conjak
C CONJAK SOURCE CB215821 16/04/21 21:15:57 8920 & ga) C************************************************************************ C C PROJET : CASTEM 2000 C C NOM : CONJAK C C DESCRIPTION : Voir KONJA2 C C LANGAGE : FORTRAN 77 + ESOPE 2000 (avec estensions CISI) C C AUTEUR : S. KUDRIAKOV, DM2S/SFME/LTMF C C************************************************************************ C c---------------------------------------------------------------------- c GENERAL DESCRIPTION: c This subroutine provides the jacobians which are the derivatives c of the numerical flux function defined at the cell interface c with respect to the conservative variables of the left and right c cells (relative to the cell interface). c c EQUATIONS: 2D Euler equations of gas dynamics c c c REFERENCE: JCP, 129, 364-382 (1996) c " A Sequel to AUSM: AUSM+ ". c---------------------------------------------------------------------- c INPUT: c c alpha -- parameter of the AUSM+ scheme in the Pressure function; c ( -3/4 <= alpha <= 3/16 ) (imposed as a parameter) c c beta -- parameter of the AUSM+ scheme in the Mach function; c ( -1/16 <= beta <= 1/2 ) (imposed as a parameter) c c wvec_l -- vector of the primitive variables (rho,ux,uy,p) at the c left cell; c c wvec_r -- vector of the primitive variables (rho,ux,uy,p) at the c right cell; c c nvect -- normal vector to the interface (2 components in 2D); c c tvect -- tangential vector to the interface; c c ga -- ratio of the specific heats (assumed constant) c---------------------------------------------------------------------- c c OUTPUT: c c jtl -- jakobian matrix 4 by 4 - derivatives of the numerical c flux function with respect to the conservative variables c from the left cell; c c jtr -- jakobian matrix 4 by 4 - derivatives of the numerical c flux function with respect to the conservative variables c from the right cell. c---------------------------------------------------------------------- IMPLICIT INTEGER(I-N) real*8 wvec_l(4),wvec_r(4) real*8 nvect(2),tvect(2) real*8 jl(4,4),jr(4,4),f(4) real*8 wl(4,4),wr(4,4) real*8 jtl(4,4),jtr(4,4) real*8 ga, gm1,temph real*8 n_x,n_y,t_x,t_y real*8 un_l, un_r, ut_l, ut_r real*8 ml,mr,Mplus,Mmin,mmid real*8 mpl_m, mmin_m,am real*8 rold_l,uold_l,vold_l,pold_l,eold_l real*8 rold_r,uold_r,vold_r,pold_r,eold_r real*8 Pplus,Pmin,pmid real*8 br1,br2,br3,br4,temp_l,temp_r,brac_l,brac_r real*8 aleft, arigh real*8 damr_l,damr_r,damu_l,damu_r real*8 damv_l,damv_r,damp_l,damp_r real*8 dmlr_l,dmlr_r,dmlu_l,dmlu_r real*8 dmlv_l,dmlv_r,dmlp_l,dmlp_r real*8 dmrr_l,dmrr_r,dmru_l,dmru_r real*8 dmrv_l,dmrv_r,dmrp_l,dmrp_r real*8 dMpr_l,dMpr_r,dMpu_l,dMpu_r real*8 dMpv_l,dMpv_r,dMpp_l,dMpp_r real*8 dMmr_l,dMmr_r,dMmu_l,dMmu_r real*8 dMmv_l,dMmv_r,dMmp_l,dMmp_r real*8 dmir_l,dmir_r,dmiu_l,dmiu_r real*8 dmiv_l,dmiv_r,dmip_l,dmip_r real*8 d3mr_l,d3mr_r,d3mu_l,d3mu_r real*8 d3mv_l,d3mv_r,d3mp_l,d3mp_r real*8 d2mr_l,d2mr_r,d2mu_l,d2mu_r real*8 d2mv_l,d2mv_r,d2mp_l,d2mp_r real*8 dPpr_l,dPpr_r,dPpu_l,dPpu_r real*8 dPpv_l,dPpv_r,dPpp_l,dPpp_r real*8 dPmr_l,dPmr_r,dPmu_l,dPmu_r real*8 dPmv_l,dPmv_r,dPmp_l,dPmp_r real*8 dpir_l,dpir_r,dpiu_l,dpiu_r real*8 dpiv_l,dpiv_r,dpip_l,dpip_r integer i,j,k c----------------------- gm1=ga-1.0d0 c----------------------- n_x=nvect(1) n_y=nvect(2) t_x=tvect(1) t_y=tvect(2) c---------------------------- c---------------------------- rold_l=wvec_l(1) uold_l=wvec_l(2) vold_l=wvec_l(3) pold_l=wvec_l(4) c----------------------- rold_r=wvec_r(1) uold_r=wvec_r(2) vold_r=wvec_r(3) pold_r=wvec_r(4) c------------------------------------------------------------------ c Computation of the specific total energy on the left and right. c------------------------------------------------------------------ eold_l=(uold_l*uold_l+vold_l*vold_l)/2.0d0 eold_l=eold_l+pold_l/(gm1*rold_l) eold_r=(uold_r*uold_r+vold_r*vold_r)/2.0d0 eold_r=eold_r+pold_r/(gm1*rold_r) c------------------------------------------------------------------- c Computation of the speed of sound and its derivatives; c numerical speed of sound at the interface is taken as an average c of the speeds of sounds of the neighbouring cells c------------------------------------------------------------------- aleft=SQRT(ga*pold_l/rold_l) arigh=SQRT(ga*pold_r/rold_r) am=0.5d0*(aleft+arigh) c------------------------------------------------------------------- damr_r=-arigh/(4.0d0*rold_r) damu_r=0.0d0 damv_r=0.0d0 damp_r=ga/(4.0d0*arigh*rold_r) c----------------------- damr_l=-aleft/(4.0d0*rold_l) damu_l=0.0d0 damv_l=0.0d0 damp_l=ga/(4.0d0*aleft*rold_l) c------------------------------------------------------------------- c Computing numerical Mach number and its derivatives, c see p.370, under (A1). c------------------------------------------------------------------- un_l=uold_l*n_x+vold_l*n_y un_r=uold_r*n_x+vold_r*n_y ut_l=uold_l*t_x+vold_l*t_y ut_r=uold_r*t_x+vold_r*t_y c------------------------------------------------------------------- ml=un_l/am mr=un_r/am c------------------------------------------------------------------- c Mplus and Mmin are calligraphic lettes M+ and M- from the paper, c see (19a) and (19b), p.367. c------------------------------------------------------------------- if(ABS(ml) .ge. 1.0d0) then Mplus=(ml+ABS(ml))/2.0d0 else Mplus=(ml+1.0d0)*(ml+1.0d0)/4.0d0 Mplus=Mplus+beta*(ml*ml-1.0d0)*(ml*ml-1.0d0) endif c------------------------------------------------------------------- if(ABS(mr) .ge. 1.0d0) then Mmin=(mr-ABS(mr))/2.0d0 else Mmin=-(mr-1.0d0)*(mr-1.0d0)/4.0d0 Mmin=Mmin-beta*(mr*mr-1.0d0)*(mr*mr-1.0d0) endif c------------------------------------------------------------------- c Derivatives of ml and mr with respect to both sets of primitive c variables: left and right. c------------------------------------------------------------------- temp_l=-un_l/(am*am) temp_r=-un_r/(am*am) c-------- dmlr_l=temp_l*damr_l dmlr_r=temp_l*damr_r dmrr_l=temp_r*damr_l dmrr_r=temp_r*damr_r c-------- dmlu_l=n_x/am+temp_l*damu_l dmlu_r=temp_l*damu_r dmru_l=temp_r*damu_l dmru_r=n_x/am+temp_r*damu_r c-------- dmlv_l=n_y/am+temp_l*damv_l dmlv_r=temp_l*damv_r dmrv_l=temp_r*damv_l dmrv_r=n_y/am+temp_r*damv_r c-------- dmlp_l=temp_l*damp_l dmlp_r=temp_l*damp_r dmrp_l=temp_r*damp_l dmrp_r=temp_r*damp_r c----------------------------------------------------------- c mmid is m_{1/2} (notation as in the paper, see (13),p.366) c----------------------------------------------------------- mmid=Mplus+Mmin c----------------------------------------------------------- c Computing the derivatives of M+ and M- c----------------------------------------------------------- if(ml .ge. 1.0d0) then dMpr_l=dmlr_l dMpu_l=dmlu_l dMpv_l=dmlv_l dMpp_l=dmlp_l c-------------------- dMpr_r=dmlr_r dMpu_r=dmlu_r dMpv_r=dmlv_r dMpp_r=dmlp_r else if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then temph=(ml+1.0d0)/2.0d0 dMpr_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlr_l dMpu_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlu_l dMpv_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlv_l dMpp_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlp_l c-------------------- dMpr_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlr_r dMpu_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlu_r dMpv_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlv_r dMpp_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlp_r else dMpr_l=0.0d0 dMpu_l=0.0d0 dMpv_l=0.0d0 dMpp_l=0.0d0 c--------------------- dMpr_r=0.0d0 dMpu_r=0.0d0 dMpv_r=0.0d0 dMpp_r=0.0d0 endif endif c----------------------------------------------------------- if(mr .ge. 1.0d0) then dMmr_l=0.0d0 dMmu_l=0.0d0 dMmv_l=0.0d0 dMmp_l=0.0d0 c--------------------- dMmr_r=0.0d0 dMmu_r=0.0d0 dMmv_r=0.0d0 dMmp_r=0.0d0 else if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then temph=(-mr+1.0d0)/2.0d0 dMmr_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrr_l dMmu_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmru_l dMmv_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrv_l dMmp_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrp_l c-------------------- dMmr_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrr_r dMmu_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmru_r dMmv_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrv_r dMmp_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrp_r else dMmr_l=dmrr_l dMmu_l=dmru_l dMmv_l=dmrv_l dMmp_l=dmrp_l c-------------------- dMmr_r=dmrr_r dMmu_r=dmru_r dMmv_r=dmrv_r dMmp_r=dmrp_r endif endif c----------------------------------------------------------------- c computing the derivatives of m_{1/2} (notation as in the paper) c----------------------------------------------------------------- dmir_l=dMpr_l+dMmr_l dmir_r=dMpr_r+dMmr_r c------------- dmiu_l=dMpu_l+dMmu_l dmiu_r=dMpu_r+dMmu_r c------------- dmiv_l=dMpv_l+dMmv_l dmiv_r=dMpv_r+dMmv_r c------------- dmip_l=dMpp_l+dMmp_l dmip_r=dMpp_r+dMmp_r c---------------------------------------------------------------- c computing the main convective variables and their derivatives c mpl_m is m^{+}_{1/2} (paper's notation) and c mmin_m is m^{-}_{1/2} (paper's notation), see (A2) on p.370. c---------------------------------------------------------------- if(mmid .ge. 0.0d0) then mpl_m = mmid d2mr_l=dmir_l d2mu_l=dmiu_l d2mv_l=dmiv_l d2mp_l=dmip_l c------------ d2mr_r=dmir_r d2mu_r=dmiu_r d2mv_r=dmiv_r d2mp_r=dmip_r c------------ else mpl_m = 0.0d0 d2mr_l=0.0d0 d2mu_l=0.0d0 d2mv_l=0.0d0 d2mp_l=0.0d0 c------------ d2mr_r=0.0d0 d2mu_r=0.0d0 d2mv_r=0.0d0 d2mp_r=0.0d0 endif c--------------------------------------------- if(mmid .le. 0.0d0) then mmin_m = mmid d3mr_l=dmir_l d3mu_l=dmiu_l d3mv_l=dmiv_l d3mp_l=dmip_l c------------ d3mr_r=dmir_r d3mu_r=dmiu_r d3mv_r=dmiv_r d3mp_r=dmip_r c------------ else mmin_m = 0.0d0 d3mr_l=0.0d0 d3mu_l=0.0d0 d3mv_l=0.0d0 d3mp_l=0.0d0 c------------ d3mr_r=0.0d0 d3mu_r=0.0d0 d3mv_r=0.0d0 d3mp_r=0.0d0 endif c--------------------------------------------------------------- c Computing the calligraphic P+ and P- with their derivatives, c see (21a) & (21b) on p.368. c--------------------------------------------------------------- if(ml .ge. 1.0d0) then Pplus = 1.0d0 else if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then Pplus=(ml+1.0d0)*(ml+1.0d0)*(2.0d0-ml)/4.0d0 else Pplus = 0.0d0 endif endif c--------------------------------------------------------------- if(mr .ge. 1.0d0) then Pmin = 0.0d0 else if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then Pmin=(mr-1.0d0)*(mr-1.0d0)*(2.0d0+mr)/4.0d0 else Pmin = 1.0d0 endif endif c--------------------------------------------------------------- brac_l=(ml+1.0d0)*(2.0d0-ml)/2.0d0-(ml+1.0d0)*(ml+1.0d0)/4.0d0 c-------------- brac_r=(mr-1.0d0)*(2.0d0+mr)/2.0d0+(mr-1.0d0)*(mr-1.0d0)/4.0d0 c--------------------------------------------------------------- if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then dPpr_l=brac_l*dmlr_l dPpr_r=brac_l*dmlr_r c------------ dPpu_l=brac_l*dmlu_l dPpu_r=brac_l*dmlu_r c------------ dPpv_l=brac_l*dmlv_l dPpv_r=brac_l*dmlv_r c------------ dPpp_l=brac_l*dmlp_l dPpp_r=brac_l*dmlp_r c------------ else dPpr_l=0.0d0 dPpr_r=0.0d0 c----------- dPpu_l=0.0d0 dPpu_r=0.0d0 c----------- dPpv_l=0.0d0 dPpv_r=0.0d0 c----------- dPpp_l=0.0d0 dPpp_r=0.0d0 c----------- endif c--------------------------------------------------------------- if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then dPmr_l=brac_r*dmrr_l dPmr_r=brac_r*dmrr_r c------------ dPmu_l=brac_r*dmru_l dPmu_r=brac_r*dmru_r c------------ dPmv_l=brac_r*dmrv_l dPmv_r=brac_r*dmrv_r c------------ dPmp_l=brac_r*dmrp_l dPmp_r=brac_r*dmrp_r c------------ else dPmr_l=0.0d0 dPmr_r=0.0d0 c----------- dPmu_l=0.0d0 dPmu_r=0.0d0 c----------- dPmv_l=0.0d0 dPmv_r=0.0d0 c----------- dPmp_l=0.0d0 dPmp_r=0.0d0 c----------- endif c------------------------------------------------------------------- c computing pmid -- p_{1/2} and its derivatives, see (20b), p.367. c------------------------------------------------------------------- pmid=Pplus*pold_l + Pmin*pold_r dpir_l=dPpr_l*pold_l+dPmr_l*pold_r dpiu_l=dPpu_l*pold_l+dPmu_l*pold_r dpiv_l=dPpv_l*pold_l+dPmv_l*pold_r dpip_l=dPpp_l*pold_l+Pplus+dPmp_l*pold_r c---------------------------- dpir_r=dPpr_r*pold_l+dPmr_r*pold_r dpiu_r=dPpu_r*pold_l+dPmu_r*pold_r dpiv_r=dPpv_r*pold_l+dPmv_r*pold_r dpip_r=dPpp_r*pold_l+Pmin+dPmp_r*pold_r c--------------------------------------------------------------------- c computing JACOBIAN as a derivative of the numerical flux function c with respect to the primitive variables. c Notation: jl(i,j) --- is the derivative of the i-component of the c flux function with respect to the j-component of the c vector of primitive variables of the left state. c jr(i,j) --- is the derivative of the i-component of the c flux function with respect to the j-component of the c vector of primitive variables of the right state. c--------------------------------------------------------------------- f(1)=am*(mpl_m*rold_l+mmin_m*rold_r) c--------------------------------------------------------------------- jl(1,1)=damr_l*f(1)/am+am*(d2mr_l*rold_l+mpl_m) jl(1,1)=jl(1,1)+am*d3mr_l*rold_r jl(1,2)=damu_l*f(1)/am+am*(d2mu_l*rold_l+d3mu_l*rold_r) jl(1,3)=damv_l*f(1)/am+am*(d2mv_l*rold_l+d3mv_l*rold_r) jl(1,4)=damp_l*f(1)/am+am*(d2mp_l*rold_l+d3mp_l*rold_r) c------------------------------------ jr(1,1)=damr_r*f(1)/am+am*(d2mr_r*rold_l+mmin_m) jr(1,1)=jr(1,1)+am*d3mr_r*rold_r jr(1,2)=damu_r*f(1)/am+am*(d2mu_r*rold_l+d3mu_r*rold_r) jr(1,3)=damv_r*f(1)/am+am*(d2mv_r*rold_l+d3mv_r*rold_r) jr(1,4)=damp_r*f(1)/am+am*(d2mp_r*rold_l+d3mp_r*rold_r) c------------------------------------ c------------------------------------ br1=mpl_m*rold_l*un_l+mmin_m*rold_r*un_r br2=mpl_m*rold_l*ut_l+mmin_m*rold_r*ut_r f(2)=n_x*(am*br1+pmid)+am*t_x*br2 c------------------ c--------------------------------------------------------- br3=d2mr_l*rold_l*un_l+mpl_m*un_l+d3mr_l*rold_r*un_r br4=d2mr_l*rold_l*ut_l+mpl_m*ut_l+d3mr_l*rold_r*ut_r jl(2,1)=n_x*(damr_l*br1+am*br3+dpir_l) jl(2,1)=jl(2,1)+t_x*damr_l*br2+am*t_x*br4 c------------------- br3=br3+d3mu_l*rold_r*un_r br4=br4+d3mu_l*rold_r*ut_r jl(2,2)=n_x*(damu_l*br1+am*br3+dpiu_l) jl(2,2)=jl(2,2)+t_x*damu_l*br2+am*t_x*br4 c------------------- br3=br3+d3mv_l*rold_r*un_r br4=br4+d3mv_l*rold_r*ut_r jl(2,3)=n_x*(damv_l*br1+am*br3+dpiv_l) jl(2,3)=jl(2,3)+t_x*damv_l*br2+am*t_x*br4 c------------------- br3=d2mp_l*rold_l*un_l+d3mp_l*rold_r*un_r br4=d2mp_l*rold_l*ut_l+d3mp_l*rold_r*ut_r jl(2,4)=n_x*(damp_l*br1+am*br3+dpip_l) jl(2,4)=jl(2,4)+t_x*damp_l*br2+am*t_x*br4 c------------------------------------------------------------- br3=d2mr_r*rold_l*un_l+mmin_m*un_r+d3mr_r*rold_r*un_r br4=d2mr_r*rold_l*ut_l+mmin_m*ut_r+d3mr_r*rold_r*ut_r jr(2,1)=n_x*(damr_r*br1+am*br3+dpir_r) jr(2,1)=jr(2,1)+t_x*damr_r*br2+am*t_x*br4 c------------------- br3=br3+d3mu_r*rold_r*un_r br4=br4+d3mu_r*rold_r*ut_r jr(2,2)=n_x*(damu_r*br1+am*br3+dpiu_r) jr(2,2)=jr(2,2)+t_x*damu_r*br2+am*t_x*br4 c------------------- br3=br3+d3mv_r*rold_r*un_r br4=br4+d3mv_r*rold_r*ut_r jr(2,3)=n_x*(damv_r*br1+am*br3+dpiv_r) jr(2,3)=jr(2,3)+t_x*damv_r*br2+am*t_x*br4 c------------------- br3=d2mp_r*rold_l*un_l+d3mp_r*rold_r*un_r br4=d2mp_r*rold_l*ut_l+d3mp_r*rold_r*ut_r jr(2,4)=n_x*(damp_r*br1+am*br3+dpip_r) jr(2,4)=jr(2,4)+t_x*damp_r*br2+am*t_x*br4 c------------------------------------------------------------- c------------------------------------------------------------- br1=mpl_m*rold_l*un_l+mmin_m*rold_r*un_r br2=mpl_m*rold_l*ut_l+mmin_m*rold_r*ut_r f(3)=n_y*(am*br1+pmid)+am*t_y*br2 br3=d2mr_l*rold_l*un_l+mpl_m*un_l+d3mr_l*rold_r*un_r br4=d2mr_l*rold_l*ut_l+mpl_m*ut_l+d3mr_l*rold_r*ut_r jl(3,1)=n_y*(damr_l*br1+am*br3+dpir_l) jl(3,1)=jl(3,1)+t_y*damr_l*br2+am*t_y*br4 c------------------- br3=br3+d3mu_l*rold_r*un_r br4=br4+d3mu_l*rold_r*ut_r jl(3,2)=n_y*(damu_l*br1+am*br3+dpiu_l) jl(3,2)=jl(3,2)+t_y*damu_l*br2+am*t_y*br4 c------------------- br3=br3+d3mv_l*rold_r*un_r br4=br4+d3mv_l*rold_r*ut_r jl(3,3)=n_y*(damv_l*br1+am*br3+dpiv_l) jl(3,3)=jl(3,3)+t_y*damv_l*br2+am*t_y*br4 c------------------- br3=d2mp_l*rold_l*un_l+d3mp_l*rold_r*un_r br4=d2mp_l*rold_l*ut_l+d3mp_l*rold_r*ut_r jl(3,4)=n_y*(damp_l*br1+am*br3+dpip_l) jl(3,4)=jl(3,4)+t_y*damp_l*br2+am*t_y*br4 c------------------------------------------------------------- br3=d2mr_r*rold_l*un_l+mmin_m*un_r+d3mr_r*rold_r*un_r br4=d2mr_r*rold_l*ut_l+mmin_m*ut_r+d3mr_r*rold_r*ut_r jr(3,1)=n_y*(damr_r*br1+am*br3+dpir_r) jr(3,1)=jr(3,1)+t_y*damr_r*br2+am*t_y*br4 c------------------- br3=br3+d3mu_r*rold_r*un_r br4=br4+d3mu_r*rold_r*ut_r jr(3,2)=n_y*(damu_r*br1+am*br3+dpiu_r) jr(3,2)=jr(3,2)+t_y*damu_r*br2+am*t_y*br4 c------------------- br3=br3+d3mv_r*rold_r*un_r br4=br4+d3mv_r*rold_r*ut_r jr(3,3)=n_y*(damv_r*br1+am*br3+dpiv_r) jr(3,3)=jr(3,3)+t_y*damv_r*br2+am*t_y*br4 c------------------- br3=d2mp_r*rold_l*un_l+d3mp_r*rold_r*un_r br4=d2mp_r*rold_l*ut_l+d3mp_r*rold_r*ut_r jr(3,4)=n_y*(damp_r*br1+am*br3+dpip_r) jr(3,4)=jr(3,4)+t_y*damp_r*br2+am*t_y*br4 c------------------------------------------------------------- c ------ f44444444444444444444444444444 --------- c------------------------------------------------------------- hr_l=rold_l*(uold_l*uold_l+vold_l*vold_l)/2.0d0+ga*pold_l/gm1 hr_r=rold_r*(uold_r*uold_r+vold_r*vold_r)/2.0d0+ga*pold_r/gm1 f(4)=am*(mpl_m*hr_l+mmin_m*hr_r) c--------------------- br1=d2mr_l*hr_l+mpl_m*(uold_l*uold_l+vold_l*vold_l)/2.0d0 br1=br1+d3mr_l*hr_r jl(4,1)=damr_l*f(4)/am+am*br1 c--------------------- br1=d2mu_l*hr_l+mpl_m*uold_l*rold_l br1=br1+d3mu_l*hr_r jl(4,2)=damu_l*f(4)/am+am*br1 c--------------------- br1=d2mv_l*hr_l+mpl_m*vold_l*rold_l br1=br1+d3mv_l*hr_r jl(4,3)=damv_l*f(4)/am+am*br1 c--------------------- br1=d2mp_l*hr_l+mpl_m*ga/gm1 br1=br1+d3mp_l*hr_r jl(4,4)=damp_l*f(4)/am+am*br1 c---------------------------------------------------------- c---------------------------------------------------------- br1=d2mr_r*hr_l+mmin_m*(uold_r*uold_r+vold_r*vold_r)/2.0d0 br1=br1+d3mr_r*hr_r jr(4,1)=damr_r*f(4)/am+am*br1 c--------------------- br1=d2mu_r*hr_l+mmin_m*uold_r*rold_r br1=br1+d3mu_r*hr_r jr(4,2)=damu_r*f(4)/am+am*br1 c--------------------- br1=d2mv_r*hr_l+mmin_m*vold_r*rold_r br1=br1+d3mv_r*hr_r jr(4,3)=damv_r*f(4)/am+am*br1 c--------------------- br1=d2mp_r*hr_l+mmin_m*ga/gm1 br1=br1+d3mp_r*hr_r jr(4,4)=damp_r*f(4)/am+am*br1 c------------------------------------------------------------- c matrix wl(i,j) represents the derivative of the i-component c of the vector of primitive variables of the left state with c respect to the j-component of the vector of the conservative c variables of the left state. c c Here: (rho, u, v, p) - vector of primitive variables; c (rho, rho u, rho v, rho e) -- conservative variables. c------------------------------------------------------------- wl(1,1)=1.0d0 wl(1,2)=0.0d0 wl(1,3)=0.0d0 wl(1,4)=0.0d0 c------------------------------ wl(2,1)=-uold_l/rold_l wl(2,2)=1.0d0/rold_l wl(2,3)=0.0d0 wl(2,4)=0.0d0 c------------------------------ wl(3,1)=-vold_l/rold_l wl(3,2)=0.0d0 wl(3,3)=1.0d0/rold_l wl(3,4)=0.0d0 c------------------------------ wl(4,1)=gm1*(uold_l*uold_l+vold_l*vold_l)/2.0d0 wl(4,2)=-uold_l*gm1 wl(4,3)=-vold_l*gm1 wl(4,4)=gm1 c------------------------------ c------------------------------ wr(1,1)=1.0d0 wr(1,2)=0.0d0 wr(1,3)=0.0d0 wr(1,4)=0.0d0 c------------------------------ wr(2,1)=-uold_r/rold_r wr(2,2)=1.0d0/rold_r wr(2,3)=0.0d0 wr(2,4)=0.0d0 c------------------------------ wr(3,1)=-vold_r/rold_r wr(3,2)=0.0d0 wr(3,3)=1.0d0/rold_r wr(3,4)=0.0d0 c------------------------------ wr(4,1)=gm1*(uold_r*uold_r+vold_r*vold_r)/2.0d0 wr(4,2)=-uold_r*gm1 wr(4,3)=-vold_r*gm1 wr(4,4)=gm1 c---------------------------------------------- c---------------------------------------------- do 1 i=1,4 do 2 j=1,4 jtl(i,j)=0.0d0 jtr(i,j)=0.0d0 do 3 k=1,4 jtl(i,j)=jtl(i,j)+jl(i,k)*wl(k,j) jtr(i,j)=jtr(i,j)+jr(i,k)*wr(k,j) 3 continue 2 continue 1 continue c---------------------------------------------------------------------- return end
© Cast3M 2003 - Tous droits réservés.
Mentions légales