Test name
rupt2
Calculation type
ELASTIC MECHANICS
Finite element type
QUA8 PLANE STRAIN MODE
Topic
THE USE OF G-INTEGRAL IN THERMAL STRESS FOR AN EDGE CRACKED STRIP
The structure is a solid edge cracked strip which ends are constrained. It is subject to a linear temperature
gradient through the thickness with zero temperature at mid-thickness and temperature at the right edge
.
Due to symmetry only one half of the strip is analysed. The CASTEM solution for the stress intensity factor K is given
by the relationship :
Finally the K values for 7 differente temperatures are computed and compared with the
results obtained with WILSON and YU relationship :
Reference CASTEM
Test NAFEMS : The use of J-integral in thermal stress crack problems International Journal of Fracture :
rupt2 Modélisation des structures élastiques dans CASTEM 2000.
Version
97' customer version
Model description
Test rupt2 Results
RESULTS
CASTEM FIGURES
Test rupt2 Results
* Test Rupt2.dgibi: Jeux de données * * --------------------------------- * * * OPTION ECHO 0 ; GRAPH = 'N' ; SAUT PAGE ; * ; ******************************************************; * ; * ; * QUALIFICATION DU CALCUL DE G ; * EN THERMO-ELASTICITE LINEAIRE ; * SUR UNE PLAQUE A FISSURE LATERALE ; * EVALUATION DU FACTEUR DE FORME ; * ; * ; * le calcul est compare a celui obtenu par ; * WILSON et YU ; * dans The use of J-Integral in thermal stress crack ; * problems international Journal of Fracture (1979) ; * ; ******************************************************; * ; OPTION DIME 2 ELEM QUA8 MODE PLAN DEFO ; * ; *----------------- DEFINITION DU MAILLAGE ------------; * ; a = 100. ; b = 200. ; h = 400. ;t = a / 100. ; densite t ; pf = (a 0.) ; c1 = (c ( pf moin (t 0.)) pf ( pf plus (0. t))) c pf ( pf plus (t 0.)) ; sf = cout pf c1; r1 = t ; rr1 = t ; repeter bhomo 7; ri = r1 + ( 0.3 * r1 ) ; rri = rr1 + ri ; dens ri ; ci = ( c ( pf moin (rri 0.)) pf ( pf plus (0. rri))) c pf ( pf plus (rri 0.)) ; sf = sf et ( cout c1 ci ) ; c1 = ci ; r1 = ri ; rr1 = rri ; fin bhomo ; dens (a / 3.) ; p0 = (0. 0.) ; p1 = (b 0.) ; p2 = p0 plus (0. a) ; p3 = p1 plus (0. a) ; pi1 = ci poin 1 ; l1 = pi1 d p0 ; n = (nbel l1) * -1 ; pi2 = ci poin 4 ; l2 = pi2 d n p2 ; pi3 = ci poin 10 ; l3 = pi3 d n p3 ; pi4 = ci poin 13 ; l4 = pi4 d p1 ; ci = inve ci ;ligh = p2 d p3 ; sc1 = dall l1 (p0 d p2) (inve l2) (ci comp pi2 pi1) ; sc2 = dall l2 ligh (inve l3) (ci comp pi3 pi2) ; sc3 = dall l3 (p3 d p1) (inve l4) (ci comp pi4 pi3) ; sc = sc1 et sc2 et sc3 ; dens (a / 2.) ; mrest = ligh tran (0. (h - a)) dini (a / 2.) ; lihaut = mrest cote 3 ; phd = lihaut poin init ; ccp = sf et sc et mrest ; elim ccp 0.001 ; cccp = cont ccp ; lifis = cccp comp pf p0 ; libas = cccp comp p1 pf ; * ; *------------------- CREATION DU MODELE --------------; * ; objaf = modl ccp mecanique elastique isotrope ; * ; *---------- DEFINITION DES CARACTERISTIQUES ----------; *---------- MATERIELLES ET GEOMETRIQUES ----------; * ; mat = matr objaf YOUN 2.e4 NU 0.3 ALPH 5.e-6 ; * ; *---------- CALCUL DES RIGIDITES ELEMENTAIRES --------; *--------- ET DEFINITION DES BLOCAGES ---------; * ; rig = rigi objaf mat ; cdl1 = bloq Uy libas ; cdl2 = bloq Uy lihaut ; cdl3 = bloq Ux phd ; * ; *-------- DEFINITION DU CHAMP DE TEMPERATURES --------; * ; chx = coor 1 ccp ; cha = manu chpo ccp 1 scal a ; chx = nomc 'T' (chx - cha) ; cht = chx * (100. / a) ; ch0 = 0 * cht ; sigth = thet MAT objaf cht ; * ; *-------- RESOLUTION ET CALCUL DES CONTRAINTES -------; * ; U = reso (rig et cdl1 et cdl2 et cdl3 ) (bsig objaf sigth) ; SIG = sigm mat objaf U ; SIG = SIG - sigth ; sigy = exco SIG smyy ; SI ( NEG GRAPH 'N' ) ; TRAC CCP ; TRAC SIGY OBJAF CCP ; FINSI ; * ; *------ INITIALISATION DE LA TABLE EN ENTREE ---------; *---- DE LA PROCEDURE G_THETA ----------; * ; SUPTAB = TABLE ; SUPTAB.'OBJECTIF' = MOT 'J'; SUPTAB.'LEVRE_SUPERIEURE' = lifis; SUPTAB.'FRONT_FISSURE' = PF ; SUPTAB.'MODELE' = objaf; SUPTAB.'CARACTERISTIQUES' = mat; SUPTAB.'SOLUTION_RESO' = u; SUPTAB.'TEMPERATURES' = cht; SUPTAB.'COUCHE' = 4; * ; *----------- APPEL A LA PROCEDURE G_THETA ------------; * ; SAUT PAGE ; G_THETA suptab ; * ; *------ RECUPERATION DU RESULTAT ET COMPARAISONS -----; * ; G = suptab.'RESULTATS' ; K = (20000. * G / (1 - (0.3**2)))**0.5 ; F = K * (1 - 0.3) / ( 20000 * 5.e-6 * 100 * ((100*pi)**0.5)) ; mess 'taux de restitution energetique G :' G ; mess 'coefficient d intensite de contrainte K :' K ; mess 'facteur de forme calcule Fcal :' F ; mess 'facteur de forme analytique Fthe :' 0.514 ; * CODE FONCTIONNEMENT ; RESI = abs (( F - 0.514 ) / 0.514 ) ; SI (RESI < 5E-2) ; ERRE 0 ; SINO ; ERRE 5 ; FINSI ; fin;
Test rupt2 Comments
chx = coor 1 ccp ; cha = manu chpo ccp 1 scal a ; chx = nomc 'T' (chx - cha) ; cht = chx * (100. / a) ; ch0 = 0 * cht ; sigth = thet MAT objaf cht ;
NOTE :
The field by points CHPO1 must be composed of a single component
which name is arbitrary.
in which HOOK is Hooke's matrix and EPSTHER corresponds to the strains of thermal origin :
sigth = thet MAT objaf chtMAT is a field of material and geometrical properties (MCHAML type, CARACTERISTIQUES subtype)
OBJAF is a model object (MMODEL type)
CHT is a temperature field (CHPOINT type).
SIGTH is a stress field (MCHAML type, CONTRAINTES subtype).
Note :
For the shell elements, the temperature field must have three
components with the following names : TINF ,T, and TSUP which
define respectively the temperature on the bottom , mid-surface
and top layers. For the other elements, the temperature field must have one
component with the following name : T. You may recover the thermal strains from the thermal stresses
using the ELAS operator.