Télécharger pressugQ.dgibi

Retour à la liste

Numérotation des lignes :

  1. * fichier : pressugQ.dgibi
  2. *
  3. * Containment pressurization (Phebus size)
  4. *
  5. * 3D mesh of a 14.5 m3 cylindrical containment with a 10cm in depth vertical wall.
  6. * Initial pressure and temperature are 1bar and 40oC with the wall at 60oC.
  7. * Steam is injected at a constant 50g/s mass flow rate and a temperature of 150oC.
  8. *
  9. * Transient is computed for 50s. We check the pressure, the averaged temperature,
  10. * the velocity ans the condensation mass flow rate (that starts at 20s) evolutions.
  11. *
  12. * This test case is similar to pressu.dgibi except the choice QUAF/MSOMMET
  13. *
  14. * Auteurs : E. Studer, J.P. Magnaud Novembre 1999
  15. *
  16. 'OPTI' 'DIME' 3 'ELEM' 'CU20' 'TRAC' 'PSC' ;
  17. 'DENS' 1. ;
  18. *
  19. COMPLET = FAUX ;
  20. GRAPH = FAUX ;
  21. 'SI' COMPLET ;
  22. nbit = 100 ;
  23. DT0 = 1. ;
  24. n1 = 1 ;
  25. n2 = 4 ;
  26. n3 = 4 ;
  27. nn = 2 ;
  28. 'SINO' ;
  29. nbit = 5 ;
  30. DT0 = 10. ;
  31. n1 = 1 ;
  32. n2 = 2 ;
  33. n3 = 4 ;
  34. nn = 1 ;
  35. 'FINS' ;
  36. epsi = 1.D-2 ;
  37. *
  38. *
  39. * Mesh
  40. *
  41. *
  42. * ri=cavity radius, h1=cavity height, sp=wall depth,
  43. * fg1=break to cavity radius ratio
  44. ri = 1.052 ;
  45. h1 = 4.163 ;
  46. sp = 0.10 ;
  47. fg1 = 0.25 ;
  48. fg2 = fg1 * (2.0 ** 0.5) / 2. ;
  49. *
  50. p0 = 0.000 0.000 0.000 ;
  51. p1 = (ri*fg1) 0.000 0.000 ;
  52. p2 = (ri*fg2) (ri*fg2) 0.000 ;
  53. p3 = 0.000 (ri*fg1) 0.000 ;
  54. p4 = ri 0.000 0.000 ;
  55. p5 = 0.000 ri 0.000 ;
  56. p6 = (ri+sp) 0.000 0.000 ;
  57. p7 = 0.000 (ri+sp) 0.000 ;
  58. *
  59. * Fluid and structure basement surfaces
  60. * (built by symetry)
  61. l1 = 'DROI' p0 p1 n1 ;
  62. l2 = 'DROI' p1 p2 n1 ;
  63. l3 = 'DROI' p2 p3 n1 ;
  64. l4 = 'DROI' p3 p0 n1 ;
  65. l5 = 'CERC' p4 p0 p5 (2*n1) ;
  66. l6 = 'CERC' p6 p0 p7 (2*n1) ;
  67. basf0 = 'DALL' l1 l2 l3 l4 'PLAN' ;
  68. basf1 = ('REGL' (l2 'ET' l3) l5 n2) ;
  69. *
  70. l44 = 'COTE' 2 basf1;
  71. ax4 = ('INVE' l4) 'ET' l44 ;
  72. l11 = 'COTE' 4 basf1;
  73. ax1 = l11 'ET' ('INVE' l1) ;
  74. basf = basf0 'ET' ('REGL' (l2 'ET' l3) l5 n2) ;
  75. 'ELIM' basf epsi ;
  76. basf = basf 'ET' ('SYME' basf 'DROI' p0 p3) ;
  77. ax11 = ('SYME' ax1 'DROI' p0 p3) 'ET' ('INVE' ax1) ;
  78. 'ELIM' basf epsi ;
  79. basf = basf 'ET' ('SYME' basf 'DROI' p0 p1) ;
  80. ax44 = ('INVE' ax4) 'ET' ('SYME' ax4 'DROI' p0 p4) ;
  81. 'ELIM' basf epsi ;
  82. basm = 'REGL' l5 l6 n3 ;
  83. basm = basm 'ET' ('SYME' basm 'DROI' p0 p3) ;
  84. 'ELIM' basm epsi ;
  85. basm = basm 'ET' ('SYME' basm 'DROI' p0 p1) ;
  86. 'ELIM' basm epsi ;
  87. *
  88. * Fluid and structure volumes
  89. * (built by translation)
  90. nz1 = ('ENTI' (h1 '/' (ri '/' 2.))) '*' nn ;
  91. v1 = 0. 0. h1 ;
  92. mt = basf 'VOLU' nz1 'TRAN' v1 ;
  93. wall = (basm 'VOLU' nz1 'TRAN' v1) 'COUL' 'ROUG' ;
  94. plan1 = ax11 'TRAN' nz1 v1 ;
  95. plan4 = ax44 'TRAN' nz1 v1 ;
  96. 'ELIM' (mt et wall 'ET' plan1 'ET' plan4) epsi ;
  97. *
  98. * Break at the basement if any
  99. pjg = 'POIN' basf 'PROC' (0. 0. 0.) ;
  100. breche = ('ELEM' basf 'APPUIE' 'LARGEMENT' pjg) 'COUL' 'VERT' ;
  101. *
  102. *
  103. * Data for execrxt.procedur
  104. *
  105. *
  106. rxt = 'TABLE' ;
  107. rxt . 'VERSION' = 'V0' ;
  108. rxt . 'vtf' = mt ;
  109. rxt . 'epsi' = epsi ;
  110. rxt . 'pi' = 0. 0. 0.5 ;
  111. *
  112. rxt . 'DISCR' = 'QUAF';
  113. rxt . 'KPRE' = 'MSOMMET';
  114. rxt . 'DT0' = DT0 ;
  115. *
  116. rxt . 'MODTURB' = 'NUTURB' ;
  117. rxt . 'NUT' = 1.D-2 ;
  118. *
  119. rxt . 'THERMP' = VRAI ;
  120. rxt . 'vtp' = wall ;
  121. rxt . 'LAMBDA' = 15. ;
  122. rxt . 'ROCP' = 3.9E6 ;
  123. rxt . 'Tp0' = 60. ;
  124. rxt . 'ECHAN' = 10. ;
  125. *
  126. rxt . 'VAPEUR' = VRAI ;
  127. rxt . 'TF0' = 40.0 ;
  128. rxt . 'PT0' = 1.0e5 ;
  129. rxt . 'Yvap0' = 0.0023 ;
  130. *
  131. rxt . 'Breches' = 'TABLE' ;
  132. rxt . 'Breches' . 'A' = 'TABLE' ;
  133. rxt . 'Breches' . 'A' . 'scenario' = 'TABLE' ;
  134. rxt . 'Breches' . 'A' . 'Maillage' = breche ;
  135. rxt . 'Breches' . 'A' . 'diru' = (0. 0. 1.) ;
  136. rxt . 'Breches' . 'A' . 'scenario' . 't' = 'PROG' 0.0 1000.0 ;
  137. rxt . 'Breches' . 'A' . 'scenario' . 'qeau' = 'PROG' 0.050 0.050 ;
  138. rxt . 'Breches' . 'A' . 'scenario' . 'qair' = 'PROG' 0.000 0.000 ;
  139. rxt . 'Breches' . 'A' . 'scenario' . 'tinj' = 'PROG' 150.0 150.0 ;
  140. *
  141. rxt . 'GRAPH' = GRAPH ;
  142. rxt . 'DETMAT' = VRAI ;
  143. rxt . 'FRPREC' = 5 ;
  144. rxt . 'RENU' = 'RIEN' ;
  145. *
  146. *
  147. * Transient (with restart after 2 time steps)
  148. *
  149. *
  150. EXECRXT 2 rxt ;
  151. EXECRXT (nbit - 2) rxt ;
  152. *
  153. *
  154. * Tests
  155. *
  156. *
  157. 'SI' ('NON' COMPLET) ;
  158. ERR1 = 0 ;
  159. 'LIST' rxt.TIC.'Tfm' ;
  160. 'LIST' rxt.TIC.'PT' ;
  161. 'LIST' rxt.TIC.'Qc' ;
  162. 'LIST' rxt.TIC.'LMAXU';
  163.  
  164. ltfm = 'PROG'
  165. *40.000 64.823 72.938 80.552 86.159 89.913 ;
  166. 40.000 64.823 72.938 80.552 86.153 89.897 ;
  167.  
  168. lPT = 'PROG'
  169. *1.00000E+05 1.05543E+05 1.20476E+05 1.28231E+05 1.35156E+05 1.43315E+05;
  170. 1.00000E+05 1.05543E+05 1.20476E+05 1.28231E+05 1.35154E+05 1.43304E+05;
  171.  
  172. Lqc = 'PROG'
  173. *0.000 0.000 0.000 3.59501E-04 3.09393E-03 4.50866E-03 ;
  174. 0.000 0.000 0.000 3.85659E-04 3.16327E-03 4.59309E-03 ;
  175.  
  176. Lmaxu = 'PROG'
  177. *0.0000 0.66429 2.1918 3.0228 2.1077 2.6045 ;
  178. 0.0000 0.66429 2.1918 3.0228 2.1077 2.6045 ;
  179.  
  180. tic = rxt . 'TIC' ;
  181. ERtf = 'SOMM' ('ABS'(ltfm - tic . 'Tfm')) '/' 80. ;
  182. ERPT = 'SOMM' ('ABS'(lPT - tic . 'PT' )) '/' 1.e5 ;
  183. ERQc = 'SOMM' ('ABS'(lqc - tic . 'Qc' )) ;
  184. ERum = 'SOMM' ('ABS'(Lmaxu - tic . 'LMAXU')) '/' 2. ;
  185. 'MESS' 'ERtf=' ERtf 'ERPT=' ERPT 'ERQc=' ERQc 'ERum=' ERum ;
  186. 'SI' (ERtf '>' 1.e-4) ; err1 = err1 '+' 1 ; 'FINS' ;
  187. 'SI' (ERPT '>' 1.e-3) ; err1 = err1 '+' 1 ; 'FINS' ;
  188. 'SI' (ERQc '>' 1.e-4) ; err1 = err1 '+' 1 ; 'FINS' ;
  189. 'SI' (ERum '>' 1.e-2) ; err1 = err1 '+' 1 ; 'FINS' ;
  190. 'SI' ('NEG' ERR1 0) ;
  191. 'ERRE' 5 ;
  192. 'FINS' ;
  193. 'FINS' ;
  194. *
  195. *
  196. * Plots devoted to pressu... cases
  197. *
  198. *
  199. 'SI' GRAPH ;
  200. tbt = rxt . 'TBT' ;
  201. tic = rxt . 'TIC' ;
  202. *
  203. $vtf = rxt . 'GEO' . '$vtf' ;
  204. vtf = 'DOMA' $vtf 'MAILLAGE' ;
  205. *
  206. Mpl1 = 'CHAN' 'QUAF' plan1 ;
  207. Mpl4 = 'CHAN' 'QUAF' plan4 ;
  208. 'ELIM' (vtf 'ET' Mpl1 'ET' Mpl4) epsi ;
  209. $mpl1 = 'MODE' Mpl1 'NAVIER_STOKES' 'MACRO' ;
  210. $mpl4 = 'MODE' Mpl4 'NAVIER_STOKES' 'MACRO' ;
  211. plan1 = 'DOMA' $mpl1 'MAILLAGE' ;
  212. plan4 = 'DOMA' $mpl4 'MAILLAGE' ;
  213. plan = plan1 'ET' plan4 ;
  214. cplan = 'CONT' plan ;
  215. *
  216. 'SI' ('EXIS' tic 'TP') ;
  217. $vtp = rxt . 'GEO' . '$vtp' ;
  218. vtp = 'DOMA' $vtp 'MAILLAGE' ;
  219. 'FINS' ;
  220. paroif = rxt . 'GEO' . 'paroif';
  221. cparoif = 'CONT' paroif ;
  222. *
  223. axe = p0 d nz1 (p0 plus v1) ;
  224. axe = 'CHAN' axe 'QUAF' ;
  225. 'ELIM' (axe 'ET' mt) epsi ;
  226. *
  227. un = tic . 'UN';
  228. unp = 'REDU' un plan ;
  229. ung = 'VECT' un 0.5 'UX' 'UY' 'UZ' 'JAUN' ;
  230. ungp = 'VECT' unp 0.5 'UX' 'UY' 'UZ' 'JAUN' ;
  231. tf = tic . 'TF' ;
  232. rho = tic . 'RHO' ;
  233. rair = tic . 'RAIR' ;
  234. 'SI' tbt . 'THE' ; rhe = tic . 'RHE' ; 'FINS' ;
  235. 'SI' tbt . 'TH2' ; rh2 = tic . 'RH2' ; 'FINS' ;
  236. 'SI' tbt . 'TCO' ; rco = tic . 'RCO' ; 'FINS' ;
  237. 'SI' tbt . 'TCO2' ; rco2 = tic . 'RCO2' ; 'FINS' ;
  238. 'SI' tbt . 'VAPEUR' ; rvp = tic . 'RVP' ; 'FINS' ;
  239. *
  240. evauz = 'EVOL' 'CHPO' ('EXCO' un 'UZ') axe ;
  241. 'DESS' evauz
  242. 'TITR' 'Velocity with the z axis' 'MIMA'
  243. 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' m/s' ;
  244. 'TRAC' ung plan ('CONT' plan) 'TITR' ' Velocity' ;
  245. *
  246. evatf = 'EVOL' 'CHPO' tf axe ;
  247. 'DESS' evatf
  248. 'TITR' 'Gas temperature with the z axis' 'MIMA'
  249. 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' C' ;
  250. 'TRAC' tf plan cplan 'TITR' ' Temperature' ;
  251. 'TRAC' tf paroif cparoif 'TITR' ' Temperature' ;
  252. *
  253. evarh = 'EVOL' 'CHPO' rho axe ;
  254. 'DESS' evarh
  255. 'TITR' 'Gas density with the z axis' 'MIMA'
  256. 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' kg/m3' ;
  257. 'TRAC' rho plan ('CONT' plan) ungp 'TITR' ' Density & velocity' ;
  258. 'TRAC' rho paroif cparoif 'TITR' ' Density' ;
  259. *
  260. evavap = 'EVOL' 'CHPO' rvp axe ;
  261. 'DESS' evavap
  262. 'TITR' 'Steam density with the z axis' 'MIMA'
  263. 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' kg/m3' ;
  264. 'TRAC' rvp plan cplan 'TITR' ' Steam density' ;
  265. *
  266. Fcond = rxt . 'TIC' . 'Fcondw';
  267. 'TRAC' fcond paroif cparoif 'TITR' ' Fcond kg/m**2' ;
  268. *
  269. * Wall temperature
  270. 'SI' ('EXIS' tic 'TP') ;
  271. 'TRAC' tic . 'TP' vtp 'TITR' ' Wall temperature' ;
  272. 'FINS' ;
  273. 'FINSI' ;
  274.  
  275. 'FIN' ;
  276.  
  277.  
  278.  
  279.  
  280.  
  281.  
  282.  
  283.  
  284.  
  285.  
  286.  
  287.  
  288.  
  289.  
  290.  
  291.  
  292.  
  293.  
  294.  

© Cast3M 2003 - Tous droits réservés.
Mentions légales