Concrete poromechanics

Implementation of a hygro-thermo-viscoelastic-damage formulation in Cast3M

<u>Giuseppe Sciumè^{1,2}</u> and <u>Stefano Dal Pont³</u>

¹Institute of Mechanics and Mechanical Engineering of Bordeaux, University of Bordeaux ²Institut Universitaire de France ³Laboratoire Sols, Solides, Structures, Risque, University of Grenoble-Alpes

Club Cast3M, 24 November 2023

institut universitaire de France

Multi-physics modeling of concrete behavior

Early ages behavior

Aging

Accident

Proposition of an unified formulation

What is the initial HTM state of the specimen?

Initial idea: Sequential solution

Problems

- Early-age / aging solution no totally compatible as initial condition;
- Not practical methodology.

Alternative:

Development of a **unified mathematical model** accounting for early age, aging and high temperature behavior; The task has been realized with care (no just merging the two codes) to obtain a compact and consistent physical model for concrete

The multiphase system

Definition of phases & governing equations

Micro \rightarrow Macro approach *via* averaging theories

3 PHASES ARE CONSIDERED

1 Solid phase, (s) formed by

- Anhydrous cement: Cs
- Aggregates: As
- ✤ Hydrates: Hs

Permeated by

1 Liquid phase (*I*): liquid water

- 1 Gaseous phase (g) mixture of:
- Dry air (Ag)
- Water vapour, (Wg)

Liquid

Representative Elementary Volume (REV)

Reference approach of

Gawin, Pesavento & Schrefler

Micro \rightarrow Macro approach *via* averaging theories

3 PHASES ARE CONSIDERED

1 Solid phase, (s) formed by

- Anhydrous cement: Cs
- Aggregates: As
- ✤ Hydrates: Hs

Permeated by

1 Liquid phase (*I*): liquid water

- 1 Gaseous phase (g) mixture of:
- Dry air (Ag)
- Water vapour, (Wg)

Representative Elementary Volume (REV)

Volume Fractions occupied by the three phases:

 $\varepsilon^{s} + \varepsilon^{g} + \varepsilon^{l} = 1$

Porosity & Saturation: $S^{g} + S^{l} = 1$

 $\varepsilon^{s} = 1 - \varepsilon$ $\varepsilon^{l} = \varepsilon S^{l}$ $\varepsilon^{g} = \varepsilon S^{g}$

Gaseous phase is a binary mixture of vapour and dry air ;

- The gaseous phase, vapour and dry air are perfect gazes ;
- > **Dalton's law** is assumed valid: $p^{gA} + p^{gW} = p^g$;
- > Clapeyron law is used (Kelvin's eqn not suitable due to fluctuations of p^g)

Governing equations

Mass balance eqs (water species, dry air)

$$\frac{\partial \left(\varepsilon^{l} \rho^{l}\right)}{\partial t} + \frac{\partial \left(\varepsilon^{s} \rho^{g} \omega^{\overline{Wg}}\right)}{\partial t} - \nabla \cdot \left[\rho^{l} \frac{k_{rel}^{l} \mathbf{k}}{\mu^{l}} \nabla \left(p^{g} - p^{c}\right)\right] - \nabla \cdot \left(\rho^{gW} \frac{k_{rel}^{g} \mathbf{k}}{\mu^{g}} \nabla p^{g}\right) - \nabla \cdot \left[\rho^{gW} \frac{M_{A} M_{W}}{M_{g}^{2}} D^{\overline{Wg}} \nabla \left(\frac{p^{gW}}{p^{g}}\right)\right] = -\frac{h H_{S}}{M_{g}^{2}}$$

Sink/source term due to cement hydration/dehydration

Enthalpy balance eqn

$$\left(\rho C_{p}\right)_{\text{eff}} \frac{\partial T}{\partial t} - \nabla \cdot \left(\chi_{\text{eff}} \nabla T\right) = L_{hydr} \frac{d\Gamma}{dt} + H_{vap} \frac{\partial \left(\varepsilon^{l} \rho^{l}\right)}{\partial t} + H_{vap} \frac{M}{M} - H_{vap} \nabla \cdot \left[\rho^{l} \frac{k_{rel}^{l} \mathbf{k}}{\mu^{l}} \nabla \left(p^{g} - p^{c}\right)\right]$$

Heat released/absorbed

 $\frac{\partial \left(\varepsilon^{g} \rho^{g} \omega^{\overline{Ag}}\right)}{\partial t} - \nabla \cdot \left(\rho^{gA} \frac{k_{rel}^{g} \mathbf{k}}{\mu^{g}} \nabla p^{g}\right) + \nabla \cdot \left[\rho^{g} \frac{M_{A} M_{W}}{M_{e}^{2}} D^{\overline{Wg}} \nabla \left(\frac{p^{gW}}{p^{g}}\right)\right] = 0$

Terms related to evaporation/condensation

Linear momentum balance equation:

$$\nabla \cdot \left(\frac{\partial \mathbf{t}}{\partial t}\right) + \frac{\partial \rho}{\partial t} \,\mathbf{g} = 0$$

Primary variables: *p^g p^c T* **u** Int. variables: *Γ D*

- Unified model for hydration / fire dehydration;
- Explicit introduction of Powers model. This reduce model complexity and parameters;
- New retention curve accounting for changes of microstructure and water surface tension;
- Autogenous and drying shrinkage finely computed with a sole constitutive model based on effective stress principle;
- Mechanical viscoelastic-damage model

Unified model for hydration / fire dehydration;

- Explicit introduction of Powers model. This reduce model complexity and parameters;
- New retention curve accounting for changes of microstructure and water surface tension;
- Autogenous and drying shrinkage finely computed with a sole constitutive model based on effective stress principle;
- Mechanical viscoelastic-damage model

Unified model for hydration / fire dehydration

The hydration degree is an internal variable of the model

The hydration & dehydration model

Coupled evolution model (equivalent hydr. degree) :

Irreversibility of fire dehydration:

$$\frac{\mathrm{D}^{s} F}{\mathrm{D} t} = \begin{cases} \frac{\partial F(T)}{\partial T} \left\langle \frac{\mathrm{D}^{s} T}{\mathrm{D} t} \right\rangle_{+} & \text{for } T(t) \geq T_{\mathrm{max}}(t) \\ 0 & \text{for } T(t) < T_{\mathrm{max}}(t) \end{cases}$$

$p^{c}-S^{l}$ relationship

> An unified eqn for a reliable coupling between hydrates formation/degradation & water physics

$p^c - S^l$ relationship: the dehydration process

$$a(T,\tilde{\Gamma}) = a_0 \left(\frac{\tilde{\Gamma}+0.1}{1.1}\right)^c \frac{\gamma_{(T)}^{w}+0.05\gamma_0^{w}}{1.05\gamma_0^{w}}$$

An unified eqn for a reliable coupling between hydrates formation/degradation & water physics

$p^c - S^l$ relationship: the dehydration process

Previous law

$$S = \left[\left(\frac{E}{a} p^c \right)^{\frac{b}{b-1}} + 1 \right]^{(-1/b)}$$

$$a = \text{constant} \quad \text{if } T \leq 100^{\circ}\text{C},$$
$$a = (Q_3 - Q_2) \left[2 \left(\frac{T - T_b}{T_{crit} - T_b} \right)^3 - 3 \left(\frac{T - T_b}{T_{crit} - T_b} \right)^2 + 1 \right] + Q_2 \quad \text{if } T > 100^{\circ}\text{C}$$

Effect of solid cement matrix dehydration

$$E = \left[\frac{T_{crit} - T_0}{T_{crit} - T}\right]^N \text{ if } T < T_{crit},$$
$$E = \frac{N}{z}E_0T + \left[E_0 - \frac{N}{z}E_0(T_{crit} - z)\right] \text{ if } T \ge T_{crit},$$

Effect of temperature on surface tension of water

Extension of Van Genuchten model (in which $E_0 = 1$ and $a = a_0 = const.$) *Giannuzzi (2000) - ENEA private communication*

$$S^{\prime} = \left[\left(\frac{p^{c}}{a(T, \tilde{\Gamma})} \right)^{\frac{b}{b-1}} + 1 \right]^{-\frac{1}{b}}$$

$$a(T,\tilde{\Gamma}) = a_0 \left(\frac{\tilde{\Gamma}+0.1}{1.1}\right)^c \frac{\gamma_{(T)}^w + 0.05\gamma_0^w}{1.05\gamma_0^w}$$

An unified eqn for a reliable coupling between hydrates formation/degradation & water physics

Big advantage:

irreversibility of matrix dehydration properly accounted

Mechanical viscoelastic-damage model

Accounting for hydration degree and hygro-thermal strains

Biot's effective stress: $\dot{\mathbf{t}}^{\mathrm{B}} = \dot{\tilde{\mathbf{t}}} + \alpha \dot{p}^{s} \mathbf{1}$

Biot's effective stress: $\dot{\mathbf{t}}^{\mathrm{B}} = \dot{\tilde{\mathbf{t}}} + \alpha \dot{p}^{s} \mathbf{1}$

 $\mathbf{t} = (1 - D) \tilde{\mathbf{t}}$

Shrinkage computed consistently with the effective stress principle of porous media mechanics.

$$\dot{\tilde{\mathbf{t}}} = \mathbf{E}_{(\Gamma)} \dot{\mathbf{\varepsilon}}_{el} = \mathbf{E}_{(\Gamma)} \left(\dot{\mathbf{\varepsilon}} - \dot{\mathbf{\varepsilon}}_{th} - \dot{\mathbf{\varepsilon}}_{cr} - \dot{\mathbf{\varepsilon}}_{sh} \right)$$

The damage model

Tensile branch of the t-e relationship

The damage model

Four points bending test

Mechanical properties vs hydration degree

De Schutter type equation:

$$\frac{M(\Gamma)}{M_{1}} = \left\langle \frac{\Gamma - \Gamma_{0}}{1 - \Gamma_{0}} \right\rangle_{+}^{\gamma_{M}}$$

Applications cases

- Modeling of a repaired beam
- Wall exposed to high temperature

A multiphysics model for concrete at early age applied to repairs problems G. Sciumè *et al.* 2013 *Engineering Structures*

Three identical reinforced beams* are considered. Two of these beams, after the hydrodemolition of 30 mm of the upper part, had been repaired: one using the **ordinary concrete (OC)** and the other using the **ultra-high performance fiber reinforced concrete (UHPC).** The third beam is the reference specimen.

*These repaired beams are real cases analyzed experimentally by Bastien Masse (2010).

Identification of the input parameters

Evolution of the Young's modulus and Poisson's ratio

Autogenous and drying shrinkage

Modeling of the three repaired beams

Damage evolution

Damage at 5 days, at 30 days and at 120 days after the repair of two of the beams .

3-points bending test

Force/strain, force/displacement and crack opening.

Force versus averaged strain of the compressed fiber (a); force versus displacement curves (numerical results) (b); crack width (c).

Regarding the crack opening (generalization of OUVFISS)

Sciumè G., Benboudjema F. (2017) A viscoelastic Unitary Crack-Opening strain tensor for crack width assessment in fractured concrete structures. MECHANICS OF TIME-DEPENDENT MATERIALS, 21(2): 223–243

Concrete wall exposed to high temperature

What is the initial HTM state of the specimen?

Initial idea:

Sequential solution

Problems

- Early-age / aging solution no totally compatible as initial condition;
- Not practical methodology.

LOW RATE HEATING (2 K/MIN) FOR A 60-CM WALL

- A 1-dimensional case is simulated numerically to analyse and quantify the impact of age on the computed results;
- ✤ A 60-cm wall exposed from both sides to heating is modelled;
- The concrete is the OC adopted for the COST Action TU1404 benchmark, its water to cement ratio is of 0.45.

Concrete wall exposed to high temperature

Concrete wall exposed to high temperature

Concrete cylinder exposed to high temperature

Thermo-hygro-chemical Model of Concrete - From Curing to HighTemperature Behavior G. Sciumè, M. H. Moreira, S. Dal Pont* (2023) *submitted*

Conclusions

Modèle bientôt disponible sur Cast3M :

- Partie THC : matériau dans la formulation THERMO-HYDRIQUE
- Partie MEC : évolution de l'actuel FLUTRA;

Thank you for your attention !

Acknowledgements M. H. Moreira (Brazilian PhD student)