djonl2
C DJONL2 SOURCE CHAT 05/01/12 22:52:31 5004 C----------------------------------------------------------------------- C C ROUTINE DE CALCUL DE L'ECOULEMENT DANS LE JOINT C C "DILATANT JOINT WITH COULOMBS FRICTION" C MODELE PROPOSED BY MF SNYMANN, WW BIRD AND JB MARTIN C C WORK ONLY IN 2-D PLANE (STRAIN) STATE C C INPUT C SIGI INITIAL STRESS C DEPST TRIAL INCREMENT OF ELASTIC STRAIN C XMAT MATERIAL PROPERTIES C VARI INITIAL INTERNAL VARIABLES C C OUTPUT C SIGF FINAL STRESS C VARF FINAL INTERNAL VARIABLES C DEFP INCREMENT OF PLASTIQUE STRAIN C C----------------------------------------------------------------------- C P.PEGON OCTOBER 93 C----------------------------------------------------------------------- IMPLICIT INTEGER(I-N) IMPLICIT REAL*8(A-H,O-Z) -INC PPARAM -INC CCOPTIO -INC CCREEL * . SIGF(*),VARF(*) ,DEFP(*) REAL*8 KS,KN,MU C C QUICK QUIT IN CASE OF DIMENSION ERROR C IF (IFOUR.NE.-3.AND.IFOUR.NE.-2.AND.IFOUR.NE.-1)THEN KERRE=99 RETURN ELSE KERRE=0 ENDIF C C----------------------------------------------------------------------- C MATERIAL PARAMETERS C =================== C C KS = XMAT(1) Shear modulus C KN = XMAT(2) Traction modulus C PHI = XMAT(5) Friction angle C MU = XMAT(6) Dilatation angle C FRTC = XMAT(7) Traction maximum (tan(PHI)*FRTC = cohesion) C----------------------------------------------------------------------- C STRESS C ====== C C SMSN. = SIG.(1) C SMN. = SIG.(2) C----------------------------------------------------------------------- C STRAIN C ====== C C DRSN = EPS(1) C DRN = EPS(2) C----------------------------------------------------------------------- C INTERNAL VARIABLES C ================== C C DS0. = VAR.(1) POSITION OF THE VERTEX (RELATIVE SHEAR) C DN0. = VAR.(2) POSITION OF THE VERTEX (EXTENSION) C DRSN. = VAR.(3) CURRENT DEFORMATION (RELATIVE SHEAR) C DRN. = VAR.(4) CURRENT DEFORMATION (EXTENSION) C DPSN. = VAR.(5) CURRENT PLASTIC DEFORMATION (RELATIVE SHEAR) C DPN. = VAR.(6) CURRENT PLASTIC DEFORMATION (EXTENSION) C C HC11 = VAR.(7) C HC12 = VAR.(8) CURRENT VALUES OF THE C HC21 = VAR.(9) CONSISTENT HOOK MATRIX C HC22 = VAR.(10) C----------------------------------------------------------------------- KS = XMAT(1) KN = XMAT(2) PSI = ATAN(KN/KS*TAN(XMAT(5)*XPI/180)) MU = XMAT(6)*XPI/180 FTRAC = XMAT(7) DTRAC = XMAT(7)/KN C TANPSI = TAN(PSI) TANMU = TAN(MU) C C TOTAL "STRAIN" FROM THE STRESS INCREMENT C VARF(3)= DRSNF VARF(4)= DRNF C C FIRST REGION C IF ((DRNF-DTRAC).GE.(DN0I+ABS(DRSNF-DS0I)*TANMU))THEN VARF(5) = DRSNF VARF(6) = DRNF VARF(1) = DRSNF VARF(2) = DN0I+ABS(DRSNF-DS0I)*TANMU SIGF(1) = 0.D0 SIGF(2) = FTRAC C VARF(7) = 0.D0 VARF(8) = 0.D0 VARF(9) = 0.D0 VARF(10)= 0.D0 C C SECOND REGION (ELASTIC CASE) C ELSEIF((DRNF-DTRAC).LE.(DN0I-ABS(DRSNF-DS0I)/TANPSI))THEN VARF(5) = DS0I VARF(6) = DN0I VARF(1) = DS0I VARF(2) = DN0I SIGF(1) = KS * (DRSNF-DS0I) SIGF(2) = KN * (DRNF -DN0I) C VARF(7) = KS VARF(8) = 0.D0 VARF(9) = 0.D0 VARF(10)= KN C C THIRD REGION C ELSE A=( (DRNF-DTRAC-DN0I)*SIN(PSI)+ABS(DRSNF-DS0I)*COS(PSI)) > /COS(PSI-MU) B=(-(DRNF-DTRAC-DN0I)*COS(MU )+ABS(DRSNF-DS0I)*SIN(MU )) > /COS(PSI-MU) VARF(5) = DS0I + A * COS(MU) * SIGN(1.D0,DRSNF-DS0I) VARF(6) = DN0I + A * SIN(MU) VARF(1) = VARF(5) VARF(2) = VARF(6) SIGF(1) = KS * B * SIN(PSI) * SIGN(1.D0,DRSNF-DS0I) SIGF(2) = KN * B * COS(PSI) * (-1) + FTRAC C COHOOK = KN/(1+TANPSI*TANMU) TANPHI = TANPSI*KS/KN VARF(7) = COHOOK*TANPHI*TANMU VARF(8) =-COHOOK*SIGN(1.D0,DRSNF-DS0I)*TANPHI VARF(9) =-COHOOK*SIGN(1.D0,DRSNF-DS0I)*TANMU VARF(10)= COHOOK C ENDIF C C INCREMENT OF PLASTIC STRAIN C C RETURN END
© Cast3M 2003 - Tous droits réservés.
Mentions légales