rxt ;
  152. EXECRXT (nbit - 2) rxt ;
  153. *
  154. *
  155. * Tests
  156. *
  157. *
  158. 'SI' ('NON' COMPLET) ;
  159. ERR1 = 0 ;
  160. 'LIST' rxt.TIC.'Tfm' ;
  161. 'LIST' rxt.TIC.'PT' ;
  162. 'LIST' rxt.TIC.'Qc' ;
  163. 'LIST' rxt.TIC.'LMAXU';
  164.  
  165. Ltfm = 'PROG'
  166. *40.000 65.434 73.516 81.090 86.346 89.754 ;
  167. 40.000 65.434 73.516 81.090 86.336 89.734 ;
  168. LPT = 'PROG'
  169. *1.00000E+05 1.04578E+05 1.21342E+05 1.30318E+05 1.36247E+05 1.43124E+05;
  170. 1.00000E+05 1.04578E+05 1.21342E+05 1.30318E+05 1.36243E+05 1.43107E+05;
  171. Lqc = 'PROG'
  172. *0.0000 0.0000 0.0000 1.24021E-03 4.33169E-03 7.08232E-03 ;
  173. 0.0000 0.0000 0.0000 1.28272E-03 4.41442E-03 7.19229E-03 ;
  174. Lmaxu = 'PROG'
  175. *0.0000 0.81320 0.85322 1.5357 1.8768 1.9459 ;
  176. 0.0000 0.81320 0.85322 1.5357 1.8768 1.9459 ;
  177.  
  178. tic = rxt . 'TIC' ;
  179. ERtf = 'SOMM' ('ABS'(ltfm - tic . 'Tfm')) '/' 80. ;
  180. ERPT = 'SOMM' ('ABS'(lPT - tic . 'PT' )) '/' 1.e5 ;
  181. ERQc = 'SOMM' ('ABS'(lqc - tic . 'Qc' )) ;
  182. ERum = 'SOMM' ('ABS'(Lmaxu - tic . 'LMAXU')) '/' 2. ;
  183. 'MESS' 'ERtf=' ERtf 'ERPT=' ERPT 'ERQc=' ERQc 'ERum=' ERum ;
  184. 'SI' (ERtf '>' 1.e-4) ; err1 = err1 '+' 1 ; 'FINS' ;
  185. 'SI' (ERPT '>' 1.e-3) ; err1 = err1 '+' 1 ; 'FINS' ;
  186. 'SI' (ERQc '>' 1.e-4) ; err1 = err1 '+' 1 ; 'FINS' ;
  187. 'SI' (ERum '>' 1.e-2) ; err1 = err1 '+' 1 ; 'FINS' ;
  188. 'SI' ('NEG' ERR1 0) ;
  189. 'ERRE' 5 ;
  190. 'FINS' ;
  191. 'FINS' ;
  192. *
  193. *
  194. * Plots devoted to pressu... cases
  195. *
  196. *
  197. 'SI' GRAPH ;
  198. tbt = rxt . 'TBT' ;
  199. tic = rxt . 'TIC' ;
  200. *
  201. $vtf = rxt . 'GEO' . '$vtf' ;
  202. vtf = 'DOMA' $vtf 'MAILLAGE' ;
  203. *
  204. Mpl1 = 'CHAN' 'QUAF' plan1 ;
  205. Mpl4 = 'CHAN' 'QUAF' plan4 ;
  206. 'ELIM' (vtf 'ET' Mpl1 'ET' Mpl4) epsi ;
  207. $mpl1 = 'MODE' Mpl1 'NAVIER_STOKES' 'MACRO' ;
  208. $mpl4 = 'MODE' Mpl4 'NAVIER_STOKES' 'MACRO' ;
  209. plan1 = 'DOMA' $mpl1 'MAILLAGE' ;
  210. plan4 = 'DOMA' $mpl4 'MAILLAGE' ;
  211. plan = plan1 'ET' plan4 ;
  212. cplan = 'CONT' plan ;
  213. *
  214. 'SI' ('EXIS' tic 'TP') ;
  215. $vtp = rxt . 'GEO' . '$vtp' ;
  216. vtp = 'DOMA' $vtp 'MAILLAGE' ;
  217. 'FINS' ;
  218. paroif = rxt . 'GEO' . 'paroif';
  219. cparoif = 'CONT' paroif ;
  220. *
  221. axe = p0 d nz1 (p0 plus v1) ;
  222. axe = 'CHAN' axe 'QUAF' ;
  223. 'ELIM' (axe 'ET' mt) epsi ;
  224. *
  225. un = tic . 'UN';
  226. unp = 'REDU' un plan ;
  227. ung = 'VECT' un 0.5 'UX' 'UY' 'UZ' 'JAUN' ;
  228. ungp = 'VECT' unp 0.5 'UX' 'UY' 'UZ' 'JAUN' ;
  229. tf = tic . 'TF' ;
  230. rho = tic . 'RHO' ;
  231. rair = tic . 'RAIR' ;
  232. 'SI' tbt . 'THE' ; rhe = tic . 'RHE' ; 'FINS' ;
  233. 'SI' tbt . 'TH2' ; rh2 = tic . 'RH2' ; 'FINS' ;
  234. 'SI' tbt . 'TCO' ; rco = tic . 'RCO' ; 'FINS' ;
  235. 'SI' tbt . 'TCO2' ; rco2 = tic . 'RCO2' ; 'FINS' ;
  236. 'SI' tbt . 'VAPEUR' ; rvp = tic . 'RVP' ; 'FINS' ;
  237. *
  238. evauz = 'EVOL' 'CHPO' ('EXCO' un 'UZ') axe ;
  239. 'DESS' evauz
  240. 'TITR' 'Velocity with the z axis' 'MIMA'
  241. 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' m/s' ;
  242. 'TRAC' ung plan ('CONT' plan) 'TITR' ' Velocity' ;
  243. *
  244. evatf = 'EVOL' 'CHPO' tf axe ;
  245. 'DESS' evatf
  246. 'TITR' 'Gas temperature with the z axis' 'MIMA'
  247. 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' C' ;
  248. 'TRAC' tf plan cplan 'TITR' ' Temperature' ;
  249. 'TRAC' tf paroif cparoif 'TITR' ' Temperature' ;
  250. *
  251. evarh = 'EVOL' 'CHPO' rho axe ;
  252. 'DESS' evarh
  253. 'TITR' 'Gas density with the z axis' 'MIMA'
  254. 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' kg/m3' ;
  255. 'TRAC' rho plan ('CONT' plan) ungp 'TITR' ' Density & velocity' ;
  256. 'TRAC' rho paroif cparoif 'TITR' ' Density' ;
  257. *
  258. evavap = 'EVOL' 'CHPO' rvp axe ;
  259. 'DESS' evavap
  260. 'TITR' 'Steam density with the z axis' 'MIMA'
  261. 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' kg/m3' ;
  262. 'TRAC' rvp plan cplan 'TITR' ' Steam density' ;
  263. *
  264. Fcond = rxt . 'TIC' . 'Fcondw';
  265. 'TRAC' fcond paroif cparoif 'TITR' ' Fcond kg/m**2' ;
  266. *
  267. * Wall temperature
  268. 'SI' ('EXIS' tic 'TP') ;
  269. 'TRAC' tic . 'TP' vtp 'TITR' ' Wall temperature' ;
  270. 'FINS' ;
  271. 'FINSI' ;
  272.  
  273. 'FIN' ;
  274.  
  275.  
  276.  
  277.  
  278.  
  279.  
  280.  
  281.  
  282.  
  283.  
  284.  
  285.  
  286.  
  287.  
  288.  
  289.  
  290.  
  291.  
  292.  

© Cast3M 2003 - Tous droits réservés.
Mentions légales