cwms3d
C CWMS3D SOURCE CB215821 20/11/25 13:23:42 10792 & mpyn,lrecp,lrecv,nlcg) C************************************************************************ C C PROJET : CASTEM 2000 C C NOM : CWMS3D ('convection at wall for multispicies en 3D') C C DESCRIPTION : Voir KONMS3 (appele par KONMS3.ESO) C C LANGAGE : FORTRAN 77 + ESOPE 2000 (avec estensions CISI) C C AUTEUR : S. KUDRIAKOV, DM2S/SFME/LTMF C C************************************************************************ C c---------------------------------------------------------------------- c GENERAL DESCRIPTION: c This subroutine provides the jacobian which is the derivatives c of the numerical flux function defined at the wall cell interface c with respect to the conservative variables of the left (pre-wall) c cell. c c EQUATIONS: 3D Euler equations of gas dynamics - MULTICPECIES GAS c c c REFERENCE: JCP, 129, 364-382 (1996) c " A Sequel to AUSM: AUSM+ ". c---------------------------------------------------------------------- c INPUT: c c alpha -- parameter of the AUSM+ scheme in the Pressure function; c ( -3/4 <= alpha <= 3/16 ) (imposed as a parameter) c c beta -- parameter of the AUSM+ scheme in the Mach function; c ( -1/16 <= beta <= 1/2 ) (imposed as a parameter) c c nsp -- number of species (total); c c wvec_l -- vector of the primitive variables c (rho,u_x,u_y,u_z,p) at the left cell; c c wvec_r -- vector of the primitive variables c (rho,u_x,u_y,u_z,p) at the right cell; c c nvect -- normal vector to the interface (2 components in 2D); c c tvec1 -- first tangential vector to the interface; c c tvec2 -- second tangential vector to the interface; c c mpyn -- pointer to the vectors of the primitive variables c (Y_1,Y_2,...Y_(nsp-1)) at the left and the right cells; c c lrecp -- pointer to the vector of specific heats at constant pressure c (size of the vector is equal to number of species (nsp)); c c lrecv -- pointer to the vector of specific heats at constant volume c (size of the vector is equal to number of species (nsp)); c c nlcg -- "local" number corresponding to the cell at wall. c---------------------------------------------------------------------- c c OUTPUT: c c jll -- jakobian matrix (4+nsp) by (4+nsp) - c derivatives of the numerical c flux function with respect to the conservative variables c from the left cell; c c---------------------------------------------------------------------- IMPLICIT INTEGER(I-N) integer nsp,jll,lrecp,lrecv,nlcg real*8 wvec_l(5),wvec_r(5) real*8 nvect(3),tvec1(3),tvec2(3) real*8 gal,gar,gm1l,gm1r real*8 n_x,n_y,n_z,t1_x,t1_y,t1_z,t2_x,t2_y,t2_z real*8 un_l, un_r real*8 ml,mr,Mplus,Mmin,am real*8 rold_l,uold_l,vold_l,wold_l,pold_l,eold_l real*8 rold_r,uold_r,vold_r,wold_r,pold_r,eold_r real*8 Pplus,Pmin real*8 top,bot real*8 br1,temp_l,temp_r,brac_l,brac_r real*8 aleft, arigh real*8 damr_l,damr_r,damu_l,damu_r real*8 damv_l,damv_r,damp_l,damp_r real*8 damg_l,damg_r,damw_l,damw_r real*8 dmlr_l,dmlr_r,dmlu_l,dmlu_r real*8 dmlv_l,dmlv_r,dmlp_l,dmlp_r real*8 dmlw_l,dmlw_r real*8 dmrr_l,dmrr_r,dmru_l,dmru_r real*8 dmrv_l,dmrv_r,dmrp_l,dmrp_r real*8 dmrw_l,dmrw_r real*8 dPpr_l,dPpr_r,dPpu_l,dPpu_r real*8 dPpv_l,dPpv_r,dPpp_l,dPpp_r real*8 dPpw_l,dPpw_r real*8 dPmr_l,dPmr_r,dPmu_l,dPmu_r real*8 dPmv_l,dPmv_r,dPmp_l,dPmp_r real*8 dPmw_l,dPmw_r real*8 dpir_l,dpir_r,dpiu_l,dpiu_r real*8 dpiv_l,dpiv_r,dpip_l,dpip_r real*8 dpiw_l,dpiw_r real*8 zc11,zc12,zc13,zc21,zc22,zc23,zc31,zc32,zc33 integer i,j,k C------------------------------------------------------------ -INC SMCHPOI POINTEUR MPYN.MPOVAL C------------------------------------------------------------- -INC SMLREEL POINTEUR MLRECP.MLREEL, MLRECV.MLREEL C------------------------------------------------------------- C******* Les fractionines messiques ************************** C------------------------------------------------------------- SEGMENT FRAMAS REAL*8 YET(NSP) ENDSEGMENT POINTEUR YL.FRAMAS, YR.FRAMAS C------------------------------------------------------- C********** Les CP's and CV's *********************** C------------------------------------------------------- SEGMENT GCONST REAL*8 GC(NSP) ENDSEGMENT POINTEUR CP.GCONST, CV.GCONST C------------------------------------------------------------- C******** Segments for the elementary matrixes ************* C------------------------------------------------------------- SEGMENT JACEL REAL*8 JAC(4+NSP,4+NSP) ENDSEGMENT POINTEUR JTL.JACEL, JTR.JACEL, JL.JACEL, JR.JACEL, & WL.JACEL, WR.JACEL C------------------------------------------------------------- C********** Segments for the vectors *********************** C------------------------------------------------------------- SEGMENT VECEL REAL*8 VV(NSP) ENDSEGMENT POINTEUR dmly_l.vecel, dmly_r.vecel, & dmry_l.vecel, dmry_r.vecel, & dPpy_l.vecel, dPpy_r.vecel, & dPmy_l.vecel, dPmy_r.vecel, & dpiy_l.vecel, dpiy_r.vecel, & dgdyl.vecel, dgdyr.vecel C------------------------------------------- SEGINI dmly_l, dmly_r, & dmry_l, dmry_r, & dPpy_l, dPpy_r, & dPmy_l, dPmy_r, & dpiy_l, dpiy_r, & dgdyl, dgdyr C------------------------------------------------------------ SEGINI YL, YR SEGACT MPYN DO 4 I=1,(NSP-1) YL.YET(I)=MPYN.VPOCHA(NLCG,I) YR.YET(I)=MPYN.VPOCHA(NLCG,I) 4 CONTINUE C---------------------------------------- SEGINI CP, CV MLRECP = LRECP MLRECV = LRECV SEGACT MLRECP, MLRECV DO 5 I=1,(NSP-1) 5 CONTINUE c------------------------------------------------------------- c Computing GAMMA at the left cell and its derivatives c with respect to the primitive variables Y_i c------------------------------------------------------------- top=0.0D0 bot=0.0D0 do 40 i=1,(nsp-1) top=top+yl.yet(i)*(cp.gc(i)-cp.gc(nsp)) bot=bot+yl.yet(i)*(cv.gc(i)-cv.gc(nsp)) 40 continue top=cp.gc(nsp)+top bot=cv.gc(nsp)+bot gal=top/bot gm1l=gal-1.0d0 c------------------------------------------------------------- do 41 i=1,(nsp-1) dgdyl.vv(i)=(cp.gc(i)-cp.gc(nsp)- & gal*(cv.gc(i)-cv.gc(nsp)))/bot 41 continue c------------------------------------------------------------- c Computing GAMMA at the right cell and its derivatives c with respect to the primitive variables Y_i c------------------------------------------------------------- top=0.0D0 bot=0.0D0 do 42 i=1,(nsp-1) top=top+yr.yet(i)*(cp.gc(i)-cp.gc(nsp)) bot=bot+yr.yet(i)*(cv.gc(i)-cv.gc(nsp)) 42 continue top=cp.gc(nsp)+top bot=cv.gc(nsp)+bot gar=top/bot gm1r=gar-1.0d0 c------------------------------------------------------------- do 43 i=1,(nsp-1) dgdyr.vv(i)=(cp.gc(i)-cp.gc(nsp)- & gar*(cv.gc(i)-cv.gc(nsp)))/bot 43 continue c------------------------------------------------------------- n_x=nvect(1) n_y=nvect(2) n_z=nvect(3) c------------------- t1_x=tvec1(1) t1_y=tvec1(2) t1_z=tvec1(3) c------------------- t2_x=tvec2(1) t2_y=tvec2(2) t2_z=tvec2(3) c------------------------------------- c11=t1_y*t2_z - t1_z*t2_y c12=t1_z*t2_x - t1_x*t2_z c13=t1_x*t2_y - t1_y*t2_x c-------------------------------------- c21=n_z*t2_y - n_y*t2_z c22=n_x*t2_z - n_z*t2_x c23=n_y*t2_x - n_x*t2_y c-------------------------------------- c31=n_y*t1_z - n_z*t1_y c32=n_z*t1_x - n_x*t1_z c33=n_x*t1_y - n_y*t1_x c---------------------------- c---------------------------- rold_l=wvec_l(1) uold_l=wvec_l(2) vold_l=wvec_l(3) wold_l=wvec_l(4) pold_l=wvec_l(5) c----------------------- rold_r=wvec_r(1) uold_r=wvec_r(2) vold_r=wvec_r(3) wold_r=wvec_r(4) pold_r=wvec_r(5) c------------------------------------------------------------------ c Computation of the specific total energy on the left and right. c------------------------------------------------------------------ eold_l=(uold_l*uold_l+vold_l*vold_l+wold_l*wold_l)/2.0d0 eold_l=eold_l+pold_l/(gm1l*rold_l) eold_r=(uold_r*uold_r+vold_r*vold_r+wold_r*wold_r)/2.0d0 eold_r=eold_r+pold_r/(gm1r*rold_r) c------------------------------------------------------------------- c Computation of the speed of sound and its derivatives; c numerical speed of sound at the interface is taken as an average c of the speeds of sounds of the neighbouring cells c------------------------------------------------------------------- aleft=sqrt(gal*pold_l/rold_l) arigh=sqrt(gar*pold_r/rold_r) am=0.5d0*(aleft+arigh) c------------------------------------------------------------------- damr_r=-arigh/(4.0d0*rold_r) damu_r=0.0d0 damv_r=0.0d0 damw_r=0.0d0 damp_r=gar/(4.0d0*arigh*rold_r) damg_r=arigh/(4.0d0*gar) c----------------------- damr_l=-aleft/(4.0d0*rold_l) damu_l=0.0d0 damv_l=0.0d0 damw_l=0.0d0 damp_l=gal/(4.0d0*aleft*rold_l) damg_l=aleft/(4.0d0*gal) c------------------------------------------------------------------- c Computing numerical Mach number and its derivatives, c see p.370, under (A1). c------------------------------------------------------------------- un_l=uold_l*n_x+vold_l*n_y+wold_l*n_z un_r=uold_r*n_x+vold_r*n_y+wold_r*n_z c------------------------------------------------------------------- ml=un_l/am mr=un_r/am c------------------------------------------------------------------- c Mplus and Mmin are calligraphic lettes M+ and M- from the paper, c see (19a) and (19b), p.367. c------------------------------------------------------------------- if(abs(ml) .ge. 1.0d0) then Mplus=(ml+abs(ml))/2.0d0 else Mplus=(ml+1.0d0)*(ml+1.0d0)/4.0d0 Mplus=Mplus+beta*(ml*ml-1.0d0)*(ml*ml-1.0d0) endif c------------------------------------------------------------------- if(abs(mr) .ge. 1.0d0) then Mmin=(mr-abs(mr))/2.0d0 else Mmin=-(mr-1.0d0)*(mr-1.0d0)/4.0d0 Mmin=Mmin-beta*(mr*mr-1.0d0)*(mr*mr-1.0d0) endif c------------------------------------------------------------------- c Derivatives of ml and mr with respect to both sets of primitive c variables: left and right. c------------------------------------------------------------------- temp_l=-un_l/(am*am) temp_r=-un_r/(am*am) c-------- dmlr_l=temp_l*damr_l dmlr_r=temp_l*damr_r dmrr_l=temp_r*damr_l dmrr_r=temp_r*damr_r c-------- dmlu_l=n_x/am+temp_l*damu_l dmlu_r=temp_l*damu_r dmru_l=temp_r*damu_l dmru_r=n_x/am+temp_r*damu_r c-------- dmlv_l=n_y/am+temp_l*damv_l dmlv_r=temp_l*damv_r dmrv_l=temp_r*damv_l dmrv_r=n_y/am+temp_r*damv_r c-------- dmlw_l=n_z/am+temp_l*damw_l dmlw_r=temp_l*damw_r dmrw_l=temp_r*damw_l dmrw_r=n_z/am+temp_r*damw_r c-------- dmlp_l=temp_l*damp_l dmlp_r=temp_l*damp_r dmrp_l=temp_r*damp_l dmrp_r=temp_r*damp_r c--------------------------------- do 44 i=1,(nsp-1) dmly_l.vv(i)=temp_l*damg_l*dgdyl.vv(i) dmly_r.vv(i)=temp_l*damg_r*dgdyr.vv(i) dmry_l.vv(i)=temp_r*damg_l*dgdyl.vv(i) dmry_r.vv(i)=temp_r*damg_r*dgdyr.vv(i) 44 continue c--------------------------------------------------------------- c Computing the calligraphic P+ and P- with their derivatives, c see (21a) & (21b) on p.368. c--------------------------------------------------------------- if(ml .ge. 1.0d0) then Pplus = 1.0d0 else if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then Pplus=(ml+1.0d0)*(ml+1.0d0)*(2.0d0-ml)/4.0d0 else Pplus = 0.0d0 endif endif c--------------------------------------------------------------- if(mr .ge. 1.0d0) then Pmin = 0.0d0 else if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then Pmin=(mr-1.0d0)*(mr-1.0d0)*(2.0d0+mr)/4.0d0 else Pmin = 1.0d0 endif endif c--------------------------------------------------------------- brac_l=(ml+1.0d0)*(2.0d0-ml)/2.0d0-(ml+1.0d0)*(ml+1.0d0)/4.0d0 c-------------- brac_r=(mr-1.0d0)*(2.0d0+mr)/2.0d0+(mr-1.0d0)*(mr-1.0d0)/4.0d0 c--------------------------------------------------------------- if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then dPpr_l=brac_l*dmlr_l dPpr_r=brac_l*dmlr_r c------------ dPpu_l=brac_l*dmlu_l dPpu_r=brac_l*dmlu_r c------------ dPpv_l=brac_l*dmlv_l dPpv_r=brac_l*dmlv_r c------------ dPpw_l=brac_l*dmlw_l dPpw_r=brac_l*dmlw_r c------------ dPpp_l=brac_l*dmlp_l dPpp_r=brac_l*dmlp_r c---------------------------------------------- do 66 i=1,(nsp-1) dPpy_l.vv(i)=brac_l*dmly_l.vv(i) dPpy_r.vv(i)=brac_l*dmly_r.vv(i) 66 continue c------------ else dPpr_l=0.0d0 dPpr_r=0.0d0 c----------- dPpu_l=0.0d0 dPpu_r=0.0d0 c----------- dPpv_l=0.0d0 dPpv_r=0.0d0 c----------- dPpw_l=0.0d0 dPpw_r=0.0d0 c----------- dPpp_l=0.0d0 dPpp_r=0.0d0 c----------- do 67 i=1,(nsp-1) dPpy_l.vv(i)=0.0d0 dPpy_r.vv(i)=0.0d0 67 continue c----------- endif c--------------------------------------------------------------- if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then dPmr_l=brac_r*dmrr_l dPmr_r=brac_r*dmrr_r c------------ dPmu_l=brac_r*dmru_l dPmu_r=brac_r*dmru_r c------------ dPmv_l=brac_r*dmrv_l dPmv_r=brac_r*dmrv_r c------------ dPmw_l=brac_r*dmrw_l dPmw_r=brac_r*dmrw_r c------------ dPmp_l=brac_r*dmrp_l dPmp_r=brac_r*dmrp_r c------------ do 68 i=1,(nsp-1) dPmy_l.vv(i)=brac_r*dmry_l.vv(i) dPmy_r.vv(i)=brac_r*dmry_r.vv(i) 68 continue c------------ else dPmr_l=0.0d0 dPmr_r=0.0d0 c----------- dPmu_l=0.0d0 dPmu_r=0.0d0 c----------- dPmv_l=0.0d0 dPmv_r=0.0d0 c----------- dPmw_l=0.0d0 dPmw_r=0.0d0 c----------- dPmp_l=0.0d0 dPmp_r=0.0d0 c----------- do 69 i=1,(nsp-1) dPmy_l.vv(i)=0.0d0 dPmy_r.vv(i)=0.0d0 69 continue c----------- endif c------------------------------------------------------------------- c computing pmid -- p_{1/2} and its derivatives, see (20b), p.367. c------------------------------------------------------------------- dpir_l=dPpr_l*pold_l+dPmr_l*pold_r dpiu_l=dPpu_l*pold_l+dPmu_l*pold_r dpiv_l=dPpv_l*pold_l+dPmv_l*pold_r dpiw_l=dPpw_l*pold_l+dPmw_l*pold_r dpip_l=dPpp_l*pold_l+Pplus+dPmp_l*pold_r do 70 i=1,(nsp-1) dpiy_l.vv(i)=dPpy_l.vv(i)*pold_l+dPmy_l.vv(i)*pold_r 70 continue c---------------------------- dpir_r=dPpr_r*pold_l+dPmr_r*pold_r dpiu_r=dPpu_r*pold_l+dPmu_r*pold_r dpiv_r=dPpv_r*pold_l+dPmv_r*pold_r dpiw_r=dPpw_r*pold_l+dPmw_r*pold_r dpip_r=dPpp_r*pold_l+Pmin+dPmp_r*pold_r do 71 i=1,(nsp-1) dpiy_r.vv(i)=dPpy_r.vv(i)*pold_l+dPmy_r.vv(i)*pold_r 71 continue c--------------------------------------------------------------------- c computing JACOBIAN as a derivative of the numerical flux function c with respect to the primitive variables. c Notation: jl(i,j) --- is the derivative of the i-component of the c flux function with respect to the j-component of the c vector of primitive variables of the left state. c jr(i,j) --- is the derivative of the i-component of the c flux function with respect to the j-component of the c vector of primitive variables of the right state. c--------------------------------------------------------------------- SEGINI JL, JR c--------------------------------------------------------------------- jl.jac(1,1)=0.0d0 jl.jac(1,2)=0.0d0 jl.jac(1,3)=0.0d0 jl.jac(1,4)=0.0d0 jl.jac(1,5)=0.0d0 do 72 i=1,(nsp-1) jl.jac(1,5+i)=0.0d0 72 continue c------------------------------------ jr.jac(1,1)=0.0d0 jr.jac(1,2)=0.0d0 jr.jac(1,3)=0.0d0 jr.jac(1,4)=0.0d0 jr.jac(1,5)=0.0d0 do 73 i=1,(nsp-1) jr.jac(1,5+i)=0.0d0 73 continue c------------------------------------ c------------------------------------ c--------------------------------------------------------- jl.jac(2,1)=dpir_l*n_x jl.jac(2,2)=dpiu_l*n_x jl.jac(2,3)=dpiv_l*n_x jl.jac(2,4)=dpiw_l*n_x jl.jac(2,5)=dpip_l*n_x do 77 i=1,(nsp-1) jl.jac(2,5+i)=dpiy_l.vv(i)*n_x 77 continue c------------------------------------------------- jl.jac(3,1)=dpir_l*n_y jl.jac(3,2)=dpiu_l*n_y jl.jac(3,3)=dpiv_l*n_y jl.jac(3,4)=dpiw_l*n_y jl.jac(3,5)=dpip_l*n_y do 78 i=1,(nsp-1) jl.jac(3,5+i)=dpiy_l.vv(i)*n_y 78 continue c------------------------------------------------- jl.jac(4,1)=dpir_l*n_z jl.jac(4,2)=dpiu_l*n_z jl.jac(4,3)=dpiv_l*n_z jl.jac(4,4)=dpiw_l*n_z jl.jac(4,5)=dpip_l*n_z do 79 i=1,(nsp-1) jl.jac(4,5+i)=dpiy_l.vv(i)*n_z 79 continue c------------------------------------------------------- c derivatives with respect to the right c set of the primitive variables c------------------------------------------------------- jr.jac(2,1)=dpir_r*n_x jr.jac(2,2)=dpiu_r*n_x jr.jac(2,3)=dpiv_r*n_x jr.jac(2,4)=dpiw_r*n_x jr.jac(2,5)=dpip_r*n_x do 84 i=1,(nsp-1) jr.jac(2,5+i)=dpiy_r.vv(i)*n_x 84 continue c------------------------------------------------------- jr.jac(3,1)=dpir_r*n_y jr.jac(3,2)=dpiu_r*n_y jr.jac(3,3)=dpiv_r*n_y jr.jac(3,4)=dpiw_r*n_y jr.jac(3,5)=dpip_r*n_y do 85 i=1,(nsp-1) jr.jac(3,5+i)=dpiy_r.vv(i)*n_y 85 continue c-------------------------------------------------------- jr.jac(4,1)=dpir_r*n_z jr.jac(4,2)=dpiu_r*n_z jr.jac(4,3)=dpiv_r*n_z jr.jac(4,4)=dpiw_r*n_z jr.jac(4,5)=dpip_r*n_z do 86 i=1,(nsp-1) jr.jac(4,5+i)=dpiy_r.vv(i)*n_z 86 continue c------------------------------------------------------- jl.jac(5,1)=0.0d0 jl.jac(5,2)=0.0d0 jl.jac(5,3)=0.0d0 jl.jac(5,4)=0.0d0 jl.jac(5,5)=0.0d0 do 87 i=1,(nsp-1) jl.jac(5,5+i)=0.0d0 87 continue c------------------------------------------------------------- do 180 i=1,(nsp-1) c--------------------- jl.jac(5+i,1)=0.0d0 jl.jac(5+i,2)=0.0d0 jl.jac(5+i,3)=0.0d0 jl.jac(5+i,4)=0.0d0 jl.jac(5+i,5)=0.0d0 do 181 j=6,(4+nsp) jl.jac(5+i,j)=0.0d0 181 continue 180 continue c------------------------------------------------- jr.jac(5,1)=0.0d0 jr.jac(5,2)=0.0d0 jr.jac(5,3)=0.0d0 jr.jac(5,4)=0.0d0 jr.jac(5,5)=0.0d0 do 88 i=1,(nsp-1) jr.jac(5,5+i)=0.0d0 88 continue c---------------------------------------------------------------- do 182 i=1,(nsp-1) jr.jac(5+i,1)=0.0d0 jr.jac(5+i,2)=0.0d0 jr.jac(5+i,3)=0.0d0 jr.jac(5+i,4)=0.0d0 jr.jac(5+i,5)=0.0d0 do 183 j=1,(nsp-1) jr.jac(5+i,5+j)=0.0d0 183 continue 182 continue c------------------------------------------------------------- c matrix wl(i,j) represents the derivative of the i-component c of the vector of primitive variables of the left state with c respect to the j-component of the vector of the conservative c variables of the left state. c c Here: (rho, ux, uy, p, Y_1,...,Y_(nsp-1)) - c vector of primitive variables; c (rho, rho ux, rho uy, rho e, rho Y_1,..., rho Y_(nsp-1)) - c vector of conservative variables. c------------------------------------------------------------- SEGINI WL, WR c------------------------------------------------------------- wl.jac(1,1)=1.0d0 wl.jac(1,2)=0.0d0 wl.jac(1,3)=0.0d0 wl.jac(1,4)=0.0d0 wl.jac(1,5)=0.0d0 do 83 i=1,(nsp-1) wl.jac(1,5+i)=0.0d0 83 continue c------------------------------ wl.jac(2,1)=-uold_l/rold_l wl.jac(2,2)=1.0d0/rold_l wl.jac(2,3)=0.0d0 wl.jac(2,4)=0.0d0 wl.jac(2,5)=0.0d0 do 840 i=1,(nsp-1) wl.jac(2,5+i)=0.0d0 840 continue c------------------------------ wl.jac(3,1)=-vold_l/rold_l wl.jac(3,2)=0.0d0 wl.jac(3,3)=1.0d0/rold_l wl.jac(3,4)=0.0d0 wl.jac(3,5)=0.0d0 do 850 i=1,(nsp-1) wl.jac(3,5+i)=0.0d0 850 continue c------------------------------ wl.jac(4,1)=-wold_l/rold_l wl.jac(4,2)=0.0d0 wl.jac(4,3)=0.0d0 wl.jac(4,4)=1.0d0/rold_l wl.jac(4,5)=0.0d0 do 92 i=1,(nsp-1) wl.jac(4,5+i)=0.0d0 92 continue c------------------------------ br1=0.0d0 do 93 i=1,(nsp-1) br1=br1+dgdyl.vv(i)*yl.yet(i) 93 continue br1=br1*pold_l/(rold_l*gm1l) wl.jac(5,1)=gm1l*(uold_l*uold_l+vold_l*vold_l+ & wold_l*wold_l)/2.0d0 wl.jac(5,1)=wl.jac(5,1)-br1 wl.jac(5,2)=-uold_l*gm1l wl.jac(5,3)=-vold_l*gm1l wl.jac(5,4)=-wold_l*gm1l wl.jac(5,5)=gm1l do 94 i=1,(nsp-1) wl.jac(5,5+i)=dgdyl.vv(i)*pold_l/(rold_l*gm1l) 94 continue c------------------------------ do 95 i=1,(nsp-1) do 96 j=1,5 wl.jac(5+i,j)=0.0d0 if(j.eq.1) wl.jac(5+i,j)=-yl.yet(i)/rold_l 96 continue c--------------------- do 960 j=6,(4+nsp) wl.jac(5+i,j)=0.0d0 if(5+i.eq.j) then wl.jac(5+i,j)=1.0d0/rold_l endif 960 continue 95 continue c------------------------------ wr.jac(1,1)=1.0d0 wr.jac(1,2)=0.0d0 wr.jac(1,3)=0.0d0 wr.jac(1,4)=0.0d0 wr.jac(1,5)=0.0d0 do 97 i=1,(nsp-1) wr.jac(1,5+i)=0.0d0 97 continue c------------------------------ wr.jac(2,1)=-uold_r/rold_r wr.jac(2,2)=1.0d0/rold_r wr.jac(2,3)=0.0d0 wr.jac(2,4)=0.0d0 wr.jac(2,5)=0.0d0 do 98 i=1,(nsp-1) wr.jac(2,5+i)=0.0d0 98 continue c------------------------------ wr.jac(3,1)=-vold_r/rold_r wr.jac(3,2)=0.0d0 wr.jac(3,3)=1.0d0/rold_r wr.jac(3,4)=0.0d0 wr.jac(3,5)=0.0d0 do 99 i=1,(nsp-1) wr.jac(3,5+i)=0.0d0 99 continue c------------------------------ wr.jac(4,1)=-wold_r/rold_r wr.jac(4,2)=0.0d0 wr.jac(4,3)=0.0d0 wr.jac(4,4)=1.0d0/rold_r wr.jac(4,5)=0.0d0 do 100 i=1,(nsp-1) wr.jac(4,5+i)=0.0d0 100 continue c------------------------------ br1=0.0d0 do 101 i=1,(nsp-1) br1=br1+dgdyr.vv(i)*yr.yet(i) 101 continue br1=br1*pold_r/(rold_r*gm1r) wr.jac(5,1)=gm1r*(uold_r*uold_r+vold_r*vold_r+ & wold_r*wold_r)/2.0d0 wr.jac(5,1)=wr.jac(5,1)-br1 wr.jac(5,2)=-uold_r*gm1r wr.jac(5,3)=-vold_r*gm1r wr.jac(5,4)=-wold_r*gm1r wr.jac(5,5)=gm1r do 102 i=1,(nsp-1) wr.jac(5,5+i)=dgdyr.vv(i)*pold_r/(rold_r*gm1r) 102 continue c---------------------------------------------- do 103 i=1,(nsp-1) do 104 j=1,5 wr.jac(5+i,j)=0.0d0 if(j.eq.1) wr.jac(5+i,j)=-yr.yet(i)/rold_r 104 continue c--------------------- do 1040 j=6,(4+nsp) wr.jac(5+i,j)=0.0d0 if(5+i.eq.j) wr.jac(5+i,j)=1.0d0/rold_r 1040 continue 103 continue c---------------------------------------------- SEGINI JTL, JTR c---------------------------------------------- do 1 i=1,(4+nsp) do 2 j=1,(4+nsp) jtl.jac(i,j)=0.0d0 jtr.jac(i,j)=0.0d0 do 3 k=1,(4+nsp) jtl.jac(i,j)=jtl.jac(i,j)+jl.jac(i,k)*wl.jac(k,j) jtr.jac(i,j)=jtr.jac(i,j)+jr.jac(i,k)*wr.jac(k,j) 3 continue 2 continue 1 continue c---------------------------------------------------------------------- c11=t1_y*t2_z - t1_z*t2_y c12=n_y*t2_z - n_z*t2_y c13=n_y*t1_z - n_z*t1_y c------------------------------------- c21=t1_x*t2_z - t1_z*t2_x c22=n_x*t2_z - n_z*t2_x c23=n_x*t1_z - n_z*t1_x c------------------------------------- c31=t1_x*t2_y - t1_y*t2_x c32=n_x*t2_y - n_y*t2_x c33=n_x*t1_y - n_y*t1_x c---------------------------------------------------------------------- ZC11=-NVECT(1)*C11-TVEC1(1)*C12+TVEC2(1)*C13 ZC12=-NVECT(2)*C11-TVEC1(2)*C12+TVEC2(2)*C13 ZC13=-NVECT(3)*C11-TVEC1(3)*C12+TVEC2(3)*C13 C--------------------------------- ZC21=NVECT(1)*C21+TVEC1(1)*C22-TVEC2(1)*C23 ZC22=NVECT(2)*C21+TVEC1(2)*C22-TVEC2(2)*C23 ZC23=NVECT(3)*C21+TVEC1(3)*C22-TVEC2(3)*C23 C--------------------------------- ZC31=-NVECT(1)*C31-TVEC1(1)*C32+TVEC2(1)*C33 ZC32=-NVECT(2)*C31-TVEC1(2)*C32+TVEC2(2)*C33 ZC33=-NVECT(3)*C31-TVEC1(3)*C32+TVEC2(3)*C33 c---------------------------------------------------------------------- do 11 i=1,(4+nsp) jtl.jac(i,1)=jtl.jac(i,1)+jtr.jac(i,1) jtl.jac(i,5)=jtl.jac(i,5)+jtr.jac(i,5) do 777 j=6,(4+nsp) jtl.jac(i,j)=jtl.jac(i,j)+jtr.jac(i,j) 777 continue 11 continue c---------------------------------------------------------------------- SEGDES JL SEGDES JR SEGDES WL SEGDES WR SEGDES JTR jll=jtl SEGDES JTL SEGDES YL SEGDES YR SEGDES CP SEGDES CV SEGDES MLRECP, MLRECV C---------------------------------------------------------------------- SEGDES dmly_l, dmly_r, & dmry_l, dmry_r, & dPpy_l, dPpy_r, & dPmy_l, dPmy_r, & dpiy_l, dpiy_r, & dgdyl, dgdyr C---------------------------------------------------------------------- return end
© Cast3M 2003 - Tous droits réservés.
Mentions légales