Test name
ohno2
Calculation type
ISOTROPIC VISCOPLASTIC MECHANICS - 2D AXIS
Finite element type
QUA8
Topic
Ohno -modified Chaboche-model for viscoplastic behaviour.
The structure is an axisymmetrical hollow cylinder
embedded at the lower surface. It is subjected to
imposed load at the upper surface: the radial strength
outwards. The cylinder follows Ohno's viscoplastic law
.
Goal
Test the Ohno's model for solid structures.
Version
97' customer version
Model description
Test ohno2 Results
CASTEM FIGURES
* Test Ohno2.dgibi: Jeux de données * * --------------------------------- * * * * ************************************************** * * * TEST DE VALIDATION D'UNE LOI DE COMPORTEMENT * * -------------------------------------------- * * DE MATERIAU * * ----------- * * * * LOI DE COMPORTEMENT VISCOPLASTIQUE DE: * * OHNO (CHABOCHE MODIFIE OHNO) * * * * TEST POUR DES ELEMENTS COQUE MINCE * * ---------------------------------- * * * * MAILLAGES: * * PREMIER MAILLAGE: ELEMENTS MASSIFS * * DEUXIEME MAILLAGE: ELEMENTS COQUE MINCE * * UN CYLINDRE CREUX AXISYMETRIQUE * * LONGUEUR L =.1 M * * RAYON INTERNE R =.05 M * * EPAISSEUR E =.0005 M * * * * CHARGEMENT: * * CYLINDRE ENCASTRE EN SON EXTREMITE BASSE * * FORCES IMPOSEES SUR L'EXTREMITE DU HAUT: * * FORCES RADIALES DIRIGEES VERS L'EXTERIEUR * * * ************************************************** * opti echo 0 dime 2 elem qua8 mode axis ; * * * Maillage * rayon0 = .05 ; epais0 = .0005 ; l1 = epais0 + rayon0 ; l2 = .1 ; n1 = 1 ; n2 = 200 ; p1 = rayon0 0. ; p2 = l1 0. ; p3 = l1 l2 ; p4 = rayon0 l2 ; d1 = d p1 n1 p2 ; d2 = d p2 n2 p3 ; d3 = d p3 n1 p4 ; d4 = d p4 n2 p1 ; vol1 = 'DALL' d1 d2 d3 d4 ; * * Modele de calcul * mod0 = 'MODE' vol1 'MECANIQUE' 'ELASTIQUE' 'ISOTROPE' 'VISCOPLASTIQUE' 'OHNO' ; mat0 = 'MATE' mod0 'YOUN' 7.34E10 'NU' 0.33 'RHO' 7.8E3 'ALPHA' 1.E-5 'N' 24 'KK' 10.E6 'K0' 116.E6 'ALFK' 1.5 'ALFR' 0.35 'ALF' 2.E6 'A1' 67.5E6 'C1' 1300 'BET1' 4807.E6 'R1' 4 'A2' 80.E6 'C2' 45 'BET2' 58480.E6 'R2' 4 'PHI' 1. 'B' 12 'GAMA' 2.E-7 'M' 2 'QMAX' 455.E6 'QSTA' 200.E6 'MU' 19 'ETA' 0.06 'EXP1' 2. 'EXP2' 2. ; * * Conditions aux limites * cl1 = 'BLOQ' d1 'UR' 'UZ' 'RT' 'RZ' ; cl0 = cl1 ; * * Chargement * pres0 = 1.E4 ; p01 = ( rayon0 + ( epais0 / 2. ) ) l2 ; p00 = vol1 'POIN' 'PROC' p01 ; dep1 = 'FORCE' 'FR' pres0 p00 ; ev0 = 'EVOL' 'MANU' temps ( 'PROG' 0. 10000. ) y ( 'PROG' 0. 1. ) ; cha0 = 'CHAR' 'MECA' dep1 ev0 ; vec1 = 'VECT' dep1 1.E-5 'FR' 'FZ' 'ROUG' ; * * Temps du calcul * dt0 = 20. ; tfin0 = 700. ; * * * Resolution par PASAPAS *--------------------------------------- * ta1 = 'TABLE' ; ta1 .'MODELE' = mod0 ; ta1 .'CARACTERISTIQUES' = mat0 ; ta1 .'BLOCAGES_MECANIQUES' = cl0 ; ta1 .'CHARGEMENT' = cha0 ; ta1 .'TEMPS_CALCULES' = 'PROG' 0. 'PAS' dt0 tfin0 ; * PASAPAS ta1 ; * * * Post-traitement *----------------------------------------- * dim0 = 'DIME' ( ta1 .'TEMPS' ) ; char2 = 'PROG' 0. ; depl2 = 'PROG' 0. ; defi2 = 'PROG' 0. ; cont1 = 'PROG' 0. ; * reac0 = ta1 .'REACTIONS'.( dim0 - 1 ) ; depl0 = ta1 .'DEPLACEMENTS'.( dim0 - 1 ) ; vec2 = 'VECT' reac0 1.E-2 'FR' 'FZ' 'ROUG' ; defo0 = 'DEFO' vol1 depl0 0. 'ROUG' ; defo1 = 'DEFO' vol1 depl0 1. ; reac1 = 'REDU' reac0 p1 ; reac2 = 'REDU' reac0 p2 ; vec01 = 'VECT' reac1 1.E-2 'FR' 'FZ' 'ROUG' ; vec02 = 'VECT' reac2 1.E-2 'FR' 'FZ' 'VERT' ; * 'REPETER' bloc0 ( dim0 - 1 ) ; i0 = &bloc0 ; reac0 = ta1 .'REACTIONS'.i0 ; depl0 = ta1 .'DEPLACEMENTS'.i0 ; sigm0 = ta1 .'CONTRAINTES'.i0 ; defi0 = ta1 .'VARIABLES_INTERNES'.i0 ; temp0 = ta1 .'TEMPS'.i0 ; depl1 = 'EXTR' depl0 'UR' p3 ; depl2 = depl2 'ET' ( 'PROG' depl1 ) ; defi1 = 'MAXI' ( 'EXCO' defi0 'EPSE' ) ; defi2 = defi2 'ET' ( 'PROG' defi1 ) ; * cont0 = 'MAXI' ( 'EXCO' 'SMXX' sigm0 ) ; * cont1 = cont1 'ET' ( 'PROG' cont0 ) ; char1 = pres0 * temp0 / tfin0 ; char2 = char2 'ET' ( 'PROG' char1 ) ; 'FIN' bloc0 ; * opti echo 0 dime 2 elem seg2 mode axis ; * * * Maillage * epais0 = .0005 ; rayon0 = .05 ; l10 = .1 ; n10 = 400 ; p10 = rayon0 0. ; p20 = rayon0 l10 ; mail1 = d p10 n10 p20 ; * * Modele de calcul * mod00 = 'MODE' mail1 'MECANIQUE' 'ELASTIQUE' 'ISOTROPE' 'VISCOPLASTIQUE' 'OHNO' 'COQ2' ; mat00 = 'MATE' mod00 'YOUN' 7.34E10 'NU' 0.33 'RHO' 7.8E3 'N' 24 'KK' 10.E6 'K0' 116.E6 'ALFK' 1.5 'ALFR' 0.35 'ALF' 2.E6 'A1' 67.5E6 'C1' 1300 'BET1' 4807.E6 'R1' 4 'A2' 80.E6 'C2' 45 'BET2' 58480.E6 'R2' 4 'PHI' 1. 'B' 12 'GAMA' 2.E-7 'M' 2 'QMAX' 455.E6 'QSTA' 200.E6 'MU' 19 'ETA' 0.06 'EXP1' 2. 'EXP2' 2. ; car00 = 'CARA' mod00 'EPAI' epais0 'ALFA' ( 2. / 3. ) ; * * Conditions aux limites * cl10 = 'BLOQ' p10 'UR' 'UZ' 'RT' 'RZ' ; cl00 = cl10 ; * * Chargement * pres0 = 1.E4 ; dep10 = 'FORCE' 'FR' pres0 p20 ; ev00 = 'EVOL' 'MANU' temps ( 'PROG' 0. 10000. ) y ( 'PROG' 0. 1. ) ; cha00 = 'CHAR' 'MECA' dep10 ev00 ; vec1 = 'VECT' dep10 1.E-5 'FR' 'FZ' ; * * Temps du calcul * dt00 = 20. ; tfin00 = 700. ; * * * Resolution par PASAPAS *--------------------------------------- * ta10 = 'TABLE' ; ta10 .'MODELE' = mod00 ; ta10 .'CARACTERISTIQUES' = mat00 'ET' car00 ; ta10 .'BLOCAGES_MECANIQUES' = cl00 ; ta10 .'CHARGEMENT' = cha00 ; ta10 .'TEMPS_CALCULES' = 'PROG' 0. 'PAS' dt00 tfin00 ; * PASAPAS ta10 ; * * * Post-traitement *----------------------------------------- * dim10 = 'DIME' ta10 .'TEMPS' ; depl12 = 'PROG' 0. ; * reac0 = ta10 .'REACTIONS'.( dim10 - 1 ) ; depl0 = ta10 .'DEPLACEMENTS'.( dim10 - 1 ) ; vec2 = 'VECT' reac0 1.E-2 'FR' 'FZ' 'ROUG' ; defo0 = 'DEFO' mail1 depl0 0. ; defo1 = 'DEFO' mail1 depl0 100. ; * 'REPETER' bloc0 ( dim10 - 1 ) ; i10 = &bloc0 ; depl10 = ta10 .'DEPLACEMENTS'.i10 ; temp10 = ta10 .'TEMPS'.i10 ; depl11 = 'EXTR' depl10 'UR' p20 ; depl12 = depl12 'ET' ( 'PROG' depl11 ) ; 'FIN' bloc0 ; * * Erreur * prob1 = faux ; 'REPETER' bloc0 ( dim10 - 1 ) ; i10 = &bloc0 ; depl1 = 'EXTR' depl2 i10 ; depl11 = 'EXTR' depl12 i10 ; * 'SI' (depl1 'NEG' 0. ) ; err_e0 = 'ABS' ( ( depl1 - depl11 ) / depl1 ) ; err_e0 = err_e0 * 100. ; 'SINON' ; err_e0 = 0. ; 'FINSI' ; * * 'SI' ( err_e0 '>' 3.E-1 ) ; prob0 = vrai ; 'SINON' ; prob0 = faux ; 'FINSI' ; 'SI' (prob0 'EGA' vrai ) ; prob1 = vrai ; 'FINSI' ; * 'FIN' bloc0 ; * 'SI' ( prob1 'EGA' vrai ) ; 'ERRE' 5 ; 'SINON' ; 'ERRE' 0 ; 'FINSI' ; * * 'FIN' ;
Test ohno2 Comments
MOD0 = MODE VOL1 MECANIQUE ELASTIQUE ISOTROPE VISCOPLASTIQUE OHNO ; MAT0 = MATE MOD0 YOUN 7.34E10 NU 0.33 RHO 7.8E3 ALPHA 1.E-5 N 24 KK 10.E6 K0 116.E6 ALFK 1.5 ALFR 0.35 ALF 2.E6 A1 67.5E6 C1 1300 BET1 4807.E6 R1 4 A2 80.E6 C2 45 BET2 58480.E6 R2 4 PHI 1. B 12 GAMA 2.E-7 M 2 QMAX 455.E6 QSTA 200.E6 MU 19 ETA 0.06 EXP1 2. EXP2 2. ;The Ohno model is close to the Chaboche viscoplastic one. The equations for this model are as follows:
The initial value of Q is Q0 and must be initialized:
Q = Q0 = 30 MPa (steel 316). For this purpose, a field
of internal variables must be created, with a component
named 'QQ' , its value being Q0. This field will be
passed into the table of PASAPAS.
The parameter values for the steel 316L at 600°C are given for
information only. The data to be input are the following:
The following parameters will have to be specified with the elastic
behavior.