

Modélisation de la fermeture des pores aux interfaces des pièces soudées-diffusées

Maxime Huguet (doctorant), Isabelle Moro,

Laurent Briottet, Olivier Gillia

CEA/DRT/LITEN/DTBH/SCPC/LCA

Sommaire

1. Contexte et objectifs

2. Modélisation

Mécanismes physiques à prendre en compte et hypothèses faites Méthode de résolution et cas tests

- **3. Exemples d'utilisation**
- 4. Validation sur cavité modèle
- **5.** Conclusions et perspectives

Contexte et objectifs

Contexte technologique Cavités et soudage diffusion Objectif du travail

Contexte technologique

Fabrication d'échangeurs compacts par le procédé de Compression Isostatique à Chaud (CIC).

Contexte technologique

Compression Isostatique à Chaud

Objectifs du travail (thèse)

Objectif technologique : Optimisation d'un cycle de CIC pour l'assemblage d'une pièce

- Températures
- Pressions
- Durées
- Conception de la pièce

Pièces à joindre

~ quelques µm

1. Mise en contact intime des plaques

Par déformation viscoplastique

Résorption des pores et lissage de leurs parois

Amélioration de la modélisation de la cinétique de fermeture des cavités.

A partir de :

- Topographie des surfaces à souder ;
- Conditions de CIC ;
- Comportement du matériau ;

Simuler la fermeture des cavités le long d'une interface soudée diffusée.

Nodélisation

Cadrage sur une cavité modèle Mécanismes pris en compte et hypothèses Méthode de résolution

Etat de l'art

Evolution des cavités représentatives des modèles analytiques :

Limitation des modèles actuels

Visualisation 3D des pores aux interfaces

Image FIB-SEM (Slice & View)

1ère étape : travail sur des cavités modèles 2D obtenues par rayures

Cavités modèles obtenues par rayures

Cavités de tailles différentes obtenues sur des cycles interrompus

<u>cea</u>

Autres chemins de diffusion négligés

Description des mécanismes pris en compte Ecoulement viscoplastique

Loi de Chaboche et Lemaitre avec écrouissage isotrope :

$$\bar{\varepsilon}^{\dot{\nu}p} = \frac{3}{2} \left\langle \frac{J(\bar{\sigma}) - \mathcal{R} - Re}{K} \right\rangle^n \frac{\bar{\sigma}}{J(\bar{\sigma})}$$

Acier X2CrNiMo 17-12-2 à 1010°C (316L) lignes continues = essais expérimentaux lignes pointillées = modèle [thèse Maunay, 2016]

Description des mécanismes pris en compte Diffusion en surface

Potentiel chimique : courbure κ de la surface libre $[J. mol^{-1}]$ $\Delta \mu = \nu \gamma_{\rm s} \kappa$ Flux de diffusion le long de la surface $[mol. m^{-2}. s^{-1}]$: $\vec{j_s} = -\frac{D_s}{v_{RT}} \overrightarrow{grad}(\Delta \mu)$ [Herring, 1951] Conservation de la matière : vitesse de la surface $[m. s^{-1}]$ $\frac{\partial}{\partial s}(\vec{j_s})$

$$v_n = v\delta_s \frac{\partial}{\partial t}$$

 $\kappa_1 > \kappa_2$ $\Rightarrow \Delta \mu_1 > \Delta \mu_2$ $\Longrightarrow \frac{\partial}{\partial s} (\Delta \mu_2 - \Delta \mu_1) < 0$ $\Rightarrow j_s > 0$

Description des mécanismes pris en compte Diffusion aux interfaces (jdg et interface soudée-diffusée)

 $\sigma_{n1} < \sigma_{n2}$ $\Rightarrow \Delta \mu_1 > \Delta \mu_2$ $\Rightarrow \frac{\partial}{\partial s} (\Delta \mu_2 - \Delta \mu_1) < 0$ $\Rightarrow j_s > 0$

 σ_{n2}

Description des mécanismes pris en compte Equilibre des tensions superficielles au point triple

Aux points triple : équilibre des tensions superficielles

$$\sum_{i=1}^{3} \gamma_i \vec{t_i} = \vec{0}$$
[Herring, 1951
$$2\gamma_s \cos\left(\frac{\theta_{eq}}{2}\right) = \gamma_i$$

Résolution globale

Différences finies sur domaine 1D Surface libre

Schéma aux différences finies pour résoudre la diffusion le long de la cavité :

$$\kappa_M = \frac{2\varphi_M}{l_{M-1} + l_M}$$

Schéma aux différences finies :

$$v_n = v \delta_s \frac{\partial}{\partial s} (\vec{j}_s) \longrightarrow v_{n_M} = v \delta_s (j_{s_{M-1}} - j_{s_M}) \frac{2}{l_{M-1} + l_M}$$

Différences finies sur domaine 1D Traitement du point triple

Equilibre des tensions superficielles aux points triples :

Quels points situés à 1nm du point triple vérifient $2\gamma_s \cos\left(\frac{\theta_{eq}}{2}\right) = \gamma_i$?

Différences finies sur domaine 1D Traitement du point triple

Equilibre des tensions superficielles aux points triples :

Quels mouvement associé aux point triples ? => Bilan de matière autour du point triple

Validation avec le modèle de Mullins Diffusion de surface et équilibre point triple

Comparaison avec le modèle analytique de Mullins

Evolution isotherme de l'intersection d'un joint de grain orthogonal à une surface plane

Différences finies sur domaine 1D Diffusion à l'interface

Différences finies sur domaine 1D Diffusion à l'interface

Modèle par tranche : [Cocks et Ashby, 1982] et beaucoup d'autres

> le volume d'une tranche de l'interface se répartie d'un coup dans la cavité idéalisée (souvent lenticulaire) (i.e. contrainte moyennée)

[Orhan et al., 1999] prend en compte un champ hétérogène, mais s'arrange avec le signe de la contrainte

<u>cea</u>

[Ma et al., 2012] dessinent une contrainte arbitraire

Différences finies sur domaine 1D Diffusion à l'interface

B Quelques exemples

Exemple sur une cavité test

La diffusion en surface explique certaines choses

Cellule élémentaire modélisée

Simulation d'une cavité test

0 s

Cellule élémentaire modélisée

Illustration de l'hypothèse potentiel chimique

Simulation d'une cavité test

Différences finies sur domaine 1D Observations sur géométrie modèle

Différences finies sur domaine 1D Observations sur géométrie modèle

 \rightarrow Courbure qui diminue aux points triples d'angles < 160° \rightarrow arrondissement local des extrémités des cavités

 \rightarrow Courbure qui augmente pour les angles >180 ° \rightarrow la matière est « tirée »

Différences finies sur domaine 1D Reproduction par le modèle de diffusion en surface

Validation sur cavité modèle

Exemple de simulation

HIP cycle 20 MPa 1040 °C

Exemple de simulation

HIP cycle 20 MPa 1040 °C

Expérimental // Simulation

<u>cea</u>

45

Conclusion

Conclusions et perspectives

Le modèle dans son état actuel :

- Décrit l'évolution d'une section de cavité cylindrique unique (en conditions isobar et isotherme)
- Qualitativement cohérent avec l'expérimental
- Encore du travail sur les hypothèses (singularité, et couplage 1D <-> 2D sur interface)

Pour aller plus loin :

- Ajout du contact et formation de sous-cavités
- Terminer la comparaison quantitative
- Application au contact de deux profils de surfaces.

Questions ?

Références

- Maunay, Matthieu. « Echangeur de chaleur obtenu par soudage-diffusion : simulation des déformées et prédiction de la tenue mécanique des interfaces ». PhD Thesis, Université Grenoble Alpes, 2016.
- Takahashi, Y, F Ueno, et K Nishiguchi. « A Numerical Analysis of the Void-Shrinkage Process Controlled by Surface-Diffusion ». *Acta Metallurgica* 36, nº 11 (November 1st 1988): 3007-18.
- Hill, A., et E. R. Wallach. « Modelling Solid-State Diffusion Bonding ». Acta Metallurgica 37, nº 9 (September 1st 1989): 2425-37.
- Ferguson, Bryan. « Modeling and Experimental Analysis of Superplastic Forming and Diffusion Bonding ». PhD Thesis, University of Washington, 2020.
- Orhan, N, M Aksoy, et M Eroglu. « A New Model for Diffusion Bonding and Its Application to Duplex Alloys ». *Materials Science and Engineering: A* 271, nº 1 (November 1st 1999): 458-68.
- Ma, RuiFang, MiaoQuan Li, Hong Li, et WeiXin Yu. « Modeling of Void Closure in Diffusion Bonding Process Based on Dynamic Conditions ». Science China Technological Sciences 55, nº 9 (September 1st 2012): 2420-31.

This area is blocked by the live video from the lecture hall or your webcam.

(Parenthèse) : problème avec la loi 'VISCOPLASTIQUE' 'PARFAIT'

'VISCOPLASTIQUE' 'CHABOCHE' 'BBAR'

51

Implantation dans PASAPAS

Résolution de la diffusion pendant l'appel de PASAPAS

→ Extraction champ méca depuis la table ESTIMATION (donc valeurs à la fin du pas de temps), servent de données d'entrée sur le même pas pour la diffusion car résolution implicite.

Dans PERSO1 :

→ Conf déformée à la fin du pas méca (utilisation de 'WTABLE'.'GEO_DEB' en grands déplacements)

- → Calcul contrainte normale
- → Envoi à Python
- → Résolution de la diffusion
- → Conf après ajout de la diffusion
- → Remaillage
- ➔ Conf après remaillage
- → Ecriture de la géométrie en fin de pas pour python
- → Mise à jour de 'ESTIMATION'.'DEPLACEMENTS' et 'WTABLE'.'GEO_DEB'