dlansy
C DLANSY SOURCE BP208322 22/09/16 21:15:03 11454 *> \brief \b DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLANSY + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansy.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansy.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansy.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * REAL*8 FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK ) * * .. Scalar Arguments .. * CHARACTER NORM, UPLO * INTEGER LDA, N * .. * .. Array Arguments .. * REAL*8 A( LDA, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLANSY returns the value of the one norm, or the Frobenius norm, or *> the infinity norm, or the element of largest absolute value of a *> real symmetric matrix A. *> \endverbatim *> *> \return DLANSY *> \verbatim *> *> DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' *> ( *> ( norm1(A), NORM = '1', 'O' or 'o' *> ( *> ( normI(A), NORM = 'I' or 'i' *> ( *> ( normF(A), NORM = 'F', 'f', 'E' or 'e' *> *> where norm1 denotes the one norm of a matrix (maximum column sum), *> normI denotes the infinity norm of a matrix (maximum row sum) and *> normF denotes the Frobenius norm of a matrix (square root of sum of *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. *> \endverbatim * * Arguments: * ========== * *> \param[in] NORM *> \verbatim *> NORM is CHARACTER*1 *> Specifies the value to be returned in DLANSY as described *> above. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> symmetric matrix A is to be referenced. *> = 'U': Upper triangular part of A is referenced *> = 'L': Lower triangular part of A is referenced *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. When N = 0, DLANSY is *> set to zero. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is REAL*8 array, dimension (LDA,N) *> The symmetric matrix A. If UPLO = 'U', the leading n by n *> upper triangular part of A contains the upper triangular part *> of the matrix A, and the strictly lower triangular part of A *> is not referenced. If UPLO = 'L', the leading n by n lower *> triangular part of A contains the lower triangular part of *> the matrix A, and the strictly upper triangular part of A is *> not referenced. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(N,1). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL*8 array, dimension (MAX(1,LWORK)), *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, *> WORK is not referenced. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup doubleSYauxiliary * * ===================================================================== REAL*8 DLANSY * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER NORM, UPLO INTEGER LDA, N * .. * .. Array Arguments .. * .. * * ===================================================================== * * .. Parameters .. * .. * .. Local Scalars .. INTEGER I, J REAL*8 ABSA, SCALE, SUM, VALUE * .. * .. External Subroutines .. EXTERNAL DLASSQ * .. * .. External Functions .. * .. * .. Intrinsic Functions .. * INTRINSIC ABS, SQRT * .. * .. Executable Statements .. * IF( N.EQ.0 ) THEN VALUE = ZERO * * Find max(abs(A(i,j))). * VALUE = ZERO DO 20 J = 1, N DO 10 I = 1, J SUM = ABS( A( I, J ) ) 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = J, N SUM = ABS( A( I, J ) ) 30 CONTINUE 40 CONTINUE END IF $ ( NORM.EQ.'1' ) ) THEN * * Find normI(A) ( = norm1(A), since A is symmetric). * VALUE = ZERO DO 60 J = 1, N SUM = ZERO DO 50 I = 1, J - 1 ABSA = ABS( A( I, J ) ) SUM = SUM + ABSA 50 CONTINUE 60 CONTINUE DO 70 I = 1, N 70 CONTINUE ELSE DO 80 I = 1, N 80 CONTINUE DO 100 J = 1, N DO 90 I = J + 1, N ABSA = ABS( A( I, J ) ) SUM = SUM + ABSA 90 CONTINUE 100 CONTINUE END IF * * Find normF(A). * SUM = ONE DO 110 J = 2, N 110 CONTINUE ELSE DO 120 J = 1, N - 1 120 CONTINUE END IF SUM = 2*SUM VALUE = SCALE*SQRT( SUM ) END IF * DLANSY = VALUE RETURN * * End of DLANSY * END
© Cast3M 2003 - Tous droits réservés.
Mentions légales