next up previous contents
Next: Test rupt2 Description Up: FRACTURE MECHANICS Previous: FRACTURE MECHANICS

Test rupt1 Description sheet

Test name
rupt1

Calculation type
MECHANICS ELASTIC-PLASTIC AXI

Finite element type
QUA8

Topic

STRESS INTENSITY FACTOR IN LINEAR MECHANICS ELASTIC OF A SOLID CYLINDER WITH A CIRCUMFERENCIAL CRACK

The structure is a solid cylinder with a circumferencial crack subjected to tensile stress. The goal is to calculate the Crack Opening Displacement (COD) at the crack tip and the stress factor in linear elastic mechanics of this structure. The theoreticals values are given by the relationships :




For this problem the CASTEM solution for the stress factor K is given by the relation ship :

Reference CASTEM
Test NAFEMS : Ductile Fracture Handbook, A. ZAHOOR, EPRI, 1990 : rupt1 Modélisation des structures élastiques dans CASTEM 2000.
Version
97' customer version
Model description

Test rupt1 Results

RESULTS

CASTEM FIGURES

*           Test Rupt1.dgibi: Jeux de données         *
*           ---------------------------------         *
*                                                     *
OPTION ECHO 0;
GRAPH = 'N';
SAUT PAGE;
*******************************************************
*
*              QUALIFICATION DU CALCUL DE K EN
*          ELASTICITE LINEAIRE SUR UN CYLINDRE AVEC
*          UNE FISSURE DEBOUCHANTE CIRCONFERENTIELLE
*       
* Le calcul est compare a celui obtenu par A ZAHOOR
*******************************************************
* R = rayon interne de la tuyauterie (M)
* B = épaisseur de la tuyauterie (M)
* L = longueur de la tuyauterie (M)
* A = longueur de la fissure (M)
* MYOU = module d'Young (Pa)
* TA = chargement appliqué (N) 
***
TA = 1.E6;
R = 1.;
B = 0.1;
A = B / 2.;
L = R * 4.;
MYOU = 2.0E11;
***
*** Maillage
***
OPTION DIME 2 ELEM QUA8 MODE AXIS;
t = a / 100.; densite t ; pf = (a 0.);
c1 = (c ( pf moin (t 0.)) pf ( pf plus (0. t)))
      c pf ( pf plus (t 0.));
sf = cout pf c1;
r1 = t ; rr1 = t;
repeter bhomo 7;
   ri = r1 + ( 0.3 * r1 );
   rri = rr1 + ri; dens ri;
   ci = (c (pf moin (rri 0.)) pf ( pf plus (0. rri)))  
         c pf (pf plus (rri 0.));
   sf = sf et (cout c1 ci);
   c1 = ci ; r1 = ri ; rr1 = rri;
fin bhomo;
dens (a / 3.);
p0  = (0. 0.) ; p1 = (b 0.);
p2  = p0 plus (0. a) ; p3 = p1 plus (0. a);
pi1 = ci poin 1 ; l1 = pi1 d p0 ; n = (nbel l1) * -1;
pi2 = ci poin 4 ; l2 = pi2 d n p2;
pi3 = ci poin 10 ; l3 = pi3 d n p3;
pi4 = ci poin 13 ; l4 = pi4 d p1;
ci  = inve ci ; ligh = p2 d p3;
sc1 = dall l1 (p0 d p2) (inve l2) (ci comp pi2 pi1);
sc2 = dall l2 ligh (inve l3) (ci comp pi3 pi2);
sc3 = dall l3 (p3 d p1) (inve l4) (ci comp pi4 pi3);
sc  = sc1 et sc2 et sc3;
dens (a / 2.);
mrest1 = ligh tran (0. (2.*a)) dini (40*t) dfin (50*t);
l1 = mrest1 cote 3;
YY1 = coor 2 (point l1 init);
l2 = D 3 (B (YY1 + (0.7*a))) (0. (yy1 + (0.7*a)));
S1 = COUT L1 L2; 
YY1 = COOR 2 (l2 point init);
mrest2 = l2 tran (0. (L - YY1)) dini (80*t) 
                                dfin (150*t); 
sut = sf et sc et mrest1 et S1 et mrest2;
ELIM 1.E-8 SUT;
DEPL PLUS SUT (R 0.);
L1 = (CONT SUT) ELEM APPU (SUT POIN
     DROI (R 0.) ((B + R) 0.) 1.E-8);
L2 = (CONT SUT) ELEM APPU (SUT POIN
     DROI ((B + R) 0.) ((B + R) L) 1.E-8);
L3 = (CONT SUT) ELEM APPU (SUT POIN
     DROI ((B + R) L) (R L) 1.E-8);
L4 = (CONT SUT) ELEM APPU (SUT POIN
     DROI (R L) (R 0.) 1.E-8);
L5 = (CONT SUT) COMP P1 PF;
SI ( NEG GRAPH 'N' );
   TITR 'MAILLAGE DU CYLINDRE';
   TRAC sut;
FINSI;
******
****** RESOLUTION EN ELASTICITE LINEAIRE
******
MO1 = MODELE SUT MECANIQUE ELASTIQUE 
      PLASTIQUE ISOTROPE;
MA1 = MATER MO1 YOUNG MYOU NU 0.3 TRAC COUTRAC;
RI = (BLOQ UZ L5) ET (RIGI MA1 MO1);
AIR1 = PI*(((R + B)**2.) - (R*R));
FOR1 = PRES 'MASS' MO1 (0. - (TA/AIR1)) L3;
DEP1 = RESO FOR1 RI;
SIG1 = SIGMA MO1 MA1 DEP1;
SI ( NEG GRAPH 'N' );
 TITR 'DEFORMATION DU CYLINDRE SOUS TRACTION UNIFORME';
 TRAC (DEFO SUT DEP1);
FINSI;
***
*** Solution COD (MM) et K (MPA M^0.5) de castem
***
COD_CAL = (EXTR DEP1 'UZ' P1)*2000.;            
SUPTAB = TABLE ;
SUPTAB.'OBJECTIF' = MOT 'J';
SUPTAB.'LEVRE_SUPERIEURE' = l1 diff l5;;
SUPTAB.'FRONT_FISSURE' = PF ; 
SUPTAB.'MODELE' = MO1;
SUPTAB.'CARACTERISTIQUES' = ma1;
SUPTAB.'SOLUTION_RESO' = dep1;
SUPTAB.'CHARGEMENTS_MECANIQUES' = for1;
SUPTAB.'COUCHE' = 5;
G_THETA SUPTAB;                                   
K_CAL = (MYOU*(SUPTAB.'RESULTATS')/(1 - (0.3**2)))**0.5;
K_CAL = K_CAL*1.E-6; 
***
*** Solution Analytique Zahoor
***
RAP1 = R / B; 
SI (RAP1 < 10.); GRANDA = ((0.125*RAP1) - 0.25)**0.25; 
FINSI;
SI (RAP1 >EG 10.); GRANDA = ((0.4*RAP1) - 3.00)**0.25; 
FINSI;
F = (1.9480*((A/B)**1.5)) + (0.3342*((A/B)**4.2));
F = 1.1 + (GRANDA*F);
SIGT = TA / AIR1;
K_ZAH = SIGT*((PI*A)**0.5)*F;
K_ZAH = K_ZAH*1.E-6; 
ERR1 = abs ((K_CAL - K_ZAH)/K_ZAH);
MESS '  Facteur K CASTEM =' K_CAL '(Mpa.M^0.5)';
MESS '  Facteur K ZAHOOR =' K_ZAH '(Mpa.M^0.5)';
MESS '  Erreur relative =' ERR1; 
SI (ERR1 <  1.E-2);
    ERRE 0;
SINO;
    ERRE 5;
FINSI;
FIN;

Test rupt1 Comments

  1. GEOMETRY AND MESHING (OPERATOR COUTURE)
    To account for singular displacement and stress distribution at the crack tip the mesh must be finer at the crack tip. Here the mesh is obtain with the COUT operator:
    For example:
    t = a / 100.; densite t; pf = (a 0.);
    c1 = (c ( pf moin (t 0.)) pf ( pf plus (0. t)))
          c pf ( pf plus (t 0.));
    trac c1 ;      
    sf = cout pf c1;
    
    Thus, the COUT operator constructs a surface which connects two lines or a line and point by means of triangles. here pf is a point (POINT type) to be connected to the line c1 (line between which the surface is generated (MAILLAGE type).

  2. RESOLUTION IN ELASTIC MECHANICS (G_THETA PROCEDURE)
    SUPTAB = TABLE ;                           SUPTAB.'OBJECTIF' = MOT 'J';
    SUPTAB.'LEVRE_SUPERIEURE' = l1 diff l5;    SUPTAB.'FRONT_FISSURE' = PF ; 
    SUPTAB.'MODELE' = MO1;                     SUPTAB.'CARACTERISTIQUES' = ma1;
    SUPTAB.'SOLUTION_RESO' = dep1;             SUPTAB.'CHARGEMENTS_MECANIQUES' = for1;
    SUPTAB.'COUCHE' = 5;                       G_THETA SUPTAB;                                   
    K_CAL = (MYOU*(SUPTAB.'RESULTATS')/(1 - (0.3**2)))**0.5;
    K_CAL = K_CAL*1.E-6;
    
    The G_THETA procedure has two objectives :
    1. calculate line integrals of fracture mechanics as follows :
      • the J line integral of an isotropic material, characterizing the crack tip fields in elasto-plasticity. In 3D massive element case, composite materials are not yet authorised.
      • the J line dynamic integral of an isotropic material, characterizing the crack tip fields for elasto-dynamic problems. In 3D massive element case, composite materials are not yet authorised.
      • the C* line integral of an isotropic material, characterizing the crack tip fields in the case of secondary creep problems. Applied loadings must be mechanical and composite materials are not yet authorised in 2D or 3D configurations.
      • the C*(h) line integral of an isotropic material, characterizing the crack tip fields in the case of primary or tertiary creep problems. Applied loadings must be mechanics and composite materials are not yet acceptable in 2D configurations, nor in 3D configurations.
      • the derivative dJ/da (a : crack length) line integral of an isotropic homogeneous material, required in the stability analysis of a single crack or a system of interacting cracks. Only the massive elements (2D or 3D) are allowed and composite materials are not yet available for calculating this derivative integral.
    2. separate the stress intensity factors K1, K2 (and K3 in 3D) for elastic problems in 2D, 3D (massive elements only) or axisymetrical configurations. For separating a mixed mode, the current version of G_THETA procedure allows only isotropic homogeneous materials.
For this probleme the goal is to compute the parametr G = J in elasticity witch representsis the energy release rate.
Therefore : Input data of the procedure is a TABLE object type, SUPTAB, wich indexes are objects of MOT type, written in capital and described as follows :

The CASTEM solution for the stress factor K is geven by the relation ship :
:

 
K_CAL = (MYOU*(SUPTAB.'RESULTATS')/(1 - (0.3**2)))**0.5;
K_CAL = K_CAL*1.E-6;



next up previous contents
Next: Test rupt2 Description Up: FRACTURE MECHANICS Previous: FRACTURE MECHANICS



ven 3 nov 04:14:58 NFT 2000