Télécharger topoptim_13_Turbine_disk.dgibi
* fichier topoptim_13_Turbine_disk.dgibi ************************************************************************ ************************************************************************ ************************************************************************ ** Topology optimization of a 2D axisymmetric structure, a turbine disk ** with von Mises stress constraint, subjected to centrifugal forces ** (i.e., penalized density-dependent loading), as proposed by Yan et al. ** 2023 and using, in the present case, the Coniglio et al. 2018 approach. ** ** Author: ** Guenhael Le Quilliec (LaMe - Polytech Tours) ** ** Version: ** V1.0 2025/12/05 ************************************************************************ * Plot results graph0 = FAUX ; * Rotational speed [rad/s] omega0 = 5000.0 * 2.0 * pi / 60 ; * Pressure press0 = 100.0e6 ; * General options * Number of elements nelr0 = 154 ; nelz0 = 30 ; * Dimensions r0 = 0.083 ; l0 = 0.237 - r0 ; h0 = 0.030 ; ha0 = 0.012 ; * Mesh p0 = r0 0.0 ; p1 = r0 h0 ; * Model and material * Boundary conditions * Constant loading: peripheral pressure * Penalized density-dependent loading: centrifugal forces DEBP TOPOUPDT tab0*'TABLE' ; * Input data Wtab = tab0.'WTABLE' ; modMA = Wtab.'MECANIQUE'.'MODELE_A' ; ZmatMA = Wtab.'MECANIQUE'.'CARACTERISTIQUES_Z_A' ; * Centrifugal force field * Add the constant loading Forc0 = Forc0 ET load0 ; * Output tab0.'RESOLUTION_LINEAIRE'.'CHARGEMENT' = Forc0 ; * If it is the first cycles SI (EGA Wtab.'CYCLE' 1) ; * Model and material of the design zone (D) modMD = Wtab.'MECANIQUE'.'MODELE_D' ; matMD = Wtab.'MECANIQUE'.'CARACTERISTIQUES_D' ; * Elementwise field of the R coordinate * expressed on D at the element mass integration points * Elementwise field of the mass density * expressed on D at the element mass integration points * Volume-normalized elementwise field of the derivative of * the centrifugal force with respect to the physical densities * expressed on D at the element mass integration points * Output tab0.'RESOLUTION_LINEAIRE'.'SENSIBILITE_NORMALISEE_CHARGEMENT' = NdFdY ; FINS ; FINP ; * Finite element model table mdl0.'MODELE' = mod0 ; mdl0.'CARACTERISTIQUES' = mat0 ; mdl0.'BLOCAGES_MECANIQUES' = bc0 ; * Optimization table tab0.'RESOLUTION_LINEAIRE' = mdl0 ; tab0.'PROCEDURE_TOPOUPDT' = VRAI ; tab0.'ZONE_FIGEE' = msh1 ; tab0.'SIGMA_VM_LIMITE' = 1.0e9 ; tab0.'FILTRE_CHAPEAU_RAYON' = 3.5 * (l0 / nelr0) ; *tab0.'FILTRE' = MOT 'EDP' ; *tab0.'FILTRE_EDP_RAYON' = 3.5 * (l0 / nelr0) ; tab0.'SEUIL_ELEMENTS_ACTIFS' = 0.0 ; tab0.'RAPPORT_RAIDEURS_MECANIQUES' = 1.0e-8 ; tab0.'X_CHANGE_SEUIL' = 0.01 ; tab0.'CONVERGENCE_CRITERE' = 0.001 ; tab0.'MAX_CYCLES' = 150 ; tab0.'MES_SAUVEGARDES'.'RESOLUTION' = VRAI ; * Optimization TOPOPTIM tab0 ; * Plot final topology (physical density) * and final von Mises stress topomsh0 = tab0.'MAILLAGE'.(tab0.'CYCLE') ; sig0 = tab0.'RESOLUTION'.(tab0.'CYCLE').'CONTRAINTES' ; SI graph0 ; TRAC topoA0 modA0 'TITR' 'Topologie finale' ; TRAC vnmA0 modA0 'TITR' 'Contraintes de von Mises finales' ; FINS ; * Plot output evolutions SI graph0 ; ' au cours des cycles d''optimisation') ; FIN loop0 ; FINS ; FINS ; FIN ;
© Cast3M 2003 - Tous droits réservés.
Mentions légales