dsapps
C DSAPPS SOURCE FANDEUR 22/05/02 21:15:14 11359 c----------------------------------------------------------------------- c\BeginDoc c c\Name: dsapps c c\Description: c Given the Arnoldi factorization c c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T, c c apply NP shifts implicitly resulting in c c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q c c where Q is an orthogonal matrix of order KEV+NP. Q is the product of c rotations resulting from the NP bulge chasing sweeps. The updated Arnoldi c factorization becomes: c c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T. c c\Usage: c call dsapps c ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ, WORKD ) c c\Arguments c N Integer. (INPUT) c Problem size, i.e. dimension of matrix A. c c KEV Integer. (INPUT) c INPUT: KEV+NP is the size of the input matrix H. c OUTPUT: KEV is the size of the updated matrix HNEW. c c NP Integer. (INPUT) c Number of implicit shifts to be applied. c c SHIFT Double precision array of length NP. (INPUT) c The shifts to be applied. c c V REAL*8 N by (KEV+NP) array. (INPUT/OUTPUT) c INPUT: V contains the current KEV+NP Arnoldi vectors. c OUTPUT: VNEW = V(1:n,1:KEV); the updated Arnoldi vectors c are in the first KEV columns of V. c c LDV Integer. (INPUT) c Leading dimension of V exactly as declared in the calling c program. c c H REAL*8 (KEV+NP) by 2 array. (INPUT/OUTPUT) c INPUT: H contains the symmetric tridiagonal matrix of the c Arnoldi factorization with the subdiagonal in the 1st column c starting at H(2,1) and the main diagonal in the 2nd column. c OUTPUT: H contains the updated tridiagonal matrix in the c KEV leading submatrix. c c LDH Integer. (INPUT) c Leading dimension of H exactly as declared in the calling c program. c c RESID Double precision array of length (N). (INPUT/OUTPUT) c INPUT: RESID contains the the residual vector r_{k+p}. c OUTPUT: RESID is the updated residual vector rnew_{k}. c c Q REAL*8 KEV+NP by KEV+NP work array. (WORKSPACE) c Work array used to accumulate the rotations during the bulge c chase sweep. c c LDQ Integer. (INPUT) c Leading dimension of Q exactly as declared in the calling c program. c c WORKD Double precision work array of length 2*N. (WORKSPACE) c Distributed array used in the application of the accumulated c orthogonal matrix Q. c c\EndDoc c c----------------------------------------------------------------------- c c\BeginLib c c\Local variables: c xxxxxx real c c\References: c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), c pp 357-385. c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly c Restarted Arnoldi Iteration", Rice University Technical Report c TR95-13, Department of Computational and Applied Mathematics. c c\Routines called: c ivout ARPACK utility routine that prints integers. c arscnd ARPACK utility routine for timing. -> deleted by BP in 2020 c dvout ARPACK utility routine that prints vectors. c dlamch LAPACK routine that determines machine constants. c dlartg LAPACK Givens rotation construction routine. c dlacpy LAPACK matrix copy routine. c dlaset LAPACK matrix initialization routine. c dgemv Level 2 BLAS routine for matrix vector multiplication. c daxpy Level 1 BLAS that computes a vector triad. c dcopy Level 1 BLAS that copies one vector to another. c dscal Level 1 BLAS that scales a vector. c c\Author c Danny Sorensen Phuong Vu c Richard Lehoucq CRPC / Rice University c Dept. of Computational & Houston, Texas c Applied Mathematics c Rice University c Houston, Texas c c\Revision history: c 12/16/93: Version ' 2.4' c c\SCCS Information: @(#) c FILE: sapps.F SID: 2.6 DATE OF SID: 3/28/97 RELEASE: 2 c c\Remarks c 1. In this version, each shift is applied to all the subblocks of c the tridiagonal matrix H and not just to the submatrix that it c comes from. This routine assumes that the subdiagonal elements c of H that are stored in h(1:kev+np,1) are nonegative upon input c and enforce this condition upon output. This version incorporates c deflation. See code for documentation. c c\EndLib c c----------------------------------------------------------------------- c subroutine dsapps & ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq, workd ) c c %----------------------------------------------------% c | Include files for debugging and timing information | c -INC TARTRAK c %----------------------------------------------------% c c c %------------------% c | Scalar Arguments | c %------------------% c integer kev, ldh, ldq, ldv, n, np c c %-----------------% c | Array Arguments | c %-----------------% c REAL*8 & h(ldh,2), q(ldq,kev+np), resid(n), shift(np), & v(ldv,kev+np), workd(2*n) c c %------------% c | Parameters | c %------------% c REAL*8 & one, zero c c %---------------% c | Local Scalars | c %---------------% c integer i, iend, istart, itop, j, jj, kplusp, msglvl parameter (msglvl=0) logical first REAL*8 & a1, a2, a3, a4, big, c, epsmch, f, g, r, s save epsmch, first c c c %----------------------% c | External Subroutines | c %----------------------% c c c %--------------------% c | External Functions | c %--------------------% c REAL*8 & dlamch external dlamch c c %----------------------% **c | Intrinsics Functions | **c %----------------------% **c ** intrinsic abs **c **c %----------------% **c | Data statments | **c %----------------% **c data first / .true. / **c **c %-----------------------% **c | Executable Statements | c %-----------------------% c if (first) then first = .false. end if itop = 1 c c %-------------------------------% c | Initialize timing statistics | c | & message level for debugging | c %-------------------------------% c * call arscnd (t0) c msglvl = msapps c kplusp = kev + np c c %----------------------------------------------% c | Initialize Q to the identity matrix of order | c | kplusp used to accumulate the rotations. | c %----------------------------------------------% c c c %----------------------------------------------% c | Quick return if there are no shifts to apply | c %----------------------------------------------% c if (np .eq. 0) go to 9000 c c %----------------------------------------------------------% c | Apply the np shifts implicitly. Apply each shift to the | c | whole matrix and not just to the submatrix from which it | c | comes. | c %----------------------------------------------------------% c do 90 jj = 1, np c istart = itop c c %----------------------------------------------------------% c | Check for splitting and deflation. Currently we consider | c | an off-diagonal element h(i+1,1) negligible if | c | h(i+1,1) .le. epsmch*( |h(i,2)| + |h(i+1,2)| ) | c | for i=1:KEV+NP-1. | c | If above condition tests true then we set h(i+1,1) = 0. | c | Note that h(1:KEV+NP,1) are assumed to be non negative. | c %----------------------------------------------------------% c 20 continue c c %------------------------------------------------% c | The following loop exits early if we encounter | c | a negligible off diagonal element. | c %------------------------------------------------% c do 30 i = istart, kplusp-1 big = abs(h(i,2)) + abs(h(i+1,2)) if (h(i+1,1) .le. epsmch*big) then if (msglvl .gt. 0) then & '_sapps: deflation at row/column no.') & '_sapps: occured before shift number.') & '_sapps: the corresponding off diagonal element') end if iend = i go to 40 end if 30 continue iend = kplusp 40 continue c if (istart .lt. iend) then c c %--------------------------------------------------------% c | Construct the plane rotation G'(istart,istart+1,theta) | c | that attempts to drive h(istart+1,1) to zero. | c %--------------------------------------------------------% c f = h(istart,2) - shift(jj) g = h(istart+1,1) c c %-------------------------------------------------------% c | Apply rotation to the left and right of H; | c | H <- G' * H * G, where G = G(istart,istart+1,theta). | c | This will create a "bulge". | c %-------------------------------------------------------% c a1 = c*h(istart,2) + s*h(istart+1,1) a2 = c*h(istart+1,1) + s*h(istart+1,2) a4 = c*h(istart+1,2) - s*h(istart+1,1) a3 = c*h(istart+1,1) - s*h(istart,2) h(istart,2) = c*a1 + s*a2 h(istart+1,2) = c*a4 - s*a3 h(istart+1,1) = c*a3 + s*a4 c c %----------------------------------------------------% c | Accumulate the rotation in the matrix Q; Q <- Q*G | c %----------------------------------------------------% c do 60 j = 1, min(istart+jj,kplusp) a1 = c*q(j,istart) + s*q(j,istart+1) q(j,istart+1) = - s*q(j,istart) + c*q(j,istart+1) q(j,istart) = a1 60 continue c c c %----------------------------------------------% c | The following loop chases the bulge created. | c | Note that the previous rotation may also be | c | done within the following loop. But it is | c | kept separate to make the distinction among | c | the bulge chasing sweeps and the first plane | c | rotation designed to drive h(istart+1,1) to | c | zero. | c %----------------------------------------------% c do 70 i = istart+1, iend-1 c c %----------------------------------------------% c | Construct the plane rotation G'(i,i+1,theta) | c | that zeros the i-th bulge that was created | c | by G(i-1,i,theta). g represents the bulge. | c %----------------------------------------------% c f = h(i,1) g = s*h(i+1,1) c c %----------------------------------% c | Final update with G(i-1,i,theta) | c %----------------------------------% c h(i+1,1) = c*h(i+1,1) c c %-------------------------------------------% c | The following ensures that h(1:iend-1,1), | c | the first iend-2 off diagonal of elements | c | H, remain non negative. | c %-------------------------------------------% c r = -r c = -c s = -s end if c c %--------------------------------------------% c | Apply rotation to the left and right of H; | c | H <- G * H * G', where G = G(i,i+1,theta) | c %--------------------------------------------% c h(i,1) = r c a1 = c*h(i,2) + s*h(i+1,1) a2 = c*h(i+1,1) + s*h(i+1,2) a3 = c*h(i+1,1) - s*h(i,2) a4 = c*h(i+1,2) - s*h(i+1,1) c h(i,2) = c*a1 + s*a2 h(i+1,2) = c*a4 - s*a3 h(i+1,1) = c*a3 + s*a4 c c %----------------------------------------------------% c | Accumulate the rotation in the matrix Q; Q <- Q*G | c %----------------------------------------------------% c do 50 j = 1, min( i+jj, kplusp ) a1 = c*q(j,i) + s*q(j,i+1) q(j,i+1) = - s*q(j,i) + c*q(j,i+1) q(j,i) = a1 50 continue c 70 continue c end if c c %--------------------------% c | Update the block pointer | c %--------------------------% c istart = iend + 1 c c %------------------------------------------% c | Make sure that h(iend,1) is non-negative | c | If not then set h(iend,1) <-- -h(iend,1) | c | and negate the last column of Q. | c | We have effectively carried out a | c | similarity on transformation H | c %------------------------------------------% c h(iend,1) = -h(iend,1) end if c c %--------------------------------------------------------% c | Apply the same shift to the next block if there is any | c %--------------------------------------------------------% c if (iend .lt. kplusp) go to 20 c c %-----------------------------------------------------% c | Check if we can increase the the start of the block | c %-----------------------------------------------------% c do 80 i = itop, kplusp-1 itop = itop + 1 80 continue c c %-----------------------------------% c | Finished applying the jj-th shift | c %-----------------------------------% c 90 continue c c %------------------------------------------% c | All shifts have been applied. Check for | c | more possible deflation that might occur | c | after the last shift is applied. | c %------------------------------------------% c do 100 i = itop, kplusp-1 big = abs(h(i,2)) + abs(h(i+1,2)) if (h(i+1,1) .le. epsmch*big) then if (msglvl .gt. 0) then & '_sapps: deflation at row/column no.') & '_sapps: the corresponding off diagonal element') end if end if 100 continue c c %-------------------------------------------------% c | Compute the (kev+1)-st column of (V*Q) and | c | temporarily store the result in WORKD(N+1:2*N). | c | This is not necessary if h(kev+1,1) = 0. | c %-------------------------------------------------% c c c %-------------------------------------------------------% c | Compute column 1 to kev of (V*Q) in backward order | c | taking advantage that Q is an upper triangular matrix | c | with lower bandwidth np. | c | Place results in v(:,kplusp-kev:kplusp) temporarily. | c %-------------------------------------------------------% c do 130 i = 1, kev 130 continue c c %-------------------------------------------------% c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). | c %-------------------------------------------------% c c c %--------------------------------------------% c | Copy the (kev+1)-st column of (V*Q) in the | c | appropriate place if h(kev+1,1) .ne. zero. | c %--------------------------------------------% c c c %-------------------------------------% c | Update the residual vector: | c | r <- sigmak*r + betak*v(:,kev+1) | c | where | c | sigmak = (e_{kev+p}'*Q)*e_{kev} | c | betak = e_{kev+1}'*H*e_{kev} | c %-------------------------------------% c c c if (msglvl .gt. 1) then c call dvout ( 1, q(kplusp,kev), ndigit, c & '_sapps: sigmak of the updated residual vector') c call dvout ( 1, h(kev+1,1), ndigit, c & '_sapps: betak of the updated residual vector') c call dvout ( kev, h(1,2), ndigit, c & '_sapps: updated main diagonal of H for next iteration') c if (kev .gt. 1) then c call dvout ( kev-1, h(2,1), ndigit, c & '_sapps: updated sub diagonal of H for next iteration') c end if c end if c * call arscnd (t1) c tsapps = tsapps + (t1 - t0) c 9000 continue c return c c %---------------% c | End of dsapps | c %---------------% c end
© Cast3M 2003 - Tous droits réservés.
Mentions légales