CALCUL BLOCS-À-BLOCS DE MAÇONNERIES AVEC CAST3M : Implémentation de nouveaux modèles de joints

École nationale supérieure d'architecture Paris-Malaquais

INTRODUCTION

Chantier scientifique Notre-Dame de Paris, groupe de travail Génie Civil et calcul de structure

• Cinq laboratoires de recherche dont GSA

• Modélisation par méthode des éléments finis bloc-à-bloc avec interfaces

Deux blocs tridimensionnels séparés par une interface bidimensionnelle Paul Nongayrède, Etudes de voûtes sexpartites par MEF blocs-à-blocs, annexe GSA, 2021

MINISTÈRE DE LA CULTURE

Liberté Égalité Fraternité

Intérieur de la cathédrale Notre-Dame de Paris après la pose des filets Crédits: Alexis Komenda, C2RMF, ministère de la Culture Hypothèses

Modèles joints sec et cohésif

Routine coul3.eso

Modèle de Mohr-Coulomb modifié

Modèles endommageables

Hypothèses

Arc boutant de Notre-Dame de Paris Eugène Viollet-Le-Duc, <u>Dictionnaire raisonné de l'architecture</u> <u>française du XI^{ème} au XVI^{ème} siècle</u>, 1856

Stratégie de modélisation adoptée: (a) approche micro-échelle détaillée, (b) approche micro-échelle simplifiée

<u>D'après:</u> Paulo B. Lourenço, Computational strategies for masonry structures: multi-scale modelling, dynamics, engineering, applications and other chalenges, Congreso de Métodos Numéricos en Ingeniería, 2013

Propagation courante de la fissuration

Vincent Venzal, Modélisation discrète du comportement mécanique des ouvrages maçonnés en pierre, Université de Bordeaux, 2020

Hypothèses

Modélisation des blocs

Modélisation des joints

6

Joints sec et cohésif

Modèle joint sec

Modèle élasto-plastique avec critère de Coulomb

Paramètres avec les valeurs utilisées dans les calculs suivants

$$\begin{array}{rcl} K_{S} & = & 18,5 & GPa. \, m^{-1} & & \varphi \\ K_{N} & = & 18,5 & GPa. \, m^{-1} & & C \\ K_{N}' & = & 37 & GPa. \, m^{-1} & & R_{trad} \\ \varepsilon_{CN} & = & 0,1 & mm \end{array}$$

$$p = 38,7^{\circ}$$

 $C = 0$
 $R_{trac} = 0$

Test doublet

Déplacement imposé

Modèle joint sec

Traction – Cisaillement (kN et mm)

Compression – Cisaillement (kN et mm)

Modèle joint sec

Déplacements finaux dans le mur (déformée x50)

Poussée en tête de mur en fonction du déplacement imposé

Modèle cohésif

Modèle élasto-plastique avec critère de Mohr-Coulomb avec rupture fragile en traction

Traction – Cisaillement (kN et mm)

Compression – Cisaillement

(kN et mm)

Modèle cohésif

Déplacements finaux dans le mur (déformée x50)

Poussée en tête de mur en fonction du déplacement imposé

Routine coul3.eso

Organigramme de coul3.eso

Tir élastique

- $(\sigma^{(N)}; \tau^{(N)})$ contraintes au pas précédent
- $(\delta_p^{(N)}; \gamma_p^{(N)})$ déplacement plastique, pas N
- variables internes au pas N
- $(\Delta \delta^{(N)}; \Delta \gamma^{(N)})$ incrément de déplacement imposé
- caractéristiques matériau

Début (entrées)

 $(\sigma^{(N)};\tau^{(N)})$

 $(\delta_p^{(N)};\gamma_p^{(N)})$

 $(\delta_{el}^{(N)};\gamma_{el}^{(N)})$

 $(\delta^{(N)};\gamma^{(N)})$

Principe du tir élastique

Sorties:

- $(\sigma^{(N+1)}; \tau^{(N+1)})$ contraintes finales
- $(\Delta \delta_p^{(N)}; \Delta \gamma_p^{(N)})$ incrément de déplacement inélastique
- variables internes finales

ROUTINE COUL3.ESO

• Définition des critères d'écoulement plastique

 $CRICIS = |\tau| + \sigma \tan(\varphi) - C$ $CRINOR = \sigma - R_t$ $CRICIP = -|\tau| + \sigma \cot(\varphi) + C$ $ABSTAU = |\tau| - C$

• Possibilité d'ajouter un angle de dilatance

• Rupture en cisaillement

Modèle élasto-plastique avec critère de Mohr-Coulomb et rupture fragile en traction et en cisaillement

Paramètres avec les valeurs utilisées dans les calculs suivants

Traction – Cisaillement (kN et mm)

Compression – Cisaillement (kN et mm)

-5.0e-06

- 2.0e-03 - 0.0015

- 0.001 - 0.0005

-5.0e-06

-5.0e-06

Poussée en tête de mur en fonction du déplacement imposé

Déplacements finaux dans le mur (déformée x50)

Résultats expérimentaux traction simple Vincent Venzal, op. cit. , 2020

Principe de l'endommagement dans un joint Vincent Venzal, op. cit., 2020 Modèles endommageables

24

Traction – Cisaillement (kN et mm)

Compression – Cisaillement (kN et mm)

Déplacements finaux dans le mur (déformée x50)

Poussée en tête de mur en fonction du déplacement imposé

26

MODÈLE ENDOMMAGEABLE 2

Modèle endommageable zone cohésive zone frictionnelle

Patin frottant représenté par un critère de Coulomb

 $D \in [0; 1]$

 $\beta = \frac{\delta^i}{\gamma^i}$

 φ_0 =

38,7 °

180 $GPa.m^{-1}$

280 $GPa.m^{-1}$

 $= 400 \ GPa.m^{-1}$

 $= 120 \ GPa.m^{-1}$

=

=

 K_N^i

Traction – Cisaillement (kN et mm)

Compression – Cisaillement (kN et mm)

Déplacements finaux dans le mur (déformée x50)

Poussée en tête de mur en fonction du déplacement imposé

CONCLUSION

Importance de la formulation du modèle de joint

Perspective: détermination précise des paramètres matériau

Vincent Venzal, op. cit. , 2020

Merci de votre attention