Test name
rupt6
Calculation type
MECHANICS ELASTIC
Finite element type
CU20 MODE TRID
Topic
STRESS INTENSITY FACTOR FOR A CIRCULAR
PLANE CRACK IN AN INFINITE SOLID CYLINDER
SUBJECTED TO TENSILE STRESS
The structure is an infinite solid cylinder tube enclosing a central circular crack . This structure is subject to tensile stress.
Due to symmetry only of half of the cylinder is analysed. The CASTEM solution for the stress intensity factors K is given
with the displacement method by the relationship ( threedimensional analysis) :
c and d are the coefficients of the line :
Finally this CASTEM K value for the stress intensity factor is compared with the result obtained with the
analytical formula defined by the relationship :
Reference CASTEM
Test NAFEMS : D.P.Rooke and D. J. Cartwright in Copendium of Intensity Factors HMSO (1976) :
rupt6 Modélisation des structures élastiques dans CASTEM 2000.
Version
97' customer version
Model description
Test rupt6 Results
RESULTS
CASTEM FIGURES
* Test Rupt6.dgibi: Jeux de données * * --------------------------------- * * * ******************************************************* *** CALCUL DU FACTEUR D'INTENSITE DE CONTRAINTES **** *** PAR LA METHODE DES DEPLACEMENTS ET PAR LA **** *** METHODE G_THETA POUR UNE FISSURE CIRCULAIRE **** *** PLANE DANS UN MILIEU INFINI CHARGE EN **** *** TRACTION UNIFORME **** *** HAUTEUR DU CYLINDRE : 200 mm ; **** *** RAYON : 100 mm **** *** RAYON DE FISSURE : 8 mm ; **** *** CONTRAINTE UNIFORME : 200 daN / mm2 **** *** MODELISATION : TRANCHE DE 15° DE LA 1/2 **** *** HAUTEUR DU CYLINDRE **** ******************************************************* option echo 0 dime 3 elem cu20 mode trid ; **----------------- MAILLAGE ------------------; dens 0.5 ; oeilz = -500 500 -500 ; oeilx = -500 00 00 ; a0 = 8 ; c0 = 16. ; b0 = 100. ; p0 = 0 0 0 ; pa = a0 0 0 ; pb = 0 a0 0 ; pa1 =(1.5*a0) 0 0 ; pa0 =(0.5*a0) 0 0 ; pb0 = 0 (0.5*a0) 0 ; pb1 = 0 (1.5*a0) 0 ; * nbrz nombre d element autour du front de fissu; nbrz = 6 ; *MAILLAGE DU FRONT DE FISURE ; pbz= (0. a0 (0.5*a0)) ; pbz1=(0. (a0 *(1.- (0.5 / nbrz))) 0.) ; pbz2=(0. a0 (0.5*a0/ nbrz)) ; pbz3=(0. (a0 *(1.+ (0.5 / nbrz))) 0.) ; aa = a0*0.5 * (2**-0.5) ; pmi1= 0. (a0 + aa) aa ; pmi2= 0. (a0 - aa) aa ; cc11a = c (2) pb1 pb pmi1 ; cc11b = c (2) pmi1 pb pbz ; cc11 = cc11a et cc11b ; cc12a = c (2) pbz pb pmi2 ; cc12b = c (2) pmi2 pb pb0 ; cc12 = cc12a et cc12b ; cc1 = cc11 et cc12 ; cc21 = c (4) pbz1 pb pbz2 ; cc22 = c (4) pbz2 pb pbz3 ; cc2 = cc21 et cc22 ; ligz = d (nbrz - 1) pb0 pbz1 ; ligz1= d (nbrz - 1) pbz3 pb1 ; ligz2= d (nbrz - 1) pbz pbz2 ; scz1 = dall cc11 ligz2 cc22 ligz1 ; scz2 = dall cc12 ligz cc21 (inve ligz2) ; scz1=scz1 et (cout cc22 pb) ; scz2=scz2 et (cout cc21 pb) ; scz =scz1 et scz2 ; elim (scz1 et scz2) 0.001 ; * SURFACE YZ ; pfinay = 0. b0 0. ; pfinaz = 0. 2.5 b0 ; pfinayz= 0. b0 b0 ; pinter = 0. (2*c0) b0 ; pp = 0. a0 a0 ; pz = 0. 2.5 a0 ; p00= 0. 2.5 0. ; ppp= 0. (2*a0) 0. ; ppyz= 0. (2*a0) a0 ; l0a= d (1) pb1 ppp ; l0b= d (6) ppp pfinay ; l0 = l0a et l0b ; l1 = d (2) pfinay pfinayz ; l1bisa = d (6) pfinayz ppyz ; l1bisb = d (1) ppyz pmi1 ; l1bis = l1bisa et l1bisb ; l2 = d (2) pfinayz pinter ; l3a = d (6) pinter pp ; l3b = d (1) pp pbz ; l3 = l3a et l3b ; zaa = dall (inve cc11a) l0 l1 l1bis ; zab = dall l1bis cc11b (inve l3) (inve l2) ; za = zaa et zab ; g2= d (1) pb0 p00 ; g3= d (2) p00 pz ; g4= d (2) pz pp ; zb =dall (g4 et g3) g2 cc12 l3b ; h1 = d (2) pinter pfinaz ; h2 = d (6) pfinaz pz ; zc = dall h2 g4 l3a h1 ; scr1 = h2 et (inve g3) ; *CREATION DU VOLUME ; scr1 = scr1 rota 1 (15) (0. 0 -500) (0 0 500.) coul roug ; geo1 = za volu 1 'ROTA' (15) (0. 0. -500) (0. 0. 500.) ; geo2 = (zb et zc) volu 1 'ROTA' (15) (0. 0. -500) (0. 0. 500.) ; geo3 = scz1 volu 1 'ROTA' (15) (0. 0. -500) (0. 0. 500.) ; geo4 = scz2 volu 1 'ROTA' (15) (0. 0. -500) (0. 0. 500.) ; i = face 3 geo3 ; i = i et (face 3 geo4) ; pppp = i poin cylin (0 0 -100) (0 0 100) pb ; aa0= elem i appu larg pppp ; aa1= poin aa0 plan p0 (0. 100 0.) (100 0 0) ; cfis = elem aa0 appu stric aa1 ; a1 = enve geo3 ; a2 = enve geo4 ; aa1= poin a1 plan p0 (0. 100 0.) (100 0 0) ; aa2= poin a2 plan p0 (0. 100 0.) (100 0 0) ; aa11 = elem a1 appu stric aa1 ; aa21 = elem a2 appu stric aa2 ; aa12 = cont aa11 ; aa22 = cont aa21 ; elim (aa12 et aa22) 0.001 ; cfissure = elem aa12 appu stric aa22; geo = geo1 et geo2 et geo3 et geo4 ; elim (geo et scr1 et cfissure et cfis) 0.001 ; *FINITION DU MAILLAGE ; *pres de l axe z ; c1 = cote (2) scr1 ; pfi = c1 poin final ; c1x = droi (1) pfi p0 ; b1 = droi (1) p00 p0 ; su0 = surf ( c1x et c1 et b1) plane ; su1 = su0 volu (2) tran (0. 0. a0) ; ss = su0 plus (0. 0. b0) ; su2= ss volu (6) tran (0. 0. (a0 - b0)) ; su = su1 et su2 coul vert ; *le cylindre en entier ; cub = geo et su ; elim cub 0.001 ; cub = rege cub ; tot = enve cub ; *surface yz ; poyz = poin tot plan p0 (0. 100 100) (0. 0. 100); suryz = elem tot appu stric poyz ; *surface z=100 ; poz100= poin tot plan (0. 0. 100) (100 0. 100) (0. 100 100) ; surzz = elem tot appu stric poz100 ; *surfac xy ; poxy = poin tot plan p0 (0. 100 0.) (100 0 0) ; surxy= elem tot appu stric poxy ; az = geo2 et geo4 et su ; az = enve az ; aze= az poin plan p0 (0. 100 0.) (100 0 0) ; aze=elem az appu stric aze ; co = cont aze; aze = surxy incl aze; facxy = surxy diff aze; *--------------CONDITION DE SYMETRIE------------; p = ((-1 * b0 * (sin 15)) (b0 * (cos 15)) 0.); condi1 =symt depl p0 (0. 0. b0) p cub 0.01; condi2 =symt depl p0 pfinay pfinayz suryz; condi3 =symt depl p0 (b0 b0 0.) (b0 0. 0.) facxy; condit = condi1 et condi2 et condi3 ; *----------- CREATION DU MODELE ----------------; affe1 = modl geo1 mecanique elastique isotrope; affe2 = modl geo2 mecanique elastique isotrope; affe3 = modl geo3 mecanique elastique isotrope; affe4 = modl geo4 mecanique elastique isotrope; affe5 = modl su mecanique elastique isotrope; affetot = affe1 et affe2 et affe3 et affe4 et affe5 ; *---------DEFINITION DU MATERIAU ---------------; mate1 = matr affe1 young 20000. nu 0.3 ; mate2 = matr affe2 young 20000. nu 0.3 ; mate3 = matr affe3 young 20000. nu 0.3 ; mate4 = matr affe4 young 20000. nu 0.3 ; mate5 = matr affe5 young 20000. nu 0.3 ; matot = mate1 et mate2 et mate3 et mate4 et mate5 ; *----------------RIGIDITE-----------------------; rig1 = (rigidite matot affetot) et condit ; rig2 = bloque uz surzz ; fo1 = depi rig2 1. ; *------------RESOLUTION ET CONTRAINTES----------; dep = resou (rig1 et rig2) fo1 ; sig = sigma matot affetot dep ; *----CALCUL DU FACTEUR D'INTENSITE DE CONTRAINTES----* *----initialisations des paramètres de procedure-----* SUPTAB = TABLE; SUPTAB.'MAILLAGE' = cub; SUPTAB.'PSF1' = P0; SUPTAB.'FRTFISS' = elem aa12 appu stri aa22; *-----APPEL DE LA PROCEDURE SIF ----------------------* SIF SUPTAB MATOT dep; *-----APPEL DE LA PROCEDURE G_THETA ------------------* TABG1 = TABLE; TABG1.'OBJECTIF' = MOT 'J'; TABG1.'COUCHE' = 3; TABG1.'FRONT_FISSURE' = cfissure; TABG1.'LEVRE_SUPERIEURE' = aa21 ; TABG1.'MODELE' = affetot; TABG1.'SOLUTION_RESO' = dep; TABG1.'CHARGEMENTS_MECANIQUES' = fo1; TABG1.'CARACTERISTIQUES' = matot; G_THETA TABG1; SAUT 1 LIGNE; ******************************************************* ******** DEPOUILLEMENT PROCEDURE SIF ************* ******************************************************* T = INDEX (SUPTAB.K1); MESS 'K1 NOEUD 1 DU FRONT DE FISSURE (NOEUD SOMMET) : ' SUPTAB.K1.(T.1); MESS 'K1 NOEUD 2 DU FRONT DE FISSURE (NOEUD MILIEU) : ' SUPTAB.K1.(T.2); *---------TEST D'ERREUR-----------------------------* EC1 = ((SUPTAB.K1.(T.1)) - 638.47) / (SUPTAB.K1.(T.1)) * 100; EC2 = ((SUPTAB.K1.(T.2)) - 638.47) / (SUPTAB.K1.(T.2)) * 100; SI ((EC1 < 5.5) ET (EC2 < 11)) ; MESS 'PROCEDURE <SIF> ERR 0'; ERRE 0; SINON; MESS 'PROCEDURE <SIF> ERR 5'; ERRE 5; FINSI; ******************************************************* ******** DEPOUILLEMENT PROCEDURE G_THETA ********* ******************************************************* TBG = TABG1.'RESULTATS'; IND1 = INDE TBG; GSOM = TBG.(IND1.1); GMIL = TBG.(IND1.2); EPRI = 20000. / 0.91; KSOM = (GSOM * EPRI) ** 0.5; KMIL = (GMIL * EPRI) ** 0.5; SAUT 1 LIGNE; MESS 'K1 NOEUD 1 DU FRONT DE FISSURE (NOEUD SOMMET) : ' KSOM; MESS 'K1 NOEUD 2 DU FRONT DE FISSURE (NOEUD MILIEU) : ' KMIL; *---------TEST D'ERREUR-----------------------------* EC1 = ABS (((KSOM - 638.47) / KSOM) * 100); EC2 = ABS (((KMIL - 638.47) / KMIL) * 100); SI ((EC1 < 0.9) ET (EC2 < 0.8)) ; MESS 'PROCEDURE <G_THETA> ERR 0'; ERRE 0; SINON; MESS 'PROCEDURE <G_THETA> ERR 5'; ERRE 5; FINSI; FIN;
Test rupt6 Comments
DESCRIPTION OF THE SIF PROCEDURE
SIF SUPTAB MATOT DEP;
Input data :
SUPTAB : TABLE type object, indexed by words, used to define
the calculation options and parameters :
MATOT : field of material properties
DEP : displacement field
SUPTAB : TABLE type object, indexed by words, used to define
the calculation options and parameters :
SUPTAB = TABLE; SUPTAB.'MAILLAGE' = cub; SUPTAB.'PSF1' = P0; SUPTAB.'FRTFISS' = elem aa12 appu stri aa22;'PSF1'=P0; : point of the crack surface that does not pertain to the front
'FRTFISS'= elem aa12 appu stri aa22; : line describing the front crack
T = INDEX (SUPTAB.K1); MESS 'K1 NODE 1 FOR THE CRACK TIP (TOP NODE) : ' SUPTAB.K1.(T.1); MESS 'K1 NODE 2 FOR THE CRACK TIP (MIDDEL NODE) : ' SUPTAB.K1.(T.2);
K1 : TABLE containing the values of K1 at each node of the front (here at 2 nodes T.1 and T.2)