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Abstract—Screening currents are a major drawback in the
context of REBCO magnets due to their parasitic effects on the
generated field being exacerbated by the particular shape of the
conductors. Previously, we have developed numerical tools for
the computation of screening currents and their effects in the
cases of systems featuring 2D symmetries, axial or longitudinal.
Nevertheless, 2D models are not always adequate for every 3D
shapes or alternative winding configurations, like layer-wound
ones.

Therefore, a quasi three-dimensional model has been imple-
mented in the in-house CAST3M finite element code, using
the current function T formulation. We developed CAST3M
operators to take into account the superconducting behavior
of the material and the anisotropic dependence of the current
density on the magnetic induction.

Simple scenarios, especially one solved with analytical formu-
lations, have been defined to benchmark codes; CASTEM was
successfully benchmarked against them.

Finally, we compared the generation of screening currents
within a small solenoid depending on the type of winding, made
either of layers or pancakes. We also compared these results with
a simple 2D model made of nested turns.

Index Terms—HTS coil, layer winding, pancake winding,
screening currents.

I. INTRODUCTION

THE development of HTS magnets has been growing
during the last few years, especially using the new HTS

coated conductors. HTS magnets or magnet prototypes are
available in several fields of application such as accelerators
magnets [1], high-field magnets [2] and medical applications,
NMR or MRI magnets [3].

Several issues have come to light with these new conductors,
especially regarding quench protection and magnetic field
homogeneity. Our article focuses on this latter subject as their
particular tape shape makes them very sensitive to orthogonal
magnetic field variations resulting in large screening currents.

The screening currents have three main unwanted effects
on the total magnetic field: they lower its amplitude at the
center of the magnet that is often the most important parameter
for practical applications, they degrade its homogeneity and
induce a temporal drift.

Therefore, it is important to estimate the impact of these
unwanted effects on the magnetic field and homogeneity by
calculating the Screening Current Induced Field (SCIF).

In order to calculate the SCIF, we need to solve the problem
with one or two state variables. Several methods are used with
different state variables, such as the current density J, the
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magnetic field H [4], the (T,Φ) formulation [5], with the
current vector potential T and the magnetic scalar potential Φ
or the (A, V ) formulation [6] with the vector potential A and
the electrical scalar potential V .

In previous articles, we developed and benchmarked numer-
ical tools for the computation of screening currents and their
effects in the cases of systems featuring 2D symmetries, axial
or longitudinal using (A, V ) formulation [7] or H formula-
tion [8][9]. Nevertheless, 2D models are not always adequate
for all 3D shapes or alternative winding configurations, such
as layers.

For 3D thin shells, the most common formulation is the
(T,Φ) one especially because only the superconducting shell
needs to be modelized [10] [11] [12].

Therefore, a quasi three-dimensional model has been im-
plemented in the in-house CAST3M finite element code [13],
using the (T,Φ) formulation.

Section 2 details the mathematical formulation of the prob-
lem and the developments performed in CAST3M. These
developments include new operators taking into account the
superconducting behavior of the material and the anisotropic
dependence of the current density on the magnetic induction.

Section 3 covers the modelling of screening currents com-
puted in 3D using simple quasi-infinite straight tape and
single loop models. These 3D models were subsequently
benchmarked against analytical formulae.

Finally, in section 4, a larger model was analysed using this
formulation in order to compute the SCIF of a small solenoid,
depending on its winding, made either of layers or pancakes.
The results have also been compared to the calculation of the
SCIF with a more simple 2D model made of nested turns.

II. PRESENTATION OF THE SCREENING CURRENT MODEL

A. Mathematical formulation of the problem

The first and main equation driving the problem of screening
currents is Faraday’s equation, stated in (1) in terms of
the vector potential A. E is the electrical field and V the
electrostatic potential.

E = −Ȧ−∇V (1)

A is the sum of the self vector potential, generated by the
J distribution within the model, and of an external vector
potential, from an external source, A = Aself + Aext.

To this equation, we add Ohm’s law (2), that links the
electrical field E and the current density J with the resistivity
of the material ρ.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MARCH 2020 2

E = ρJ (2)

The HTS tapes we need to study are very thin, around 1 µm
(thickness of the superconducting layer) and therefore, they
can be considered as thin shells. In addition, as the conser-
vation of electric charge on a surface S follows ∇s · J = 0,
we can write J in terms of the electric vector potential T,
J = ∇s × T = ∇sT × n (where ∇s · V and ∇s × V are
the surfacic divergence and surfacic curl of V respectively).
T is the modulus of T and n is the unit vector normal to the
surface S.

By using the Biot-Savart formula (3) that links the current
density J within the sample and the self vector potential Aself ,
the equation for T is shown in (4).

Aself (r) =
µ0

4π

∫
S

J(r′)

|r− r′|
dS′ (3)

ρ∇s ×T +
µ0

4π

∂

∂t

∫
S

∇s ×T(r′)

|r− r′|
dS′ = −∂Aext

∂t
−∇sV (4)

B. Superconducting behavior

Equation (4) holds for a conductor with a resistivity ρ and
is commonly used to compute eddy currents in thin shells.

To take into account the particular behavior of the super-
conducting material, we use the well-known power law shown
in (5), linking the electrical field E to the current density J.
Jc is the critical current density and n is the n-factor usually
set between 25 and 30 for HTS conductors. E0 is a constant
usually defined at 10−4V m−1.

E = E0

(
|J|
Jc

)n
(5)

Hence, the equivalent resistivity of the HTS conductor is
derived from (5):

ρ = E0

(
|J|
Jc

)n−1
1

Jc
(6)

HTS conductors show an anisotropic dependence of Jc on
B, both on magnitude and orientation. It has been shown that
an elliptical functional form of Jc presented in (7) is capable of
reproducing accurately [14] experimental characterizations of
tapes. B‖ and B⊥ are the parallel and orthogonal components
of the field to the tape respectively. Jc, k, b and Bc are four
parameters needed to fit experimental data.

Jc(B‖, B⊥) =
Jc0

(1 +
√

(kB‖)2 +B2
⊥/Bc)

b
(7)

C. Resolution with CAST3M

The first step to calculate screening currents in supercon-
ductors is to choose an adequate state variable and to solve
it. Once this state variable is solved for the initial state and
temporal conditions, the current density and SCIF can be
calculated.

Thus, to solve (4), we use a finite element method within the
CAST3M code [15]. The method with a constant resistivity ρ
(eddy currents problem in thin shells) is already implemented
in CAST3M and has been described in detail in [16]. It takes
into account a weak formulation of the problem (Galerkin
method) and the nodal equation associated is:

[R]T + [M ]
∂T

∂t
= −∂ψext

∂t
(8)

T is the vector of nodal current function values and is the
state variable to be solved. R is the resistance matrix, that
depends on the resistivity ρ.
M is the mutual-inductance matrix linked to the Aself

contribution.
The current density vector potential T is an orthogonal curl-

conform 1-form, associating values of the potential to vectors
normal to the superconducting tape S. For practical purposes
in CAST3M, this will be represented by a nodal vector field
T. The latter represents a 0-form defined on the tape which
values correspond to the values of the 1-form associated with
the local unit normal to the tape T(r′) = T (r′)nr′ . We opt to
discretize the T field using basis functions linear in the mesh
elements. This results in J = ∇s × T being constant within
each elements. Therefore, considering a mesh partition of the
tape which we call S and from established in 4:

∂Aself

∂t
=
µ0

4π

∫
S

1

|r− r′|
∂ (∇s ×T(r′))

∂t
dS′

=
µ0

4π

∑
se∈S

(∫
se

dse
|r− r′|

∇se ×
∂T(r′)

∂t

)
=
µ0

4π

∑
se∈S

(∫
se

∇se × nsedse
|r− r′|

)
We have T(r′) = T (r′)nr′ , thus ∇ × T(r′) = T (r′)∇ ×

nr′ + ∇T (r′) × nr′ . In a triangular element se, because the
normal to the element and the gradient of T are constant,
∇×T(r′) = ∇T (r′)× nse . Therefore:

∂Aself

∂t
=
µ0

4π

∑
se∈S

∫
se

(
dse
|r− r′|

)
nse ×∇

(
∂T

∂t

)
= M.

∂T

∂t

The most important thing in the computation of the matrix
of mutual inductions M is to proceed carefully with the
integration of the Green kernel. In the case of the source
point r′ being in the same element as the target point r,
the integration is evaluated analytically. Otherwise, a simple
numerical quadrature is enough since there is no risk of
singularity. Additionally, as long as the geometry and the mesh
do not change during the simulation, the dense matrix M stays
also constant.
R is also dependent on the model used and is calculated

once as it remains constant for a usual eddy current problem.
∂ψext

∂t is the known vector containing the variations of the
external magnetic field that induce the eddy currents.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MARCH 2020 3

To solve our problem, we had to develop procedures to
take into account the superconducting behavior of the tape, i.e
power law and dependence of Jc on the magnetic field. We
developed a procedure to compute the field at each node from a
known distribution of the current function T ; other procedures
were made to calculate the critical current density Jc from the
magnetic field distribution and to compute the distribution of
the resistivity ρ and consequently the R matrix.

To resolve the partial differential equation (8) in the time
domain, we used the Crank-Nicolson method as it is uncondi-
tionally stable. The system of equations to solve (8) therefore
becomes:

(
[M ] +

∆t

2
[Rn+1]

)
Ṫn+1 =(

[M ]− ∆t

2
[Rn]

)
Ṫn − ∆t

2

(
∂ψn+1

ext

∂t
+
∂ψnext
∂t

) (9)

Where the unknown is Tn+1, which is the vector holding
the nodal values of the current function at the (n+1)-th time
step. Thus, the determination of the final solution at each time
step requires the computation of several iterates of Tn+1

k using
the sequential Picard’s method [17]:

[M ]Tn+1
k+1 = [M ]Tn−

∆t

2

(
[Rn]Tn + [Rn+1

k ]Tn+1
k

)
− ∆t

2

(
∂ψn+1

ext

∂t
+
∂ψnext
∂t

)
(10)

The sequence of Tn+1
k is initialized for the first iteration

with Tn
(
Tn+1
0 = Tn

)
. It converges after a few iterations

and the process is eventually stopped whenever the difference
between two consecutive estimates drops below a prescribed
tolerance

∣∣Tn+1
k+1 − T

n+1
k

∣∣ < ε. The value of Tn+1
k+1 is then kept

as the final solution Tn+1.

Fig. 1. Representation of the transport current and the electric vector potential
in a thin tape. The electric vector potential is normal to the surface and
constant on the boundaries of the model.

As there is no current flowing out of the edges of the surface
S, the current function T is constant on the boundaries of
S. Moreover, if we integrate the current density J over the
section of a tape as shown in Fig. (1), we demonstrate that
the current flowing into it is the difference of the two values
of the potential vector T at its boundaries:

I =

∫
S

J ·dS =

∫
S

(∇s×T) ·dS =

∮
l

T ·dl = T1−T2 (11)

To charge a tape with a defined current evolution, we just set
a null value on one boundary and the defined current evolution
with time on the other.

III. BENCHMARKS OF SIMPLE CONFIGURATIONS

In order to assess the validity of codes, it is of great interest
to develop benchmarks. In this section, we present two simple
scenarios, the calculation of the distribution of the current
density within an infinite thin straight tape and within a single
thin loop. The first one is based on analytical formulations and
could be re-used by others researchers.

Using the new developed procedures in CAST3M, we
computed the screening currents and benchmarked them suc-
cessfully against these two scenarios.

A. Infinite thin tape with constant critical current density

The generation of screening currents within an infinite
tape provides a convenient starting point for benchmarking,
as it can be formulated analytically assuming a constant
critical density Jc and a critical-state model (CSM) law [18].
Zeldov developed these analytical formulae [19] for a thin film
initially in a virgin state subjected to a successive increase and
decrease of the transport current.

The distribution of the sheet current density J(x) obtained
over the width of the tape when the total supplied current is
increased from 0 to It is represented in the following two
equations:

J(x) =

{
2Jc
π arctan

(√
w2−a2
a2−x2

)
for − a < x < a

Jc for a ≤ |x| < w
(12)

with a = w
√

1− (It/Ic)2 and Ic = 2dwJc. w and d are the
half-width and the thickness of the tape respectively. Jc is the
critical current density, assumed to be constant and uniform,
and Ic the related critical current of the tape.

The current density distribution obtained over the tape width
J(x) after a decrease of the supplied current from It to It0 =
It −∆It is represented by the following three equations:

J(x) =


2Jc
π

[
arctan

(√
w2−a20
a20−x2

)
− 2 arctan

(√
w2−a2
a2−x2

)]
for − a0 ≤ x ≤ a0
Jc

[
1− 4

π arctan
[(√

w2−a2
a2−x2

)]
for a0 ≤ |x| ≤ a

−Jc for a ≤ |x| < w
(13)

with a0 = w(1 − It0/Ic) and a = w(1 − ∆It/2Ic) for
∆It ≤ 2It0.

These formulae have been set up for the critical-state law
which is different from the power law used in CAST3M. The
critical-state model cannot describe relaxation effects or over-
current effects; the calculation performed with the critical-state
law is especially insensitive to the ramping rate magnitude of
the current and depends only on the final value It. This is not
the case for computations performed with the power law as the
electrical field depends on the current density. Nevertheless,
the computations are valid only for a current density from 0
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TABLE I
PARAMETERS FOR THE INFINITE TAPE MODEL

Parameter Unit Value
Number of elements ne 4364
Tape half-width w mm 6
Tape thickness d µm 1
Critical current density Jc Amm−2 1010
Critical current Ic A 120
Ramp-up time tu s 1
Ramp-down time td − tu s 1
Current @ tu It 70% Ic

to Jc and just above it (flux-creep regime) as the flux-flow
regime, occuring at J > Jc, is not properly described with
the power law.

We then computed three cases with the exact same hypothe-
ses except for the n-value that we progressively increased from
25 (realistic case for HTS) to 500 (close to the CSM). A power
law with a very high n-value does not have a real physical
meaning for HTS conductors but allows to approach the CSM
law. Fig. (2) shows E(J) characteristics for the CSM and the
power law.

Fig. 2. E(J) characteristics. The CSM is represented by the thick line at
Jc. The power law is represented for three values of the n-factor, 25, 100 and
500 used in the 2D computations, for comparison with the CSM.

We also performed the same calculations with a 2D in-
house code developed in MATLAB and based on a (A, V )
formulation described in (1)[7]. The computations have been
led for a thin tape with only one element in the thickness to
be representative of the formulation.

This simple scenario based on analytical formulations is a
useful benchmark to test codes and assess their validity. The
code should be able to handle computations with a very high
n-factor to mimic the CSM.

The parameters used for the computations are listed in
table (I). The CAST3M model, represented in Fig. (3), is
a tape with a finite length, defined as more than 10 times
the value of its width to exclude boundary effects. The mesh
is densified at the center of the model, in order to detail
the sheet current density distribution across the tape. The
transport current evolution with time is shown in Fig. (4).
The distribution of the current density is shown at time tu in
Fig. (5). There is a very good agreement between the CAST3M
and the MATLAB results. When increasing the n-value, the

Fig. 3. CAST3M model used for the infinite straight tape computations.

two distributions, obtained either with CAST3M or MATLAB,
tend to the critical-state results. A very good agreement is
reached at an n-value of 500. It is to be noted that the lower
the n-value, the more the results are sensitive to the current
slope. This is interesting because, as the n-value is low in HTS
materials, increasing the transport current with a smaller slope
will generate a more uniform current density distribution as
shown in Fig. (4) and consequently a reduced SCIF.

The distribution of the current density is shown at time
td after a ramp-up ramp-down cycle in Fig. (6). There is
still a very good agreement between CAST3M and MATLAB
at every n-value; for a n-value of 500, the computations,
either performed with CAST3M or MATLAB, show very good
agreement with the analytical formulae (13). Computations of
screening currents in publications show also similar distribu-
tion of the current density, for instance Fig. 9.a of [20].

Finally, several factors may influence the current density
distribution and consequently the SCIF. First, the thickness
of the superconducting layer has no influence because the
geometry is modelled as a thin shell. Second, as shown in (12)
and (13), the current density distribution depends on the ratio
a/w which is constant for a given operation current It. Increas-
ing the width 2w will enlarge by homothety the current density
distribution and consequently if we compare the magnetic field
generated from this distribution to the magnetic field due to an
uniform distribution, the ratio will remain the same. Obviously,
the SCIF is reduced if we subdivide the tape in several smaller
tapes, well-known technique to lower the magnitude of AC
losses related to SCIF.

0 0.5 1 1.5 2 2.5 3

Fig. 4. Evolution of the transport current with time. The transport current
is increased from 0 A (tape in a virgin state) to 70% of the critical current
of the tape (time tu). Then, the current is decreased back to zero (time td).
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Fig. 5. Distribution of the current density across the width of a tape.
The transport current is increased from zero to a final value It in a sample
initially in a virgin state (time tu of Fig. (4)). The black line represent the
analytical formula developed by Zeldov. The blue lines are the results of the
2D computations performed with MATLAB. The red symbols are the results
of the 3D computations performed with CAST3M.
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Fig. 6. Distribution of the current density across the width of a tape. The
transport current is increased from a sample initially in a virgin state to a
value It0 and then decreased to It = 0 (time td of Fig. (4)). The black line
represents the result obtained through the analytical formula developed by
Zeldov. The blue lines are the results of the 2D computations performed with
MATLAB. The red symbols are the results of the 3D computations performed
with CAST3M.

B. Single loop with variable critical current density

To validate completely the new procedures, we need to
benchmark them with a Jc dependence on the magnetic
induction. The second simple case is therefore a single loop
with a critical current density Jc dependent on the magnetic
induction according to the elliptic law described in (7). The
corresponding meshed geometry used in CAST3M is shown
in Fig. (7).

We compare the CAST3M and MATLAB results obtained
for the same transport current evolution as in the former
problem (see Fig. (4)). The MATLAB model is made of only
one element in its thickness.

Numerical values used for the model parameters are listed
in table (II).

Results are shown in Fig. (8) and Fig. (9); they show
complete agreement between CAST3M and MATLAB. The
current density distribution is different from the former case
especially at the edges of the tape. This is the consequence
of the use of the elliptic law for Jc: as the orthogonal field is

TABLE II
PARAMETERS FOR THE LOOP MODEL

Number of elements ne 1848
Tape half-width w mm 6
Tape thickness d µm 1
Ramp-up time tu s 1
Ramp-down time td s 1
Current @ tu It 70% Ic
Elliptic fit (cf. (7))

Jc0 Amm−2 1010
k 0.25
Bc mT 25
b 0.6

Fig. 7. CAST3M Model used for the single loop computations.

the strongest at the edges of the tapes, the local value of the
critical current density Jc is consequently reduced there.
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Fig. 8. Distribution of the current density across the width of a turn. The
transport current is increased from zero in a sample initially in a virgin state
to a value It (time tu of Fig. (4)). The blue line is the result of the 2D
computations performed with MATLAB. The red symbols are the results of
the 3D computations performed with CAST3M.

We conducted a study to find out how the computation time
scales with the number of nodes in CAST3M for this 3D case.
The computations were done with a computer with Intel(R)
Xeon(TM) CPU E5-2637 bi-processor at 3.50 GHz with 128
GB RAM. Fig. (10) shows the computation time measured
for the calculation of the inductance matrix M and for the
calculation of the current density. The study shows a power
law dependence (exponent close to 2) of the computation time
in seconds with the number of nodes as it is quasi-linear in
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Fig. 9. Distribution of the current density across the width of a turn. The
transport current is increased from zero in a sample initially in a virgin state
to a value It0 and then decreased to It = 0. (time td of Fig. (4)). The blue
line is the result of the 2D computations performed with MATLAB. The red
symbols are the results of the 3D computations performed with CAST3M.

the log-log plot of the current density computation. It takes
more than 30 hours to compute a problem with a model
of 11000 nodes. This is consistent with the resolution time
needed for similar problems [20]. We also measured the time
needed for the same problem solved with MATLAB in 2D.
The time needed for the inductance matrix computation or the
current density computation are lower than 1 and 10 seconds,
respectively.
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Fig. 10. Computation time in seconds as a function of the number of nodes
for the single loop model. The plot is in log-log scale and is quasi linear.
There is indeed a power law dependence with a power exponent close to 2
for the current density computation plot.

These two simple cases show that the new procedures
implemented in CAST3M are valid and that we can use it
on larger models with confidence.

IV. COMPARISON OF SCIF GENERATION BETWEEN
LAYER-WOUND AND PANCAKE COILS

In this section, we compare the influence of the winding
type used for a solenoid on the generation of screening
currents and SCIF. This is a typical 3D problem which is
of great interest, especially for domains (NMR, MRI) where
homogeneity and stability of the magnetic field are required.

TABLE III
DATA FOR THE 3D MODELS

Type of winding Pancakes Layers
Number of elements ne 10500 10500
Tape width (mm) w 12 12
SC tape thickness (µm) d 1 1
Total length of SC tape (m) lt 3.96 3.93
Internal diameter (mm) φi 48 48
Space between pancakes/turns (mm) h 1 1
Magnetic field constant (µTA−1) α 379.1 380.6

TABLE IV
DATA FOR SC MATERIAL

Power law n-value n 25
Elliptic fit (cf. (7))

Jc0 Amm−2 1010
k 0.25
Bc mT 25
b 0.6

To have a point of reference, we compare the results with
a 2D problem performed with MATLAB; the winding in
that case is equivalent to a set of nested turns due to the
axisymmetry. The method of computation for the 2D case is
similar to the one used in [7].

The two models used in CAST3M are shown in Fig. (11).
Both are made of 5 layers/pancakes of 5 turns. The total
number of elements for each model is 10500 which is already
a large model as the [M ] matrix defined in (8) is a dense
square matrix with 10500*10500 elements.

The main parameters used for the model are listed in
table (III). Although their design is different, the total length
needed for the winding is almost the same. The comparison is
however difficult as we do not take into account the junctions
between layers/pancakes. The magnetic field constant values,
379.1 and 380.6 µT A−1 for the pancake model and the layer
model respectively, are very similar with less than 0.5% of
difference. For comparison, the magnetic constant of the 2D
model made of nested turns is 383.3 µT A−1.

The data used for the superconducting material and the
elliptic law are listed in table IV.

It takes more than 32 hours to calculate completely the
evolution of current function distribution within the models.
This very substantial computational time is the main drawback
of the method used. For several geometrical configurations,
it is possible to avoid meshing the whole tape domain by
exploiting the helical symmetry of the model [21]. In that
case, the state variable to solve is the current density J and
the first order equation is similar to our 2D computations [7].
For comparison, it takes 85 s with MATLAB to compute the
whole problem with the nested turn model.

Fig. (12) shows the evolution with current of the SCIF at the
center of the coils. For the three models, we see an increase
of the SCIF up to a maximum, when the current is ramped
up, followed by a decrease. The maximal magnitude of the
SCIF is 1 and 1.37 mT for the layer model and the pancake
model respectively, representing 8.3% and 4.7% of the total
magnetic field.

During the first part, the transport current It is much
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Fig. 11. Coil models used for the computations. a. is a coil made of 5
pancakes of 5 turns. b. is a coil made of 5 layers of 5 turns. Each model has
10500 elements.
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Fig. 12. Evolution of the SCIF at the center of the coils with the current.
The red dotted line represents the computations performed with CAST3M for
the layer wound coil model. The red dashed line represents the computations
performed with CAST3M for the pancake wound coil model. The solid black
line is the result for the computations in 2D (nested coils) with MATLAB.
The distribution of the current density is shown in Fig. (13) and Fig. (14) at
points (a, b, c) and (α, β, γ).

lower than the critical current Ic and the influence of the
screening currents on the generation of the magnetic field is
the strongest. This can be seen in Fig. (13) and Fig. (14) where
the distribution of the current density within the tapes are not
uniform at all, especially at the maximum value of the SCIF
(b and β).

Then, as the transport current continues to increase, two
phenomena start occuring simultaneously. First, the increase
of the transport current generates a larger magnetic field and
consequently the critical current density decreases due to its
dependence on the magnetic field (cf. (7)). Second, the ratio
of the transport current to the critical current is larger and the
tape tends to a complete uniform current density distribution,
as shown in Fig. (13) and Fig. (14). The SCIF consequently
decreases under these two influences and vanishes when the
tape current is close to its critical value (c and γ).

Moreover, we observe that the current density distributions
are both symmetrical with respect to the median plane but are
very different. There is a strong distortion of the magnetic
flux in the layer-wound model. The gaps between conductors
in a given layer twist the self-generated magnetic flux with the

Fig. 13. Distribution of the current density for a layer-wound coil for different
transport current values (see Fig. (12)) The layers have been unwound for
visualization. The internal one is the left and the external one on the right.

consequence of a periodic distribution of the current density
J which depends on the local critical current density Jc and
consequently on the magnetic field as described in (7). This
periodicity is 10 as shown in Fig. (14), corresponding to the
number of cross zones between two layers of 5 turns. This
phenomenon is similar to the results of the current density
distribution for spiraled conductors [22].

The distribution of the current density of the pancake model
does not exhibit these patterns. The magnetic flux is not
distorted and its distribution tends to the 2D model one,
already seen in similar computations of the current density
distribution [23].

The maximum SCIF value is larger for the layer-wound
coil by more than 50%, although their magnetic constants
are similar, and occurs at a smaller value of the transport
current. This is a little bit surprising as we were expecting
that the layers would shield more than the pancakes against the
variation of the magnetic field. The layer shape is indeed sim-
ilar to a magnetic shield, whose efficiency has been reported
in [24]. Nevertheless, our model is different as the current
density distribution is not only driven by an external source
(electromotive force) like in the case of an independent shield.
The generation of SCIF with models made of a larger number
of turns should be compared in order to confirm this tendency.

Moreover, the MATLAB and CAST3M computations are
very similar in the case of the pancake structure with just
a small overestimation of the SCIF with the 2D code and
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Fig. 14. Distribution of the current density for a coil made of pancakes
for different transport current values (see Fig. (12)) The pancakes have been
unwound for visualization. The internal radius of each pancake is on the left
and the external radius on the right.

the nested coils. This is the consequence of the similarity
of the distributions of their magnetic field, as stated supra.
We then could use the 2D code when calculating SCIF with
pancakes coils, saving a substantial computation time, from
days to seconds.

V. CONCLUSION

We have developed a useful tool for calculating screening
currents in REBCO tapes for 3D shape configurations espe-
cially the ones that cannot be reducible to 2D models. It is
based on existing procedures of the in-house code CAST3M
to which we added new procedures that take into account the
characteristics of superconductors.

Simple scenarios have been defined to benchmark the code
and assess the validity of the new procedures. The simpler one
is based on the CSM model with a constant critical current
density and led to analytical formulations; it could be used by
others researchers to test their own code. CAST3M has been
benchmarked successfully against these formulations.

Then, we studied a case of great interest, especially for do-
mains where homogeneity and temporal stability are required.
We computed the screening current distribution in small 3D
coils and calculated the SCIF at their center. Two kinds of
winding, layers and pancakes, have been investigated that can

only be processed accurately by 3D computations. The results
show a large difference as the SCIF generated within the layer
wound coil is 50% larger than the SCIF generated by the
pancake wound coil. This tendency should be confirmed on
windings with a larger number of turns.

The drawback of the 3D calculations is that their compu-
tation time is very large compared to simpler 2D models.
For the pancake case, we compared CAST3M results for the
SCIF with the MATLAB results for a set of nested turns
(2D model of the simplified 3D pancake model). There is a
slight overestimation of the SCIF with the 2D model, which
is related to the difference of the geometry as the magnetic
constant for the 2D model is also larger than the one of the 3D
model. Nevertheless it should be used as our design tool due
to the large computation time saved. For particular geometrical
configurations, especially in case of symmetry or periodicity
(helix), the problem is also reducible to 2D computations.
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