conj3d
C CONJ3D SOURCE CB215821 16/04/21 21:15:56 8920 c---------------------------------------------------------------------- c GENERAL DESCRIPTION: c This subroutine provides the jacobians which are the derivatives c of the numerical flux function defined at the cell interface c with respect to the conservative variables of the left and right c cells (relative to the cell interface). c c EQUATIONS: 3D Euler equations of gas dynamics c c c REFERENCE: JCP, 129, 364-382 (1996) c " A Sequel to AUSM: AUSM+ ". c---------------------------------------------------------------------- c INPUT: c c alpha -- parameter of the AUSM+ scheme in the Pressure function; c ( -3/4 <= alpha <= 3/16 ) (imposed as a parameter) c c beta -- parameter of the AUSM+ scheme in the Mach function; c ( -1/16 <= beta <= 1/2 ) (imposed as a parameter) c c wvec_l -- vector of the primitive variables (rho,ux,uy,uz,p) at the c left cell; c c wvec_r -- vector of the primitive variables (rho,ux,uy,uz,p) at the c right cell; c c nvect -- normal vector to the interface (3 components in 3D); c c tvec1 -- tangential vector to the interface; c c tvec2 -- tangential vector to the interface; c c ga -- ratio of the specific heats (assumed constant) c---------------------------------------------------------------------- c c OUTPUT: c c jtl -- jakobian matrix 5 by 5 - derivatives of the numerical c flux function with respect to the conservative variables c from the left cell; c c jtr -- jakobian matrix 5 by 5 - derivatives of the numerical c flux function with respect to the conservative variables c from the right cell. c---------------------------------------------------------------------- & ga) IMPLICIT INTEGER(I-N) real*8 wvec_l(5),wvec_r(5) real*8 nvect(3),tvec1(3),tvec2(3) real*8 jl(5,5),jr(5,5),f(5) real*8 wl(5,5),wr(5,5) real*8 jtl(5,5),jtr(5,5) real*8 ga, gm1,temph real*8 n_x,n_y,n_z,t1_x,t1_y,t1_z,t2_x,t2_y,t2_z real*8 un_l,un_r,ut1_l,ut1_r,ut2_l,ut2_r real*8 ml,mr,Mplus,Mmin,mmid real*8 mpl_m, mmin_m,am real*8 rold_l,uold_l,vold_l,wold_l,pold_l,eold_l real*8 rold_r,uold_r,vold_r,wold_r,pold_r,eold_r real*8 Pplus,Pmin,pmid real*8 br1,temp_l,temp_r,brac_l,brac_r real*8 aleft, arigh real*8 damr_l,damr_r,damu_l,damu_r real*8 damv_l,damv_r,damp_l,damp_r real*8 damw_l,damw_r real*8 dmlr_l,dmlr_r,dmlu_l,dmlu_r real*8 dmlv_l,dmlv_r,dmlp_l,dmlp_r real*8 dmlw_l,dmlw_r real*8 dmrr_l,dmrr_r,dmru_l,dmru_r real*8 dmrv_l,dmrv_r,dmrp_l,dmrp_r real*8 dmrw_l,dmrw_r real*8 dMpr_l,dMpr_r,dMpu_l,dMpu_r real*8 dMpv_l,dMpv_r,dMpp_l,dMpp_r real*8 dMpw_l,dMpw_r real*8 dMmr_l,dMmr_r,dMmu_l,dMmu_r real*8 dMmv_l,dMmv_r,dMmp_l,dMmp_r real*8 dMmw_l,dMmw_r real*8 dmir_l,dmir_r,dmiu_l,dmiu_r real*8 dmiv_l,dmiv_r,dmip_l,dmip_r real*8 dmiw_l,dmiw_r real*8 d3mr_l,d3mr_r,d3mu_l,d3mu_r real*8 d3mv_l,d3mv_r,d3mp_l,d3mp_r real*8 d3mw_l,d3mw_r real*8 d2mr_l,d2mr_r,d2mu_l,d2mu_r real*8 d2mv_l,d2mv_r,d2mp_l,d2mp_r real*8 d2mw_l,d2mw_r real*8 dPpr_l,dPpr_r,dPpu_l,dPpu_r real*8 dPpv_l,dPpv_r,dPpp_l,dPpp_r real*8 dPpw_l,dPpw_r real*8 dPmr_l,dPmr_r,dPmu_l,dPmu_r real*8 dPmv_l,dPmv_r,dPmp_l,dPmp_r real*8 dPmw_l,dPmw_r real*8 dpir_l,dpir_r,dpiu_l,dpiu_r real*8 dpiv_l,dpiv_r,dpip_l,dpip_r real*8 dpiw_l,dpiw_r real*8 ff,fs,ft,dffr,dffu,dffv,dffw,dffp real*8 dfsr,dfsu,dfsv,dfsw,dfsp,dftr,dftu,dftv,dftw,dftp integer i,j,k c----------------------- gm1=ga-1.0d0 c----------------------- n_x=nvect(1) n_y=nvect(2) n_z=nvect(3) c------------------- t1_x=tvec1(1) t1_y=tvec1(2) t1_z=tvec1(3) c------------------- t2_x=tvec2(1) t2_y=tvec2(2) t2_z=tvec2(3) c------------------------------------------- c These are coefficients for the expressions c c un = (c11*ux + c12*uy + c13*uz)/det c ut1 = (c21*ux + c22*uy + c23*uz)/det c ut2 = (c31*ux + c32*uy + c33*uz)/det c------------------------------------------- c11=t1_y*t2_z - t1_z*t2_y c12=t1_z*t2_x - t1_x*t2_z c13=t1_x*t2_y - t1_y*t2_x c-------------------------------------- c21=n_z*t2_y - n_y*t2_z c22=n_x*t2_z - n_z*t2_x c23=n_y*t2_x - n_x*t2_y c-------------------------------------- c31=n_y*t1_z - n_z*t1_y c32=n_z*t1_x - n_x*t1_z c33=n_x*t1_y - n_y*t1_x c-------------------------------------- rold_l=wvec_l(1) uold_l=wvec_l(2) vold_l=wvec_l(3) wold_l=wvec_l(4) pold_l=wvec_l(5) c----------------------- rold_r=wvec_r(1) uold_r=wvec_r(2) vold_r=wvec_r(3) wold_r=wvec_r(4) pold_r=wvec_r(5) c------------------------------------------------------------------ c Computation of the specific total energy on the left and right. c------------------------------------------------------------------ eold_l=(uold_l*uold_l+vold_l*vold_l+wold_l*wold_l)/2.0d0 eold_l=eold_l+pold_l/(gm1*rold_l) eold_r=(uold_r*uold_r+vold_r*vold_r+wold_r*wold_r)/2.0d0 eold_r=eold_r+pold_r/(gm1*rold_r) c------------------------------------------------------------------- c Computation of the speed of sound and its derivatives; c numerical speed of sound at the interface is taken as an average c of the speeds of sounds of the neighbouring cells c--------------------------------------------------------------------- aleft=SQRT(ga*pold_l/rold_l) arigh=SQRT(ga*pold_r/rold_r) am=0.5d0*(aleft+arigh) c-------------------------------------------------------------------- damr_r=-arigh/(4.0d0*rold_r) damu_r=0.0d0 damv_r=0.0d0 damw_r=0.0d0 damp_r=ga/(4.0d0*arigh*rold_r) c----------------------- damr_l=-aleft/(4.0d0*rold_l) damu_l=0.0d0 damv_l=0.0d0 damw_l=0.0d0 damp_l=ga/(4.0d0*aleft*rold_l) c------------------------------------------------------------------- c Computing numerical Mach number and its derivatives, c see p.370, under (A1). c------------------------------------------------------------------- un_l=uold_l*n_x+vold_l*n_y+wold_l*n_z un_r=uold_r*n_x+vold_r*n_y+wold_r*n_z c---------- ut1_l=uold_l*t1_x+vold_l*t1_y+wold_l*t1_z ut1_r=uold_r*t1_x+vold_r*t1_y+wold_r*t1_z c---------- ut2_l=uold_l*t2_x+vold_l*t2_y+wold_l*t2_z ut2_r=uold_r*t2_x+vold_r*t2_y+wold_r*t2_z c---------------------------------------- ml=un_l/am mr=un_r/am c------------------------------------------------------------------- c Mplus and Mmin are calligraphic lettes M+ and M- from the paper, c see (19a) and (19b), p.367. c------------------------------------------------------------------- if(ABS(ml) .ge. 1.0d0) then Mplus=(ml+ABS(ml))/2.0d0 else Mplus=(ml+1.0d0)*(ml+1.0d0)/4.0d0 Mplus=Mplus+beta*(ml*ml-1.0d0)*(ml*ml-1.0d0) endif c----------------- if(ABS(mr) .ge. 1.0d0) then Mmin=(mr-ABS(mr))/2.0d0 else Mmin=-(mr-1.0d0)*(mr-1.0d0)/4.0d0 Mmin=Mmin-beta*(mr*mr-1.0d0)*(mr*mr-1.0d0) endif c------------------------------------------------------------------- c Derivatives of ml and mr with respect to both sets of primitive c variables: left and right. c------------------------------------------------------------------- temp_l=-un_l/(am*am) temp_r=-un_r/(am*am) c-------- dmlr_l=temp_l*damr_l dmlr_r=temp_l*damr_r dmrr_l=temp_r*damr_l dmrr_r=temp_r*damr_r c-------- dmlu_l=n_x/am+temp_l*damu_l dmlu_r=temp_l*damu_r dmru_l=temp_r*damu_l dmru_r=n_x/am+temp_r*damu_r c-------- dmlv_l=n_y/am+temp_l*damv_l dmlv_r=temp_l*damv_r dmrv_l=temp_r*damv_l dmrv_r=n_y/am+temp_r*damv_r c-------- dmlw_l=n_z/am+temp_l*damw_l dmlw_r=temp_l*damw_r dmrw_l=temp_r*damw_l dmrw_r=n_z/am+temp_r*damw_r c-------- dmlp_l=temp_l*damp_l dmlp_r=temp_l*damp_r dmrp_l=temp_r*damp_l dmrp_r=temp_r*damp_r c----------------------------------------------------------- c mmid is m_{1/2} (notation as in the paper) c---------------------------------------------------------- mmid=Mplus+Mmin c----------------------------------------------------------- c Computing the derivatives of M+ and M- c----------------------------------------------------------- if(ml .ge. 1.0d0) then dMpr_l=dmlr_l dMpu_l=dmlu_l dMpv_l=dmlv_l dMpw_l=dmlw_l dMpp_l=dmlp_l c-------------------- dMpr_r=dmlr_r dMpu_r=dmlu_r dMpv_r=dmlv_r dMpw_r=dmlw_r dMpp_r=dmlp_r else if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then temph=(ml+1.0d0)/2.0d0 dMpr_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlr_l dMpu_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlu_l dMpv_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlv_l dMpw_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlw_l dMpp_l=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlp_l c-------------------- dMpr_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlr_r dMpu_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlu_r dMpv_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlv_r dMpw_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlw_r dMpp_r=(temph+4.0d0*beta*ml*(ml*ml-1.0d0))*dmlp_r else dMpr_l=0.0d0 dMpu_l=0.0d0 dMpv_l=0.0d0 dMpw_l=0.0d0 dMpp_l=0.0d0 c--------------------- dMpr_r=0.0d0 dMpu_r=0.0d0 dMpv_r=0.0d0 dMpw_r=0.0d0 dMpp_r=0.0d0 endif endif c----------------------------------------------------------- if(mr .ge. 1.0d0) then dMmr_l=0.0d0 dMmu_l=0.0d0 dMmv_l=0.0d0 dMmw_l=0.0d0 dMmp_l=0.0d0 c--------------------- dMmr_r=0.0d0 dMmu_r=0.0d0 dMmv_r=0.0d0 dMmw_r=0.0d0 dMmp_r=0.0d0 else if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then temph=(-mr+1.0d0)/2.0d0 dMmr_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrr_l dMmu_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmru_l dMmv_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrv_l dMmw_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrw_l dMmp_l=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrp_l c-------------------- dMmr_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrr_r dMmu_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmru_r dMmv_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrv_r dMmw_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrw_r dMmp_r=(temph-4.0d0*beta*mr*(mr*mr-1.0d0))*dmrp_r else dMmr_l=dmrr_l dMmu_l=dmru_l dMmv_l=dmrv_l dMmw_l=dmrw_l dMmp_l=dmrp_l c-------------------- dMmr_r=dmrr_r dMmu_r=dmru_r dMmv_r=dmrv_r dMmw_r=dmrw_r dMmp_r=dmrp_r endif endif c----------------------------------------------------------------- c computing the derivatives of m_{1/2} (notation as in the paper) c----------------------------------------------------------------- dmir_l=dMpr_l+dMmr_l dmir_r=dMpr_r+dMmr_r c------------- dmiu_l=dMpu_l+dMmu_l dmiu_r=dMpu_r+dMmu_r c------------- dmiv_l=dMpv_l+dMmv_l dmiv_r=dMpv_r+dMmv_r c------------- dmiw_l=dMpw_l+dMmw_l dmiw_r=dMpw_r+dMmw_r c------------- dmip_l=dMpp_l+dMmp_l dmip_r=dMpp_r+dMmp_r c------------------------------------------------------------- c computing the main convective variables and their derivatives c mpl_m is m^{+}_{1/2} (paper's notation) and c mmin_m is m^{-}_{1/2} (paper's notation) c------------------------------------------------------------- if(mmid .gt. 0.0d0) then mpl_m = mmid d2mr_l=dmir_l d2mu_l=dmiu_l d2mv_l=dmiv_l d2mw_l=dmiw_l d2mp_l=dmip_l c------------ d2mr_r=dmir_r d2mu_r=dmiu_r d2mv_r=dmiv_r d2mw_r=dmiw_r d2mp_r=dmip_r c------------ else mpl_m = 0.0d0 d2mr_l=0.0d0 d2mu_l=0.0d0 d2mv_l=0.0d0 d2mw_l=0.0d0 d2mp_l=0.0d0 c------------ d2mr_r=0.0d0 d2mu_r=0.0d0 d2mv_r=0.0d0 d2mw_r=0.0d0 d2mp_r=0.0d0 endif c--------------------------------------------- if(mmid .lt. 0.0d0) then mmin_m = mmid d3mr_l=dmir_l d3mu_l=dmiu_l d3mv_l=dmiv_l d3mw_l=dmiw_l d3mp_l=dmip_l c------------ d3mr_r=dmir_r d3mu_r=dmiu_r d3mv_r=dmiv_r d3mw_r=dmiw_r d3mp_r=dmip_r c------------ else mmin_m = 0.0d0 d3mr_l=0.0d0 d3mu_l=0.0d0 d3mv_l=0.0d0 d3mw_l=0.0d0 d3mp_l=0.0d0 c------------ d3mr_r=0.0d0 d3mu_r=0.0d0 d3mv_r=0.0d0 d3mw_r=0.0d0 d3mp_r=0.0d0 endif c--------------------------------------------------------------- c Computing the calligraphic P+ and P- with their derivatives c see (21a) & (21b) on p.368. c--------------------------------------------------------------- if(ml .ge. 1.0d0) then Pplus = 1.0d0 else if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then Pplus=(ml+1.0d0)*(ml+1.0d0)*(2.0d0-ml)/4.0d0 else Pplus = 0.0d0 endif endif c--------------------------------------------------------------- if(mr .ge. 1.0d0) then Pmin = 0.0d0 else if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then Pmin=(mr-1.0d0)*(mr-1.0d0)*(2.0d0+mr)/4.0d0 else Pmin = 1.0d0 endif endif c--------------------------------------------------------------- brac_l=(ml+1.0d0)*(2.0d0-ml)/2.0d0-(ml+1.0d0)*(ml+1.0d0)/4.0d0 c-------------- brac_r=(mr-1.0d0)*(2.0d0+mr)/2.0d0+(mr-1.0d0)*(mr-1.0d0)/4.0d0 c--------------------------------------------------------------- if((ml .gt. -1.0d0) .and. (ml .lt. 1.0d0)) then dPpr_l=brac_l*dmlr_l dPpr_r=brac_l*dmlr_r c------------ dPpu_l=brac_l*dmlu_l dPpu_r=brac_l*dmlu_r c------------ dPpv_l=brac_l*dmlv_l dPpv_r=brac_l*dmlv_r c------------ dPpw_l=brac_l*dmlw_l dPpw_r=brac_l*dmlw_r c------------ dPpp_l=brac_l*dmlp_l dPpp_r=brac_l*dmlp_r c------------ else dPpr_l=0.0d0 dPpr_r=0.0d0 c----------- dPpu_l=0.0d0 dPpu_r=0.0d0 c----------- dPpv_l=0.0d0 dPpv_r=0.0d0 c----------- dPpw_l=0.0d0 dPpw_r=0.0d0 c----------- dPpp_l=0.0d0 dPpp_r=0.0d0 c----------- endif c--------------------------------------------------------------- if((mr .gt. -1.0d0) .and. (mr .lt. 1.0d0)) then dPmr_l=brac_r*dmrr_l dPmr_r=brac_r*dmrr_r c------------ dPmu_l=brac_r*dmru_l dPmu_r=brac_r*dmru_r c------------ dPmv_l=brac_r*dmrv_l dPmv_r=brac_r*dmrv_r c------------ dPmw_l=brac_r*dmrw_l dPmw_r=brac_r*dmrw_r c------------ dPmp_l=brac_r*dmrp_l dPmp_r=brac_r*dmrp_r c------------ else dPmr_l=0.0d0 dPmr_r=0.0d0 c----------- dPmu_l=0.0d0 dPmu_r=0.0d0 c----------- dPmv_l=0.0d0 dPmv_r=0.0d0 c----------- dPmw_l=0.0d0 dPmw_r=0.0d0 c----------- dPmp_l=0.0d0 dPmp_r=0.0d0 c----------- endif c--------------------------------------------------------------------- c computing pmid -- p_{1/2} and its derivatives, see (20b), p.367. c--------------------------------------------------------------------- pmid=Pplus*pold_l + Pmin*pold_r dpir_l=dPpr_l*pold_l+dPmr_l*pold_r dpiu_l=dPpu_l*pold_l+dPmu_l*pold_r dpiv_l=dPpv_l*pold_l+dPmv_l*pold_r dpiw_l=dPpw_l*pold_l+dPmw_l*pold_r dpip_l=dPpp_l*pold_l+Pplus+dPmp_l*pold_r c---------------------------- dpir_r=dPpr_r*pold_l+dPmr_r*pold_r dpiu_r=dPpu_r*pold_l+dPmu_r*pold_r dpiv_r=dPpv_r*pold_l+dPmv_r*pold_r dpiw_r=dPpw_r*pold_l+dPmw_r*pold_r dpip_r=dPpp_r*pold_l+Pmin+dPmp_r*pold_r c--------------------------------------------------------------------- c computing JACOBIAN as a derivative of the numerical flux function c with respect to the primitive variables. c Notation: jl(i,j) --- is the derivative of the i-component of the c flux function with respect to the j-component of the c vector of primitive variables of the left state. c jr(i,j) --- is the derivative of the i-component of the c flux function with respect to the j-component of the c vector of primitive variables of the right state. c--------------------------------------------------------------------- f(1)=am*(mpl_m*rold_l+mmin_m*rold_r) c--------------------------------------------------------------------- jl(1,1)=damr_l*f(1)/am+am*(d2mr_l*rold_l+mpl_m) jl(1,1)=jl(1,1)+am*d3mr_l*rold_r jl(1,2)=damu_l*f(1)/am+am*(d2mu_l*rold_l+d3mu_l*rold_r) jl(1,3)=damv_l*f(1)/am+am*(d2mv_l*rold_l+d3mv_l*rold_r) jl(1,4)=damw_l*f(1)/am+am*(d2mw_l*rold_l+d3mw_l*rold_r) jl(1,5)=damp_l*f(1)/am+am*(d2mp_l*rold_l+d3mp_l*rold_r) c------------------------------------ jr(1,1)=damr_r*f(1)/am+am*(d2mr_r*rold_l+mmin_m) jr(1,1)=jr(1,1)+am*d3mr_r*rold_r jr(1,2)=damu_r*f(1)/am+am*(d2mu_r*rold_l+d3mu_r*rold_r) jr(1,3)=damv_r*f(1)/am+am*(d2mv_r*rold_l+d3mv_r*rold_r) jr(1,4)=damw_r*f(1)/am+am*(d2mw_r*rold_l+d3mw_r*rold_r) jr(1,5)=damp_r*f(1)/am+am*(d2mp_r*rold_l+d3mp_r*rold_r) c------------------------------------ c------------------------------------ ff=mpl_m*rold_l*un_l+mmin_m*rold_r*un_r dffr=d2mr_l*rold_l*un_l+mpl_m*un_l+d3mr_l*rold_r*un_r dffu=dffu+d3mu_l*rold_r*un_r dffv=dffv+d3mv_l*rold_r*un_r dffw=dffw+d3mw_l*rold_r*un_r dffp=d2mp_l*rold_l*un_l+d3mp_l*rold_r*un_r c------------------------------------------------ fs=mpl_m*rold_l*ut1_l+mmin_m*rold_r*ut1_r dfsr=d2mr_l*rold_l*ut1_l+mpl_m*ut1_l dfsr=dfsr+d3mr_l*rold_r*ut1_r dfsu=dfsu+d3mu_l*rold_r*ut1_r dfsv=dfsv+d3mv_l*rold_r*ut1_r dfsw=dfsw+d3mw_l*rold_r*ut1_r dfsp=d2mp_l*rold_l*ut1_l+d3mp_l*rold_r*ut1_r c------------------------------------------------- ft=mpl_m*rold_l*ut2_l+mmin_m*rold_r*ut2_r dftr=d2mr_l*rold_l*ut2_l+mpl_m*ut2_l dftr=dftr+d3mr_l*rold_r*ut2_r dftu=dftu+d3mu_l*rold_r*ut2_r dftv=dftv+d3mv_l*rold_r*ut2_r dftw=dftw+d3mw_l*rold_r*ut2_r dftp=d2mp_l*rold_l*ut2_l+d3mp_l*rold_r*ut2_r c------------------------------------------------- f(2)=am*(ff*n_x+fs*t1_x+ft*t2_x)+pmid*n_x c------------------------------------------------- jl(2,1)=damr_l*(f(2)-pmid*n_x)/am+dpir_l*n_x jl(2,1)=jl(2,1)+am*(dffr*n_x+dfsr*t1_x+dftr*t2_x) jl(2,2)=damu_l*(f(2)-pmid*n_x)/am+dpiu_l*n_x jl(2,2)=jl(2,2)+am*(dffu*n_x+dfsu*t1_x+dftu*t2_x) jl(2,3)=damv_l*(f(2)-pmid*n_x)/am+dpiv_l*n_x jl(2,3)=jl(2,3)+am*(dffv*n_x+dfsv*t1_x+dftv*t2_x) jl(2,4)=damw_l*(f(2)-pmid*n_x)/am+dpiw_l*n_x jl(2,4)=jl(2,4)+am*(dffw*n_x+dfsw*t1_x+dftw*t2_x) jl(2,5)=damp_l*(f(2)-pmid*n_x)/am+dpip_l*n_x jl(2,5)=jl(2,5)+am*(dffp*n_x+dfsp*t1_x+dftp*t2_x) c------------------------------------------------- f(3)=am*(ff*n_y+fs*t1_y+ft*t2_y)+pmid*n_y c------------------------------------------------- jl(3,1)=damr_l*(f(3)-pmid*n_y)/am+dpir_l*n_y jl(3,1)=jl(3,1)+am*(dffr*n_y+dfsr*t1_y+dftr*t2_y) jl(3,2)=damu_l*(f(3)-pmid*n_y)/am+dpiu_l*n_y jl(3,2)=jl(3,2)+am*(dffu*n_y+dfsu*t1_y+dftu*t2_y) jl(3,3)=damv_l*(f(3)-pmid*n_y)/am+dpiv_l*n_y jl(3,3)=jl(3,3)+am*(dffv*n_y+dfsv*t1_y+dftv*t2_y) jl(3,4)=damw_l*(f(3)-pmid*n_y)/am+dpiw_l*n_y jl(3,4)=jl(3,4)+am*(dffw*n_y+dfsw*t1_y+dftw*t2_y) jl(3,5)=damp_l*(f(3)-pmid*n_y)/am+dpip_l*n_y jl(3,5)=jl(3,5)+am*(dffp*n_y+dfsp*t1_y+dftp*t2_y) c------------------------------------------------- f(4)=am*(ff*n_z+fs*t1_z+ft*t2_z)+pmid*n_z c------------------------------------------------- jl(4,1)=damr_l*(f(4)-pmid*n_z)/am+dpir_l*n_z jl(4,1)=jl(4,1)+am*(dffr*n_z+dfsr*t1_z+dftr*t2_z) jl(4,2)=damu_l*(f(4)-pmid*n_z)/am+dpiu_l*n_z jl(4,2)=jl(4,2)+am*(dffu*n_z+dfsu*t1_z+dftu*t2_z) jl(4,3)=damv_l*(f(4)-pmid*n_z)/am+dpiv_l*n_z jl(4,3)=jl(4,3)+am*(dffv*n_z+dfsv*t1_z+dftv*t2_z) jl(4,4)=damw_l*(f(4)-pmid*n_z)/am+dpiw_l*n_z jl(4,4)=jl(4,4)+am*(dffw*n_z+dfsw*t1_z+dftw*t2_z) jl(4,5)=damp_l*(f(4)-pmid*n_z)/am+dpip_l*n_z jl(4,5)=jl(4,5)+am*(dffp*n_z+dfsp*t1_z+dftp*t2_z) c------------------------------------------------------- c derivatives with respect to the right c set of primitive variables c------------------------------------------------------- dffr=d2mr_r*rold_l*un_l+mmin_m*un_r+d3mr_r*rold_r*un_r dffu=dffu+d3mu_r*rold_r*un_r dffv=dffv+d3mv_r*rold_r*un_r dffw=dffw+d3mw_r*rold_r*un_r dffp=d2mp_r*rold_l*un_l+d3mp_r*rold_r*un_r c------------------------------------------------------ dfsr=d2mr_r*rold_l*ut1_l+mmin_m*ut1_r dfsr=dfsr+d3mr_r*rold_r*ut1_r dfsu=dfsu+d3mu_r*rold_r*ut1_r dfsv=dfsv+d3mv_r*rold_r*ut1_r dfsw=dfsw+d3mw_r*rold_r*ut1_r dfsp=d2mp_r*rold_l*ut1_l+d3mp_r*rold_r*ut1_r c------------------------------------------------------ dftr=d2mr_r*rold_l*ut2_l+mmin_m*ut2_r dftr=dftr+d3mr_r*rold_r*ut2_r dftu=dftu+d3mu_r*rold_r*ut2_r dftv=dftv+d3mv_r*rold_r*ut2_r dftw=dftw+d3mw_r*rold_r*ut2_r dftp=d2mp_r*rold_l*ut2_l+d3mp_r*rold_r*ut2_r c------------------------------------------------------- jr(2,1)=damr_r*(f(2)-pmid*n_x)/am+dpir_r*n_x jr(2,1)=jr(2,1)+am*(dffr*n_x+dfsr*t1_x+dftr*t2_x) jr(2,2)=damu_r*(f(2)-pmid*n_x)/am+dpiu_r*n_x jr(2,2)=jr(2,2)+am*(dffu*n_x+dfsu*t1_x+dftu*t2_x) jr(2,3)=damv_r*(f(2)-pmid*n_x)/am+dpiv_r*n_x jr(2,3)=jr(2,3)+am*(dffv*n_x+dfsv*t1_x+dftv*t2_x) jr(2,4)=damw_r*(f(2)-pmid*n_x)/am+dpiw_r*n_x jr(2,4)=jr(2,4)+am*(dffw*n_x+dfsw*t1_x+dftw*t2_x) jr(2,5)=damp_r*(f(2)-pmid*n_x)/am+dpip_r*n_x jr(2,5)=jr(2,5)+am*(dffp*n_x+dfsp*t1_x+dftp*t2_x) c------------------------------------------------------- jr(3,1)=damr_r*(f(3)-pmid*n_y)/am+dpir_r*n_y jr(3,1)=jr(3,1)+am*(dffr*n_y+dfsr*t1_y+dftr*t2_y) jr(3,2)=damu_r*(f(3)-pmid*n_y)/am+dpiu_r*n_y jr(3,2)=jr(3,2)+am*(dffu*n_y+dfsu*t1_y+dftu*t2_y) jr(3,3)=damv_r*(f(3)-pmid*n_y)/am+dpiv_r*n_y jr(3,3)=jr(3,3)+am*(dffv*n_y+dfsv*t1_y+dftv*t2_y) jr(3,4)=damw_r*(f(3)-pmid*n_y)/am+dpiw_r*n_y jr(3,4)=jr(3,4)+am*(dffw*n_y+dfsw*t1_y+dftw*t2_y) jr(3,5)=damp_r*(f(3)-pmid*n_y)/am+dpip_r*n_y jr(3,5)=jr(3,5)+am*(dffp*n_y+dfsp*t1_y+dftp*t2_y) c-------------------------------------------------------- jr(4,1)=damr_r*(f(4)-pmid*n_z)/am+dpir_r*n_z jr(4,1)=jr(4,1)+am*(dffr*n_z+dfsr*t1_z+dftr*t2_z) jr(4,2)=damu_r*(f(4)-pmid*n_z)/am+dpiu_r*n_z jr(4,2)=jr(4,2)+am*(dffu*n_z+dfsu*t1_z+dftu*t2_z) jr(4,3)=damv_r*(f(4)-pmid*n_z)/am+dpiv_r*n_z jr(4,3)=jr(4,3)+am*(dffv*n_z+dfsv*t1_z+dftv*t2_z) jr(4,4)=damw_r*(f(4)-pmid*n_z)/am+dpiw_r*n_z jr(4,4)=jr(4,4)+am*(dffw*n_z+dfsw*t1_z+dftw*t2_z) jr(4,5)=damp_r*(f(4)-pmid*n_z)/am+dpip_r*n_z jr(4,5)=jr(4,5)+am*(dffp*n_z+dfsp*t1_z+dftp*t2_z) c------------------------------------------------------- c------------------------------------------------------- c------------------------------------------------------- hr_l=(eold_l+pold_l/rold_l)*rold_l hr_r=(eold_r+pold_r/rold_r)*rold_r f(5)=am*(mpl_m*hr_l+mmin_m*hr_r) c------------------------------------------------- br1=d2mr_l*hr_l+d3mr_l*hr_r br1=br1+mpl_m*(uold_l*uold_l+vold_l*vold_l+wold_l*wold_l)/2.0d0 jl(5,1)=damr_l*f(5)/am+am*br1 c------------------------------------------------- br1=d2mu_l*hr_l+mpl_m*uold_l*rold_l br1=br1+d3mu_l*hr_r jl(5,2)=damu_l*f(5)/am+am*br1 c------------------------------------------------- br1=d2mv_l*hr_l+mpl_m*vold_l*rold_l br1=br1+d3mv_l*hr_r jl(5,3)=damv_l*f(5)/am+am*br1 c------------------------------------------------- br1=d2mw_l*hr_l+mpl_m*wold_l*rold_l br1=br1+d3mw_l*hr_r jl(5,4)=damw_l*f(5)/am+am*br1 c------------------------------------------------- br1=d2mp_l*hr_l+mpl_m*ga/gm1 br1=br1+d3mp_l*hr_r jl(5,5)=damp_l*f(5)/am+am*br1 c------------------------------------------------- c------------------------------------------------- br1=d2mr_r*hr_l+d3mr_r*hr_r br1=br1+mmin_m*(uold_r*uold_r+vold_r*vold_r+wold_r*wold_r)/2.0d0 jr(5,1)=damr_r*f(5)/am+am*br1 c--------------------- br1=d2mu_r*hr_l+mmin_m*uold_r*rold_r br1=br1+d3mu_r*hr_r jr(5,2)=damu_r*f(5)/am+am*br1 c--------------------- br1=d2mv_r*hr_l+mmin_m*vold_r*rold_r br1=br1+d3mv_r*hr_r jr(5,3)=damv_r*f(5)/am+am*br1 c--------------------- br1=d2mw_r*hr_l+mmin_m*wold_r*rold_r br1=br1+d3mw_r*hr_r jr(5,4)=damw_r*f(5)/am+am*br1 c--------------------- br1=d2mp_r*hr_l+mmin_m*ga/gm1 br1=br1+d3mp_r*hr_r jr(5,5)=damp_r*f(5)/am+am*br1 c------------------------------------------------------------- c matrix wl(i,j) represents the derivative of the i-component c of the vector of primitive variables of the left state with c respect to the j-component of the vector of the conservative c variables of the left state. c c Here: (rho, u, v, w, p) - vector of primitive variables; c (rho, rho u, rh o v, rho w, rho e) - conservative variables. c------------------------------------------------------------- wl(1,1)=1.0d0 wl(1,2)=0.0d0 wl(1,3)=0.0d0 wl(1,4)=0.0d0 wl(1,5)=0.0d0 c------------------------------ wl(2,1)=-uold_l/rold_l wl(2,2)=1.0d0/rold_l wl(2,3)=0.0d0 wl(2,4)=0.0d0 wl(2,5)=0.0d0 c------------------------------ wl(3,1)=-vold_l/rold_l wl(3,2)=0.0d0 wl(3,3)=1.0d0/rold_l wl(3,4)=0.0d0 wl(3,5)=0.0d0 c------------------------------ wl(4,1)=-wold_l/rold_l wl(4,2)=0.0d0 wl(4,3)=0.0d0 wl(4,4)=1.0d0/rold_l wl(4,5)=0.0d0 c------------------------------ wl(5,1)=gm1*(uold_l*uold_l+vold_l*vold_l+wold_l*wold_l)/2.0d0 wl(5,2)=-uold_l*gm1 wl(5,3)=-vold_l*gm1 wl(5,4)=-wold_l*gm1 wl(5,5)=gm1 c------------------------------ c------------------------------ wr(1,1)=1.0d0 wr(1,2)=0.0d0 wr(1,3)=0.0d0 wr(1,4)=0.0d0 wr(1,5)=0.0d0 c------------------------------ wr(2,1)=-uold_r/rold_r wr(2,2)=1.0d0/rold_r wr(2,3)=0.0d0 wr(2,4)=0.0d0 wr(2,5)=0.0d0 c------------------------------ wr(3,1)=-vold_r/rold_r wr(3,2)=0.0d0 wr(3,3)=1.0d0/rold_r wr(3,4)=0.0d0 wr(3,5)=0.0d0 c------------------------------ wr(4,1)=-wold_r/rold_r wr(4,2)=0.0d0 wr(4,3)=0.0d0 wr(4,4)=1.0d0/rold_r wr(4,5)=0.0d0 c------------------------------ wr(5,1)=gm1*(uold_r*uold_r+vold_r*vold_r+wold_r*wold_r)/2.0d0 wr(5,2)=-uold_r*gm1 wr(5,3)=-vold_r*gm1 wr(5,4)=-wold_r*gm1 wr(5,5)=gm1 c---------------------------------------------- c---------------------------------------------- do 1 i=1,5 do 2 j=1,5 jtl(i,j)=0.0d0 jtr(i,j)=0.0d0 do 3 k=1,5 jtl(i,j)=jtl(i,j)+jl(i,k)*wl(k,j) jtr(i,j)=jtr(i,j)+jr(i,k)*wr(k,j) 3 continue 2 continue 1 continue c---------------------------------------------------------------------- return end
© Cast3M 2003 - Tous droits réservés.
Mentions légales