jacobf
C JACOBF SOURCE CHAT 05/01/13 00:48:23 5004 C $ N,ALP,BET,X) C-------------------------------------------------------------------- C C Computes the Jacobi polynomial (POLY) and its derivative (PDER) C of degree N at X. C C-------------------------------------------------------------------- IMPLICIT INTEGER(I-N) IMPLICIT REAL*8 (A-H,O-Z) APB = ALP+BET POLY = 1.D0 PDER = 0.D0 IF (N .EQ. 0) RETURN POLYL = POLY PDERL = PDER POLY = (ALP-BET+(APB+2.D0)*X)/2.D0 PDER = (APB+2.D0)/2.D0 IF (N .EQ. 1) RETURN DO 20 K=2,N DK =K A1 = 2.D0*DK*(DK+APB)*(2.D0*DK+APB-2.D0) A2 = (2.D0*DK+APB-1.D0)*(ALP**2-BET**2) B3 = (2.D0*DK+APB-2.D0) A3 = B3*(B3+1.D0)*(B3+2.D0) A4 = 2.D0*(DK+ALP-1.D0)*(DK+BET-1.D0)*(2.D0*DK+APB) POLYN = ((A2+A3*X)*POLY-A4*POLYL)/A1 PDERN = ((A2+A3*X)*PDER-A4*PDERL+A3*POLY)/A1 PSAVE = POLYL PDSAVE = PDERL POLYL = POLY POLY = POLYN PDERL = PDER PDER = PDERN 20 CONTINUE POLYM1 = POLYL PDERM1 = PDERL POLYM2 = PSAVE PDERM2 = PDSAVE RETURN END
© Cast3M 2003 - Tous droits réservés.
Mentions légales