tconv3
C TCONV3 SOURCE AM 08/02/14 21:31:25 6050 C======================================================================= C= T C O N V 3 = C= ----------- = C= = C= Fonction : = C= ---------- = C= Calcul, au point de Gauss (iGau) considere, du jacobien (DJAC), = C= des fonctions de forme (FORME) et de leurs derivees (SHP) = C= = C= Parametres : (E)=Entree (S)=Sortie = C= ------------ = C= NEF (E) Numero de l'ELEMENT FINI dans NOMTP (cf. CCHAMP) = C= iGau (E) Numero du point de Gauss considere = C= NBNN (E) Nombre de NOEUDS de l'element = C= NBN2 (E) Nombre de NOEUDS de l'element / 2 pour FACE A FACE = C= XE (E) COORDONNEES des noeuds de l'element (repere GLOBAL) = C= SHPTOT (E) Fonctions de FORME et leurs DERIVEES par rapport aux = C= coordonnees de REFERENCE (Qsi,Eta,Dzeta) = C= SHP (S) Fonctions de FORME et leurs DERIVEES par rapport aux = C= coordonnees REELLES (X,Y,Z) = C= FORME (S) Fonctions de FORME dans la geometrie REELLE = C= DJAC (S) JACOBIEN au point de Gauss considere = C= = C= Denis ROBERT, le 6 mai 1988. = C======================================================================= IMPLICIT INTEGER(I-N) IMPLICIT REAL*8 (A-H,O-Z) -INC PPARAM -INC CCOPTIO -INC CCREEL C= Quelques constantes (2.Pi et 4.Pi) PARAMETER (X2Pi=6.283185307179586476925286766559D0) PARAMETER (X4Pi=12.566370614359172953850573533118D0) DIMENSION XE(3,*),SHPTOT(6,NBN2,*),SHP(6,*),FORME(*) C ==================== C 1 - Initialisation C ==================== C*OF CALL ZERO(FORME,1,NBNN) C ============================================ C 2 - Cas des elements MASSIFS 2D PLAN ou 3D C ============================================ IF (IFOMOD.EQ.-1.OR.IFOMOD.EQ.2) THEN iFin=IDIM+1 DO j=1,NBN2 DO i=1,iFin SHP(i,j)=SHPTOT(i,j,iGau) ENDDO ENDDO C ===== C 2.1 - Cas particulier des elements finis SEG2 SEG3 LIA3 LIA4 C ===== IF (NEF.EQ.2.OR.NEF.EQ.3.OR.NEF.EQ.12.OR.NEF.EQ.13) THEN C ===== C 2.2 - Autres elements C ===== ELSE ENDIF C ================================================ C 3 - Cas des elements MASSIFS 2D AXISYMETRIQUES C ================================================ ELSE IF (IFOMOD.EQ.0) THEN DO i=1,NBN2 SHP(1,i)=SHPTOT(1,i,iGau) SHP(2,i)=SHPTOT(2,i,iGau) SHP(3,i)=SHPTOT(3,i,iGau) ENDDO DJAC=X2Pi*DJAC*RR C ================================= C 4 - Cas des elements MASSIFS 1D C ================================= ELSE IF (IFOMOD.EQ.3.OR.IFOMOD.EQ.4.OR.IFOMOD.EQ.5) THEN DO i=1,NBN2 SHP(1,i)=SHPTOT(1,i,iGau) SHP(2,i)=SHPTOT(2,i,iGau) ENDDO C ===== C 4.1 - Cas particulier du POI1 ou du SEG2 (convection 1D) C ===== IF ((NEF.EQ.45).OR.(NEF.EQ.1)) THEN DJAC=1. C ===== C 4.2 - Cas generique C ===== ELSE ENDIF C ===== C 4.3 - Cas particulier des modes axisymetriques et spherique 1D C ===== IF (IFOMOD.EQ.4) THEN DJAC=X2Pi*DJAC*RR ELSE IF (IFOMOD.EQ.5) THEN DJAC=X4Pi*DJAC*RR*RR ENDIF C ============================================== C 5 - Cas des elements MASSIFS en mode FOURIER -> ERREUR C ============================================== ELSE IF (IFOMOD.EQ.1) THEN RETURN ENDIF C =================================================================== C 6 - Recuperations des fonctions de FORME C Traitement particulier des elements de CONVECTION FACE A FACE C =================================================================== DO i=1,NBN2 FORME(i)=SHP(1,i) ENDDO IF (NBNN.NE.NBN2) THEN IF (NEF.EQ.12.OR.NEF.EQ.13) THEN j=NBNN+1 DO i=1,NBN2 FORME(j-i)=-SHP(1,i) ENDDO ELSE DO i=1,NBN2 FORME(NBN2+i)=-SHP(1,i) ENDDO ENDIF ENDIF RETURN END
© Cast3M 2003 - Tous droits réservés.
Mentions légales