Numérotation des lignes :

su
C SU        SOURCE    CB215821  22/11/16    21:15:05     11500          C SUFIT     SOURCE    CB215821  16/04/21    21:18:30     8920      SUBROUTINE SU(Xbar,Sd,RB1,B2,Gma,Dlta,Xlmbd,Xi)      IMPLICIT INTEGER(I-N)      IMPLICIT REAL*8 (A-H,O-Z)      REAL*8 Xbar, Sd, RB1, B2, Gma, Dlta,     $Xi, Tol, B1, B3, W, Y, W1, WM1, Z, V, A, B, X,$ Xlmbd      DATA Tol /0.01D0/CC Calcul de Beta_1 et Beta_2 -3C      B1 = RB1 * RB1      B3 = B2 - 3.D0CC W premiere estimation de EXP(Dlta**(-2))C      W = SQRT(SQRT(2.D0 * B2 - 2.8D0 * B1 - 2.D0) - 1.D0)      IF (ABS(RB1).GT.Tol) GOTO 10CC Cas distribution symetrique - resultats theoriquesC      Y = 0.D0      GOTO 20CC Debut des iterations de JohnsonC  10  W1 = W + 1.D0      WM1 = W - 1.D0      Z = W1 * B3      V = W * (6.D0 + W * (3.D0 + W))      A = 8.D0 * (WM1 *(3.D0 + W * (7.D0 + V)) - Z)      B = 16.D0 * (WM1 * (6.D0 + V) - B3)      Y = (SQRT(A * A - 2.D0 * B * (WM1 * (3.D0 + W *     $(9.D0 + W * (10.D0 + V))) - 2.D0 * W1 * Z)) - A) / B Z = Y * WM1 * (4.D0 * (W + 2.D0) * Y + 3.D0$ * W1 * W1)** 2 / (2.D0 * (2.D0 * Y + W1) ** 3)      V = W * W      W = SQRT(SQRT(1.D0 - 2.D0 * (1.5D0 - B2 + (B1 *     $(B2 - 1.5D0 - V * (1.D0 + 0.5D0 * V))) / Z)) - 1.D0) IF (ABS(B1 - Z).GT.Tol) GOTO 10CC Fin de la boucle iterative de JohnsonC Y = Y / W Y = LOG(SQRT(Y) + SQRT(Y + 1.D0)) IF (RB1.GT.0.D0) Y = -Y 20 X = SQRT(1.D0 / LOG(W)) Gma = Y * X Dlta = X Y = EXP(Y) Z = Y * Y X = Sd / SQRT(0.5D0 * (W - 1.D0) * (0.5D0 * W *$ (Z + 1.D0 / Z) + 1.D0 ))      Xlmbd = X      Xi = (0.5D0 * SQRT(W) * (Y - 1.D0 / Y)) * X + XbarC      write(*,*) RB1,B2,Gma,Dlta,Xlmbd,Xi      RETURN      END        

© Cast3M 2003 - Tous droits réservés.
Mentions légales