mathoo
C MATHOO SOURCE CHAT 05/01/13 01:34:21 5004 C MATHOO SOURCE INSL 24/10/96 C C FORMATION DE LA MATRICE D ELASTICITE LINEAIRE C----------------------------------------------------------------------- C VARIABLES PASSEES PAR LES COMMONS COPTIO , ECOU ET NECOU C C IFOUR INDICE DU TYPE DE PROBLEME C -2 CONTRAINTES PLANES C -1 DEFORMATIONS PLANES C 0 AXISYMETRIQUE C 1 SERIE DE FOURIER C 2 TRIDIMENSIONNEL C----------------------------------------------------------------------- IMPLICIT INTEGER(I-N) IMPLICIT REAL*8(A-H,O-Z) DIMENSION D5(6,6),D(NSTRS,NSTRS) C C GO TO (10,1000,30,40,50,60),NSTRS GOTO 1000 C 60 CONTINUE C C COMPORTEMENT TRIDIMENSIONNEL C E1=EX/(1.D0+PX)/(1.D0-2.D0*PX) D5(1,1)=E1*(1.D0-PX) D5(1,2)=E1*PX D5(1,3)=D5(1,2) D5(2,1)=D5(1,2) D5(2,2)=D5(1,1) D5(2,3)=D5(1,3) D5(3,1)=D5(1,2) D5(3,2)=D5(1,2) D5(3,3)=D5(1,1) D5(4,4)=E1*(1.D0-2.D0*PX)/2.D0 D5(5,5)=D5(4,4)/1.2D0 D5(6,6)=D5(5,5) GO TO 100 C 50 CONTINUE IF(IFOUR.EQ.-2.OR.IFOUR.EQ.2) THEN C C CONTRAINTES PLANES AVEC TOUS LES CISAILLEMENTS C E1=EX/(1.D0-PX*PX) D5(1,1)=E1 D5(1,2)=PX*E1 D5(2,1)=PX*E1 D5(2,2)=E1 D5(3,3)=E1*(1.D0-PX)/2.D0 D5(4,4)=D5(3,3)/1.2D0 D5(5,5)=D5(4,4) C ELSE IF(IFOUR.EQ.-1) THEN C C DEFORMATIONS PLANES AVEC TOUS LES CISAILLEMENTS C E1=EX/(1.D0+PX)/(1.D0-2.D0*PX) D5(1,1)=E1*(1.D0-PX) D5(1,2)=PX*E1 D5(2,1)=PX*E1 D5(2,2)=E1*(1.D0-PX) D5(3,3)=E1*(1.D0-2.D0*PX)/2.D0 D5(4,4)=D5(3,3)/1.2D0 D5(5,5)=D5(4,4) ELSE GO TO 1000 ENDIF GO TO 100 C 40 CONTINUE IF(IFOUR.EQ.0.OR.IFOUR.EQ.-1) THEN C C CAS AXISYMETRIQUE OU DEFORMATION PLANES C E1=EX/(1.D0+PX)/(1.D0-2.D0*PX) D5(1,1)=E1*(1.D0-PX) D5(1,2)=E1*PX D5(1,3)=E1*PX D5(2,1)=E1*PX D5(2,2)=E1*(1.D0-PX) D5(2,3)=E1*PX D5(3,1)=E1*PX D5(3,2)=E1*PX D5(3,3)=E1*(1.D0-PX) D5(4,4)=E1*(1.D0-2.D0*PX)/2.D0 C ELSE IF (IFOUR.EQ.-2) THEN C C CONTRAINTES PLANES C E1=EX/(1.D0-PX*PX) D5(1,1)=E1 D5(1,2)=PX*E1 D5(2,1)=PX*E1 D5(2,2)=E1 D5(3,3)=D5(1,1)*1.D-6 D5(4,4)=E1*(1.D0-PX)/2.D0 C ENDIF GO TO 100 C 30 CONTINUE IF(IFOUR.EQ.-2.OR.IFOUR.EQ.2) THEN C C CONTRAINTES PLANES SANS CISAILLEMENTS TRANSVERSAL C E1=EX/(1.D0-PX*PX) D5(1,1)=E1 D5(1,2)=PX*E1 D5(2,1)=PX*E1 D5(2,2)=E1 D5(3,3)=E1*(1.D0-PX)/2.D0 C ELSE IF(IFOUR.EQ.-1) THEN C C DEFORMATIONS PLANES SANS CISAILLEMENTS TRANSVERSAL C E1=EX/(1.D0+PX)/(1.D0-2.D0*PX) D5(1,1)=E1*(1.D0-PX) D5(1,2)=PX*E1 D5(2,1)=PX*E1 D5(2,2)=E1*(1.D0-PX) D5(3,3)=E1*(1.D0-2.D0*PX)/2.D0 ELSE GO TO 1000 ENDIF GO TO 100 C 10 CONTINUE C C COMPORTEMENT UNIDIMENSIONNEL C D5(1,1)=EX GO TO 100 1000 WRITE(*,200) IFOUR,NSTRS STOP 100 CONTINUE C DO 300 I = 1,NSTRS DO 400 J = 1,NSTRS D(I,J) = D5(I,J) 400 CONTINUE 300 CONTINUE 200 FORMAT(//,5X,' CAS NON DISPONIBLE DANS MATHOOK',/, RETURN END
© Cast3M 2003 - Tous droits réservés.
Mentions légales