next up previous contents
Next: Test rupt7 Description Up: FRACTURE MECHANICS Previous: Test rupt5 Description

Test rupt6 Description sheet

Test name
rupt6

Calculation type
MECHANICS ELASTIC

Finite element type
CU20 MODE TRID

Topic
STRESS INTENSITY FACTOR FOR A CIRCULAR PLANE CRACK IN AN INFINITE SOLID CYLINDER SUBJECTED TO TENSILE STRESS

The structure is an infinite solid cylinder tube enclosing a central circular crack . This structure is subject to tensile stress. Due to symmetry only of half of the cylinder is analysed. The CASTEM solution for the stress intensity factors K is given with the displacement method by the relationship ( threedimensional analysis) :


c and d are the coefficients of the line :

Finally this CASTEM K value for the stress intensity factor is compared with the result obtained with the analytical formula defined by the relationship :

Reference CASTEM
Test NAFEMS : D.P.Rooke and D. J. Cartwright in Copendium of Intensity Factors HMSO (1976) : rupt6 Modélisation des structures élastiques dans CASTEM 2000.
Version
97' customer version
Model description

Test rupt6 Results

RESULTS

CASTEM FIGURES

*           Test Rupt6.dgibi: Jeux de données         *
*           ---------------------------------         *
*                                                     *
*******************************************************
***  CALCUL DU FACTEUR D'INTENSITE DE CONTRAINTES  ****
***  PAR LA METHODE DES DEPLACEMENTS ET PAR LA     ****
***  METHODE G_THETA POUR UNE FISSURE CIRCULAIRE   ****
***  PLANE DANS UN MILIEU INFINI CHARGE EN         ****
***  TRACTION UNIFORME                             ****
***  HAUTEUR DU CYLINDRE : 200 mm  ;               **** 
***  RAYON : 100 mm                                ****
***  RAYON DE FISSURE    :   8 mm  ;               ****
***  CONTRAINTE UNIFORME : 200 daN / mm2           ****
***  MODELISATION  : TRANCHE DE 15° DE LA 1/2      ****
***                  HAUTEUR DU CYLINDRE           ****
*******************************************************
option echo 0 dime 3 elem cu20 mode trid        ; 

**----------------- MAILLAGE  ------------------;
  dens 0.5                                      ;
  oeilz = -500   500   -500                     ;
  oeilx = -500   00   00                        ;
  a0    = 8                                     ;
  c0    = 16.                                   ;
  b0    = 100.                                  ;
  p0    =    0     0     0                      ;
  pa    =   a0     0     0                      ;
  pb    =    0    a0     0                      ;
  pa1   =(1.5*a0)  0     0                      ;
  pa0   =(0.5*a0)  0     0                      ;
  pb0   =    0    (0.5*a0)   0                  ;
  pb1   =    0    (1.5*a0) 0                    ;                                               

* nbrz nombre d element autour du front de fissu;
  nbrz  =   6                                   ;

*MAILLAGE DU FRONT DE FISURE                    ;

pbz= (0.  a0  (0.5*a0))                         ;
pbz1=(0. (a0 *(1.- (0.5 / nbrz))) 0.)           ;
pbz2=(0.  a0  (0.5*a0/ nbrz))                   ;
pbz3=(0. (a0 *(1.+ (0.5 / nbrz))) 0.)           ;
aa  = a0*0.5 * (2**-0.5)                        ; 
pmi1= 0. (a0 + aa) aa                           ;
pmi2= 0. (a0 - aa) aa                           ;

 cc11a  = c (2) pb1  pb pmi1                    ;
 cc11b  = c (2) pmi1 pb pbz                     ;
 cc11   = cc11a et cc11b                        ;

 
 cc12a  = c (2) pbz  pb pmi2                    ;
 cc12b  = c (2) pmi2 pb pb0                     ;
 cc12   = cc12a et cc12b                        ;

 cc1   = cc11 et cc12                           ;
 
 cc21  = c (4) pbz1 pb pbz2                     ;
 cc22  = c (4) pbz2 pb pbz3                     ;
 cc2   = cc21 et cc22                           ;

 ligz = d (nbrz - 1) pb0 pbz1                   ;
 ligz1= d (nbrz - 1)  pbz3 pb1                  ;
 ligz2= d (nbrz - 1) pbz pbz2                   ;       
 scz1 = dall cc11 ligz2 cc22 ligz1              ;
 scz2 = dall cc12 ligz  cc21 (inve ligz2)       ;

 scz1=scz1 et (cout cc22 pb)                    ;
 scz2=scz2 et (cout cc21 pb)                    ;
 scz =scz1 et scz2                              ;
 elim (scz1 et scz2)  0.001                     ;

* SURFACE YZ                                    ;
pfinay = 0. b0 0.                               ;       
pfinaz = 0.  2.5 b0                             ;
pfinayz= 0. b0 b0                               ;
pinter = 0. (2*c0) b0                           ;
pp = 0. a0 a0                                   ;
pz = 0. 2.5 a0                                  ;
p00= 0. 2.5 0.                                  ;
ppp= 0. (2*a0) 0.                               ;
ppyz= 0. (2*a0) a0                              ;

l0a= d (1) pb1 ppp                              ;
l0b= d (6) ppp pfinay                   ;
l0 = l0a et l0b                                 ;
l1 = d (2) pfinay  pfinayz                      ;
l1bisa = d (6) pfinayz ppyz                     ;
l1bisb = d (1)    ppyz    pmi1                  ;
l1bis  = l1bisa et l1bisb                       ;
l2 = d (2) pfinayz  pinter                      ;
l3a = d (6) pinter pp                   ;
l3b = d (1) pp pbz                              ;
l3 = l3a et l3b                                 ;
zaa = dall (inve cc11a) l0 l1 l1bis             ;
zab = dall l1bis cc11b (inve l3) (inve l2)      ;
za  = zaa et zab                                ;

g2= d (1) pb0 p00                               ;
g3= d (2) p00 pz                                ;
g4= d (2) pz pp                                 ;
zb =dall (g4 et g3) g2  cc12  l3b               ;

h1 = d (2) pinter pfinaz                        ;
h2 = d (6) pfinaz pz                            ;
zc = dall h2  g4  l3a  h1                       ;

scr1 = h2 et (inve g3)                          ;

*CREATION DU VOLUME                             ;
scr1 = scr1 rota 1 (15) (0. 0 -500)
       (0 0 500.) coul roug                     ;

geo1 = za volu 1 'ROTA' (15) 
          (0. 0. -500) (0. 0. 500.)             ;
 
geo2 = (zb et zc) volu 1 'ROTA' (15) 
          (0. 0. -500) (0. 0. 500.)             ;

geo3 = scz1 volu 1 'ROTA' (15) 
          (0. 0. -500) (0. 0. 500.)             ;
geo4 = scz2 volu 1 'ROTA' (15) 
          (0. 0. -500) (0. 0. 500.)             ;
i = face 3 geo3                                 ;
i = i et (face 3 geo4)                          ;

pppp = i poin cylin (0 0 -100) (0 0 100) pb     ;
aa0= elem i appu larg pppp                      ;
aa1= poin aa0 plan p0 (0. 100 0.) (100 0 0)     ;
cfis = elem aa0 appu stric aa1                  ;
a1 = enve geo3                                  ;
a2 = enve geo4                                  ;
aa1= poin a1 plan p0 (0. 100 0.) (100 0 0)      ;
aa2= poin a2 plan p0 (0. 100 0.) (100 0 0)      ;
aa11 = elem a1 appu stric aa1                   ;
aa21 = elem a2 appu stric aa2                   ;
aa12 = cont aa11                                ;
aa22 = cont aa21                                ;
elim (aa12 et aa22) 0.001                       ;
cfissure = elem aa12 appu stric aa22;

geo = geo1 et geo2 et geo3 et geo4              ;

elim (geo et scr1 et cfissure et cfis) 0.001    ;
                                                      
*FINITION DU MAILLAGE                           ;
*pres de l axe z                                ;
 c1 = cote (2) scr1                             ;
 pfi  = c1 poin final                           ;
 c1x  = droi (1) pfi p0                         ;
 b1 = droi (1) p00 p0                           ;

 su0 = surf ( c1x et c1  et b1) plane           ;
 su1 = su0 volu (2) tran (0. 0. a0)             ;
 ss = su0 plus (0. 0. b0)                       ;
 su2= ss volu (6) tran (0. 0. (a0 - b0))        ;       
 su = su1 et su2  coul vert                     ;
 
*le cylindre en entier                          ;
cub = geo et su                                 ;
elim cub 0.001                                  ;
cub = rege cub                                  ;
tot = enve cub                                  ;

*surface yz                                     ;
poyz = poin tot plan p0 (0. 100 100) (0. 0. 100);
suryz = elem tot appu stric poyz                ;

*surface z=100                                  ;
poz100= poin tot plan (0. 0. 100) 
        (100 0. 100) (0. 100 100)               ;
surzz = elem tot appu stric poz100              ;

*surfac xy                                      ;
poxy = poin tot plan p0 (0. 100 0.) (100 0 0)   ;
surxy= elem tot appu stric poxy                 ;
az = geo2 et geo4 et su                         ;
az = enve az                                    ;
aze= az poin plan p0  (0. 100 0.) (100 0 0)     ;
aze=elem az appu stric aze                      ;
co = cont aze;
aze = surxy incl aze;
facxy = surxy diff aze;

*--------------CONDITION DE SYMETRIE------------;
p = ((-1 * b0 * (sin 15)) (b0 * (cos 15)) 0.);
condi1 =symt depl p0 (0. 0. b0) p cub 0.01;
condi2 =symt depl p0 pfinay pfinayz        suryz;
condi3 =symt depl p0 (b0 b0 0.) (b0 0. 0.) facxy;
condit = condi1 et condi2 et condi3             ;
 
*----------- CREATION DU MODELE ----------------;

affe1  = modl  geo1 mecanique elastique isotrope;
affe2  = modl  geo2 mecanique elastique isotrope;
affe3  = modl  geo3 mecanique elastique isotrope;
affe4  = modl  geo4 mecanique elastique isotrope;
affe5  = modl  su   mecanique elastique isotrope;

affetot =  affe1 et affe2 et 
           affe3 et affe4 et affe5              ;

*---------DEFINITION DU MATERIAU ---------------;

mate1   =  matr  affe1  
           young    20000.
           nu          0.3                      ;
mate2   =  matr  affe2  
           young    20000.
           nu          0.3                      ;
mate3   =  matr  affe3  
           young    20000.
           nu          0.3                      ;
mate4   =  matr  affe4  
           young    20000.
           nu          0.3                      ;
mate5   =  matr  affe5  
           young    20000.
           nu          0.3                      ;
matot   =  mate1 et mate2 et 
           mate3 et mate4 et mate5              ;

*----------------RIGIDITE-----------------------;

rig1    =  (rigidite matot affetot) et condit   ;
rig2    =  bloque   uz  surzz                   ;
fo1     =  depi rig2 1.                         ;

*------------RESOLUTION ET CONTRAINTES----------;
dep     = resou (rig1 et rig2) fo1              ;
sig     = sigma  matot  affetot dep             ;


*----CALCUL DU FACTEUR D'INTENSITE DE CONTRAINTES----*
*----initialisations des paramètres de procedure-----*
SUPTAB = TABLE;
SUPTAB.'MAILLAGE' = cub;
SUPTAB.'PSF1' = P0;    
SUPTAB.'FRTFISS' = elem aa12 appu stri aa22;

*-----APPEL DE LA PROCEDURE SIF ----------------------*
SIF SUPTAB MATOT dep;

*-----APPEL DE LA PROCEDURE G_THETA ------------------*

TABG1 = TABLE;
TABG1.'OBJECTIF' = MOT 'J';
TABG1.'COUCHE' = 3;
TABG1.'FRONT_FISSURE' = cfissure;
TABG1.'LEVRE_SUPERIEURE' = aa21 ;
TABG1.'MODELE' = affetot; 
TABG1.'SOLUTION_RESO' = dep;
TABG1.'CHARGEMENTS_MECANIQUES' = fo1;
TABG1.'CARACTERISTIQUES' = matot;
G_THETA TABG1;
SAUT 1 LIGNE;
*******************************************************
********    DEPOUILLEMENT PROCEDURE SIF   *************
*******************************************************
T = INDEX (SUPTAB.K1);
MESS 'K1 NOEUD 1 DU FRONT DE FISSURE (NOEUD SOMMET) : ' 
       SUPTAB.K1.(T.1);
MESS 'K1 NOEUD 2 DU FRONT DE FISSURE (NOEUD MILIEU) : '
      SUPTAB.K1.(T.2);   
*---------TEST D'ERREUR-----------------------------*
EC1 = ((SUPTAB.K1.(T.1)) - 638.47) / 
      (SUPTAB.K1.(T.1)) * 100;
EC2 = ((SUPTAB.K1.(T.2)) - 638.47) / 
      (SUPTAB.K1.(T.2)) * 100;

SI ((EC1 < 5.5) ET (EC2 < 11)) ;
  MESS 'PROCEDURE <SIF> ERR  0';
  ERRE 0;
SINON;
  MESS 'PROCEDURE <SIF> ERR  5';
  ERRE 5;
FINSI; 
*******************************************************
********    DEPOUILLEMENT PROCEDURE G_THETA   *********
*******************************************************
TBG = TABG1.'RESULTATS';
IND1 = INDE TBG;
GSOM = TBG.(IND1.1); 
GMIL = TBG.(IND1.2);
EPRI = 20000. / 0.91; 
KSOM = (GSOM * EPRI) ** 0.5;
KMIL = (GMIL * EPRI) ** 0.5;
SAUT 1 LIGNE;
MESS 'K1 NOEUD 1 DU FRONT DE FISSURE (NOEUD SOMMET) : ' 
KSOM;
MESS 'K1 NOEUD 2 DU FRONT DE FISSURE (NOEUD MILIEU) : ' 
KMIL;
*---------TEST D'ERREUR-----------------------------*
EC1 = ABS (((KSOM - 638.47) / KSOM) * 100);
EC2 = ABS (((KMIL - 638.47) / KMIL) * 100);

SI ((EC1 < 0.9) ET (EC2 < 0.8)) ;
  MESS 'PROCEDURE <G_THETA> ERR  0';
  ERRE  0;
SINON;
  MESS 'PROCEDURE <G_THETA> ERR  5';
  ERRE  5;
FINSI; 
FIN;

Test rupt6 Comments

DESCRIPTION OF THE SIF PROCEDURE



next up previous contents
Next: Test rupt7 Description Up: FRACTURE MECHANICS Previous: Test rupt5 Description



ven 3 nov 04:14:58 NFT 2000