fausm4
C FAUSM4 SOURCE CHAT 05/01/12 23:56:50 5004 C FAUSM3 SOURCE BECC 01/07/27 21:16:20 4170 & GAMG,ROG,PG,UNG,UTG,UVG, & GAMD,ROD,PD,UND,UTD,UVD, & YG,YD,V_INF,F, & CELLT) C************************************************************************ C C PROJET : CASTEM 2000 C C NOM : FAUSM4 C C DESCRIPTION : Voir KONJA2 C C LANGAGE : FORTRAN 77 + ESOPE 2000 (avec estensions CISI) C C AUTEUR : S. KUDRIAKOV, DM2S/SFME/LTMF C C************************************************************************ C c---------------------------------------------------------------------- c GENERAL DESCRIPTION: c This subroutine provides the numerical flux function c defined at the cell interface; this flux is given in c the NORMAL DIRECTION (nvect) c The low-mach number corrections are made for the flux functions c c EQUATIONS: 3D Euler equations of gas dynamics c c c REFERENCE: 1) JCP, 129, 364-382 (1996) c " A Sequel to AUSM: AUSM+ "; c M.S.Liou c 2) AIAA Journal, Sept. 1998 c "Low-Diffusion Flux-Splitting Methods for Flows at All Speeds" c J.R.Edwards and M.S.Liou c---------------------------------------------------------------------- c INPUT: c c NESP -- number of species in the multispecies gas c c alpha -- parameter of the AUSM+ scheme in the Pressure function; c ( -3/4 <= alpha <= 3/16 ) (imposed as a parameter) c c beta -- parameter of the AUSM+ scheme in the Mach function; c ( -1/16 <= beta <= 1/2 ) (imposed as a parameter) c c (gamg,rhog,pg,ung,utg,uvg) -- vector of the primitive variables c at the left cell; c c (gamd,rhod,pd,und,utd,uvd) -- vector of the primitive variables c at the right cell; c c yg -- vector of the mass fractionc of the species c at the left cell; c c yd -- vector of the mass fractions of the species c at the right cell; c c v_inf -- parameter for choosing the reference velocity c when the magnitude of the physical velocity c is close to zero c---------------------------------------------------------------------- c c OUTPUT: c f -- numerical flux-function in the NORMAL DIRECTION c---------------------------------------------------------------------- c Variable 'cans' (set after the descriptions of all the variables) c can be used for switching off the low-Mach number additions c by simply assigning 'cans=0.0d0' c---------------------------------------------------------------------- IMPLICIT INTEGER(I-N) integer nesp,i real*8 gamg,rog,pg,ung,utg,uvg real*8 gamd,rod,pd,und,utd,uvd real*8 gm1l,gm1r,f(*) real*8 un_l, un_r, ut_l, ut_r real*8 uv_l, uv_r real*8 ml,mr,Mplus,Mmin,mmid real*8 mpl_m, mmin_m,am real*8 rold_l,pold_l,eold_l real*8 rold_r,pold_r,eold_r real*8 Pplus,Pmin,pmid real*8 hr_l,hr_r,top,bot real*8 br1,br2 real*8 aleft, arigh real*8 epsil,qq,amw,Mmin1,Mplus1 real*8 fmid,mlw,mrw,termp real*8 ur_r,ur_l,urm,mhalf,mhalfr real*8 canc,cellt,v_inf,rum real*8 yg(*),yd(*) parameter(epsil = 1.0d0) canc=1.0d0 upr_l=0.0d0 upr_r=0.0d0 c------------------------------------------------------------- gm1l=gamg-1.0d0 gm1r=gamd-1.0d0 c---------------------------- rold_l=rog pold_l=pg c---------------------------- rold_r=rod pold_r=pd c------------------------------------------------------------------ c Computation of the specific total energy on the left and right. c------------------------------------------------------------------ eold_l=(ung*ung+utg*utg+uvg*uvg)/2.0d0 eold_l=eold_l+pold_l/(gm1l*rold_l) eold_r=(und*und+utd*utd+uvd*uvd)/2.0d0 eold_r=eold_r+pold_r/(gm1r*rold_r) c------------------------------------------------------------------ c Computing reference velocity and its derivatives c see Eq.(2) of the Ref.2). c------------------------------------------------------------------ aleft=sqrt(gamg*pold_l/rold_l) arigh=sqrt(gamd*pold_r/rold_r) qq=sqrt(ung*ung+utg*utg+uvg*uvg) if(qq .lt. (epsil*v_inf)) then ur_l = epsil*v_inf else ur_l=qq endif c------------------------------------------------------------------- if(ur_l .ge. aleft) then ur_l=aleft endif c------------------------------------------------------------------- if(ur_l .lt. upr_l) ur_l=upr_l c------------------------------------------------------------------- qq=sqrt(und*und+utd*utd+uvd*uvd) if(qq .lt. (epsil*v_inf)) then ur_r = epsil*v_inf else ur_r=qq endif c------------------------------------------------------------------ if(ur_r .ge. arigh) then ur_r=arigh endif c------------------------------------------------------------------ if(ur_r .lt. upr_r) ur_r=upr_r c------------------------------------------------------------------- c Reference velocity at the interface is taken as an average c of the reference velocities of the neighbouring cells c------------------------------------------------------------------- urm=0.5d0*(ur_l+ur_r) c------------------------------------------------------------------- c Computation of the speed of sound; c numerical speed of sound at the interface is taken as an average c of the speeds of sounds of the neighbouring cells c------------------------------------------------------------------- am=0.5d0*(aleft+arigh) c------------------------------------------------------------------- c Computing numerical Mach number; see p.370, under (A1). c------------------------------------------------------------------- un_l=ung un_r=und c-------------- ut_l=utg ut_r=utd c-------------- uv_l=uvg uv_r=uvd c------------------------------------------------------------------- ml=un_l/am mr=un_r/am mhalf=0.5d0*(un_l+un_r)/am c------------------------------- mhalfr=urm/am c------------------------------------------------------------------- c Scaling function for the speed of sound;see Eq.(32) of the Ref. 2) c------------------------------------------------------------------- top=(1.0d0-mhalfr*mhalfr)*(1.0d0-mhalfr*mhalfr) top=top*mhalf*mhalf+4.0d0*mhalfr*mhalfr bot=1.0d0+mhalfr*mhalfr if(abs(canc-0.0d0).lt.0.000001d0) then fmid=1.0d0 else fmid=sqrt(top)/bot endif c------------------------------------------------------------------ c 'New' speed of sound 'amw' defined as a product of the scaling c function 'fmid' and the 'Old' speed of sound 'am'; see (31) of Ref.2) c------------------------------------------------------------------ amw=fmid*am mlw=un_l/amw mrw=un_r/amw c-------------------------- am=amw c------------------------------------------------------------------- c Redefinition of the numerical mach numbers c See Eqs.(33) and (34) of the Ref. 2) c------------------------------------------------------------------- if(abs(canc-0.0d0).lt.0.000001d0) then top=2.0d0 bot=0.0d0 else top=1.0d0+mhalfr*mhalfr bot=1.0d0-mhalfr*mhalfr endif ml=0.5d0*(top*mlw+bot*mrw) mr=0.5d0*(top*mrw+bot*mlw) c------------------------------------------------------------------- c Mplus and Mmin are calligraphic lettes M+ and M- from the paper, c see (19a) and (19b), p.367. of the Ref.1) c------------------------------------------------------------------- if(abs(ml) .ge. 1.0d0) then Mplus=(ml+abs(ml))/2.0d0 else Mplus=(ml+1.0d0)*(ml+1.0d0)/4.0d0 Mplus=Mplus+beta*(ml*ml-1.0d0)*(ml*ml-1.0d0) endif Mplus1=(ml+abs(ml))/2.0d0 c------------------------------------------------------------------- if(abs(mr) .ge. 1.0d0) then Mmin=(mr-abs(mr))/2.0d0 else Mmin=-(mr-1.0d0)*(mr-1.0d0)/4.0d0 Mmin=Mmin-beta*(mr*mr-1.0d0)*(mr*mr-1.0d0) endif Mmin1=(mr-abs(mr))/2.0d0 c----------------------------------------------------------- c mmid is m_{1/2} (notation as in the paper), c see Eq.(13), p.366 of the Ref.1) c----------------------------------------------------------- mmid=Mplus+Mmin c---------------------------------------------------------------- c computing the main convective variables c mpl_m is m^{+}_{1/2} (paper's notation) and c mmin_m is m^{-}_{1/2} (paper's notation), c see Eq. (A2) on p.370 of the Ref.1) c---------------------------------------------------------------- termp=(Mmin1-Mmin+Mplus-Mplus1)*(1.0d0/(mhalfr*mhalfr)-1.0d0) termp=termp*(pold_l-pold_r)/(pold_l/rold_l+pold_r/rold_r) c------------------------------------------------------------- if(mmid .ge. 0.0d0) then mpl_m = mmid else mpl_m = 0.0d0 endif c------------------------------------------------------------------ if(mmid .le. 0.0d0) then mmin_m = mmid else mmin_m = 0.0d0 endif c--------------------------------------------------------------- c Computing the calligraphic P+ and P- with their derivatives, c see (21a) & (21b) on p.368 of the Ref.1) c--------------------------------------------------------------- if(ml .ge. 1.0d0) then Pplus = 1.0d0 else if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then Pplus=(ml+1.0d0)*(ml+1.0d0)*(2.0d0-ml)/4.0d0 else Pplus = 0.0d0 endif endif c--------------------------------------------------------------- if(mr .ge. 1.0d0) then Pmin = 0.0d0 else if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then Pmin=(mr-1.0d0)*(mr-1.0d0)*(2.0d0+mr)/4.0d0 else Pmin = 1.0d0 endif endif c------------------------------------------------------------------- c computing pmid - p_{1/2}, see Eq.(20b), p.367 of the Ref.1) c------------------------------------------------------------------- pmid=Pplus*pold_l + Pmin*pold_r c------------------------------------------------------------------- rum=am*(mpl_m*rold_l+mmin_m*rold_r)+canc*am*termp c------------------------------------------------------------------- c Computing numerical fluxes c------------------------------------------------------------------- f(1)=rum c------------------------------------------------------------------- if(rum .ge. 0.0d0) then br1=rum*un_l else br1=rum*un_r endif f(2)=br1+pmid c------------------------------------------------------------- if(rum .ge. 0.0d0) then br2=rum*ut_l else br2=rum*ut_r endif f(3)=br2 c------------------------------------------------------------- if(rum .ge. 0.0d0) then br2=rum*uv_l else br2=rum*uv_r endif f(4)=br2 c------------------------------------------------------------- hr_l=(ung*ung+utg*utg+uvg*uvg)/2.0d0+gamg*pold_l/gm1l/rold_l hr_r=(und*und+utd*utd+uvd*uvd)/2.0d0+gamd*pold_r/gm1r/rold_r if(rum .ge. 0.0d0) then f(5)=rum*hr_l else f(5)=rum*hr_r endif c--------------------------------------------------------------------- do 777 i=1,nesp if(rum .ge. 0.0d0) then br1=rum*yg(i) else br1=rum*yd(i) endif f(5+i)=br1 777 continue c---------------------------------------------------------------------- cellt=1.0d0/(0.5d0*abs(un_l+un_r)+am) c---------------------------------------------------------------------- return end
© Cast3M 2003 - Tous droits réservés.
Mentions légales