Télécharger htc_www.procedur

Retour à la liste

Numérotation des lignes :

  1. * HTC_WWW PROCEDUR AM 11/09/13 21:15:04 7126
  2. *-----------------------------------------------------------------------
  3. *23456789012345678901234567890123456789012345678901234567890123456789012
  4. *-----------------------------------------------------------------------
  5. *-------------------------------------------------
  6. * HTC_WWW Specific water content of concrete
  7. * Sorption isotherms (after BAZANT and THONGUTHAI)
  8. * Date: 16-03-98
  9. *--------------------------------------------------
  10. 'DEBP' HTC_WWW T0*CHPOINT P01*CHPOINT TAV1*'TABLE';
  11. *--------------------------------------------------
  12. *
  13. FLG1 = TAV1.'FLG1';
  14. 'SI' FLG1; 'MESS' 'PROCEDURE-HTC_WWW'; 'FINSI';
  15. EPS1 = TAV1.'EPSILON';
  16. *Temperature °C
  17. TREF=25.;
  18. *Pressure Mpa
  19. PREF=0.10135;
  20. * Water specific volume [mc/kg] at 25 C and atmospheric pressure
  21. SV0=0.0010029;
  22. * Water density [kg/mc] at 25 C and atmospheric pressure
  23. RHOW0=1./SV0;
  24. * Concrete properties
  25. *Kg/mc
  26. W1=TAV1. 'W1';
  27. CC=TAV1. 'C';
  28. * Porosity at 25 °C
  29. N0=W1*SV0;
  30. * Coefficient of linear thermal dilatation[ /°C]
  31. ALFA=TAV1.'ALFA';
  32. * Bulk modulus
  33. EBM =TAV1.'EBM';
  34. BM ='VARI' T0 EBM 'SCAL';
  35. *
  36. PSAT=HTC_WTR TAV1 'SATU' T0;
  37. *
  38. CCC=P01 'MASQUE' 'EGINFE' EPS1;
  39. 'SI' (('MAXI' CCC) > .9);
  40. 'MESS' 'LOW OR NEGATIVE PRESSURE';
  41. * MAGLIA = 'EXTR' MODL1 'MAIL';
  42. * titr 'P01' ISTANT ITER ;
  43. * trac MAGLIA p01;
  44. P0=(EPS1*CCC)+(P01*(1.-CCC));
  45. 'SINON';
  46. P0=P01;
  47. 'FINSI';
  48. 'DETR' CCC;
  49. *
  50. HR=P0/PSAT;
  51. RESO1 = HR 'MASQUE' 'EGINFE' 0.93 ;
  52. RESO2 = HR 'MASQUE' 'EGSUPE' 1.06 ;
  53. RESO31 = 1. - ( RESO1 + RESO2 );
  54. RESO3 = RESO31 'MASQUE' 'EGSUPE' 0.1 ;
  55. H94 = 'MAXI' RESO1;
  56. H15 = 'MAXI' RESO2;
  57. H9415 = 'MAXI' RESO3;
  58. *
  59. WN=0.;WS=0.;WT=0.;
  60. *
  61. * Water content Wn at HR .9) 'OU' (H9415 > .9));
  62. TP = (( T0 + 10.) / ( TREF + 10.))**2.;
  63. MT = 1.04 - ( TP / ( 22.34 + TP ));
  64. 'FINSI';
  65. *
  66. 'SI'(H94 > .9);
  67. EWC = 'LOG' ((W1/CC) * HR );
  68. WN1 = CC*('EXP'(EWC/MT));
  69. WN = RESO1 * WN1;
  70. 'FINSI';
  71. *
  72. * Water content Ws at HR >eg 1.06
  73. *
  74. 'SI'((H15 > .9) 'OU' (H9415 > .9));
  75. WD AAA=HTC_CHBW T0 HR TAV1 ;DETR AAA;
  76. RHOW=HTC_WTR TAV1 'RHOW' T0 P0;
  77. * N = N0;
  78. * N = N0 + A (T0 -TREF);
  79. N =(N0 + ( WD / RHOW0));
  80. ALFT1 = 3. * ALFA * (T0-TREF);
  81. 'FINSI';
  82. 'SI'( H15 > .9);
  83. PH = 1. + ( 0.12 * ( HR - 1.04 ));
  84. NA = N * PH ;
  85. P0MR = P0-PREF;
  86. RESO4= P0MR 'MASQUE' 'EGSUPE' 0.;
  87. WS1 = (1. + (((RESO4 * NA * P0MR / BM) +
  88. ALFT1))) * NA * RHOW;
  89. WS = RESO2 * WS1;
  90. 'FINSI';
  91. *-----------------------------------------------
  92. * Water content Wt for 0.93 < HR > 1.06
  93. * Transition range by bezier spline interpolation
  94. *-----------------------------------------------
  95. *
  96. * Water content for H = 0.93 by first correlation
  97. *
  98. 'SI'(H9415 > .9);
  99. EWC93 = 'LOG' (W1 * 0.93 / CC) ;
  100. WN931 = CC*('EXP'(EWC93*(MT**-1.))) ;
  101. WN93 = RESO3 * WN931;
  102. *
  103. * Water content for H = 1 by first correlation
  104. *
  105. EWC100= 'LOG' (W1 * 1.0 / CC) ;
  106. WN1001 = CC*('EXP'(EWC100*(MT**-1.))) ;
  107. WN100 = RESO3 * WN1001;
  108. *
  109. * Water content for H = 1 by second correlation
  110. *
  111. P1 = 1.0 * PSAT;
  112. RHOW1= HTC_WTR TAV1 'RHOW' T0 P1;
  113. P1MR = P1-PREF ;
  114. RESO5 = P1MR 'MASQUE' 'EGSUPE' 0.;
  115. WS1001 = (1. + (((RESO5 * N * P1MR / BM) +
  116. ALFT1)))*N*RHOW1;
  117. WS100 = RESO3 * WS1001;
  118. *
  119. * Water content for H = 1.06 by second correlation
  120. *
  121. P16 = 1.06 * PSAT;
  122. RHOW16= HTC_WTR TAV1 'RHOW' T0 P16;
  123. P16MR = P16-PREF ;
  124. RESO5 = P16MR 'MASQUE' 'EGSUPE' 0.;
  125. WS161 = (1. + (((RESO5 * N * P16MR / BM) +
  126. ALFT1)))*N*RHOW16;
  127. WS16 = RESO3 * WS161;
  128. *-----------------------------------------------
  129. * EQUAZIONI DELL' INTERP. DI BEZIER CON 4 PUNTI
  130. *-----------------------------------------------
  131. 'SI' ('NON'('EXIST' TAV1 'HINT'));
  132. *
  133. HHP = 'PROG' ;
  134. UUP = 'PROG' 0. PAS 0.001 1.;
  135. 'REPE' CIC1 ('DIME' UUP) ;
  136. U = 'EXTR' UUP &CIC1;
  137. *
  138. * EQUAZIONE GENERALE PER L'ASCISSA H :
  139. * h(t)=(h4 - 3h3 + 3h2 - h1)t**3 + (3h3 - 6h2 + 3h1)t**2
  140. * + (3h2 - 3h1)t + h1
  141. *
  142. HU = (0.13*(U**3)) - (0.21*(U**2)) + (0.21*U) + 0.93 ;
  143. HHP = 'INSE' HHP HU &CIC1 ;
  144. 'FIN' CIC1;
  145. HHP=('PROG' 0.) 'ET' HHP 'ET' ('PROG' 20.);
  146. UUP=('PROG' 0.) 'ET' UUP 'ET' ('PROG' 0.);
  147. TAV1 . 'HINT' = 'EVOL' 'MANU' HHP 'SCAL' UUP 'SCAL';
  148. 'FINSI';
  149. *
  150. U = 'VARI' (TAV1 .'HINT') HR 'SCAL';
  151. WT1 = U*(U*(U*(WS16-(3*WS100)+(3*WN100)-WN93)+
  152. ((3*WS100)-(6*WN100)+(3*WN93)))+
  153. ((3*WN100)-(3*WN93)))+WN93;
  154. WT = RESO3 * WT1 ;
  155. 'FINSI';
  156. *
  157. * Water content WW
  158. *
  159. WW =WN+WS+WT;
  160. *
  161. 'FINPROC' WW HR;
  162.  

© Cast3M 2003 - Tous droits réservés.
Mentions légales