

Calcul des voûtes de Notre-Dame de Paris

Club Cast3M – 25 novembre 2022

Paul NOUGAYREDE paul.nougayrede@paris-malaquais.archi.fr

Maurizio BROCATO maurizio.brocato@paris-malaquais.archi.fr

Contexte de l'étude

Comment évaluer la réserve de stabilité des voûtes en maçonnerie de la cathédrale avant et après l'incendie ?

Quelques problématiques :

- Répondre à l'urgence : temporalité du chantier très resserrée
- Intervention patrimoniale : absence de cas de charges normalisés ; nécessité de formuler rapidement des propositions pour la modélisation de l'incendie, des chargements horizontaux...
- Mission d'Assistance à la Maîtrise d'Œuvre : préconisations majoritairement qualitatives plutôt que strictement quantitatives

Contexte de l'étude

Benchmark : 3 modélisations mécaniques différentes réalisées dans 3 laboratoires différents (LMDC Toulouse, LMGC Montpellier et GSA Paris)

Modèle continu éléments finis Homogénéisation avec endommagement *Code_Aster*

malaquais,

Modèle blocs à blocs éléments discrets Contact dynamique adoucissant aux interfaces *LMGC90*

Modèle blocs à blocs éléments finis Joints de Mohr Coulomb *Cast3M 2021* Avantages :

- Mise en commun des savoir-faire de chaque laboratoire quand à la modélisation des structures en maçonnerie : génération de la géométrie initiale, méthodes de convergence, post-traitement...
- Convergence de résultats indépendants : permet de se "rassurer", d'établir des marges d'erreur
- Profiter des différentes caractéristiques propres à chaque modélisation : rapidité d'exécution, précision, types de résultats...

Sommaire

- 1. Géométrie et maillage Compatibilité des interfaces
- 2. Structure sous poids propre et incendie "Viscosité numérique" et précision
- 3. Déplacements des appuis Points de fonctionnement

La voûte du chœur :

Non prise en compte de la partie inférieure du mur gouttereau

Le matériau "maçonnerie" : les différentes approches

Tiré de Parent, 2015

Blocs de pierre 3D maillés en TET4 : modèle isotrope élastique

Joints de mortier 2D maillés en JOT3 : modèle isotrope élastique plastique "joints Coulomb" (modèle Cast3M de joint dilatant avec critère de Mohr-Coulomb et écoulement associé)

<u>Procédure (i)</u> : nuage de point \rightarrow géométrie bloc à bloc type "MAP"

Réalisée par le laboratoire MAP Marseille Géométrie bloc à bloc fournie sous forme d'un fichier Rhinocéros contenant le volume global découpé en blocs

Problème : ces volumes sont peu propices à la génération des éléments joints 2D JOT3 (avec la procédure GENJ)

<u>Procédure (ii)</u> : géométrie bloc à bloc type "MAP" → géométrie bloc à bloc avec interfaces compatibles Codée dans un programme Python pour Rhinocéros : fonctionne pour tout type de géométrie bloc à bloc type "MAP" quelconque

2. Création des surfaces manquantes

Calcul des voûtes de Notre-Dame de Paris

3. Permutation de l'ordre des sommets des surfaces de joints

> <u>Procédure (iii)</u> : géométrie bloc à bloc avec interfaces compatibles → maillage Cast3M TET4/JOT3 Lecture de la géométrie des blocs dans Cast3M : boucle REPETER à 4 niveaux d'itérations :

- 1. Géométrie et maillage Compatibilité des interfaces
- <u>Procédure (i)</u> : nuage de point \rightarrow géométrie bloc à bloc type "MAP"
- <u>Procédure (ii)</u> : géométrie bloc à bloc type "MAP" \rightarrow géométrie bloc à bloc avec interfaces compatibles
- <u>Procédure (iii)</u> : géométrie bloc à bloc avec interfaces compatibles → maillage Cast3M TET4/JOT3

Application progressive du poids propre sur le quart de voûte (953 blocs)

Application progressive du poids propre sur le quart de voûte (953 blocs)

Conditions limites :

- Conditions de symétries : déplacement <u>bloqué en X</u>, déplacement <u>bloqué en Y</u>
- Bases des culées : déplacement bloqué en X, Y, Z
- Bases du mur gouttereau : déplacement <u>bloqué en X,</u> <u>Y et imposé de -2,6 mm selon Z pendant</u> <u>l'application du poids propre</u> (= tassement équivalent des chapelles inférieures pendant le pp)

Chargement de poids propre : champ appliqué selon une évolution linéaire de 0 à 100 %

On s'attend donc à une courbe de poussée linéaire puis constante en réponse

Chargement de poids propre : champ appliqué selon une évolution linéaire de 0 à 100 %

On s'attend donc à une courbe de poussée linéaire puis constante en réponse

<u>Problème :</u> on observe un phénomène de "viscosité numérique" : la poussée obtenue en sortie de simulation n'est pas constante alors que le chargement n'évolue plus

Paramètres du calcul qui permettent de moduler le phénomène de "viscosité numérique" :

- Critère de résidu minimum de la procédure PASAPAS
- Densité du maillage
- Vitesse de la loi de chargement

	Résidu minimum	Densité du maillage	Vitesse du chargement
Diminution (toutes choses égales par ailleurs)	Diminution de la "viscosité numérique" Augmentation du temps de calcul	Diminution de la "viscosité numérique" Augmentation du temps de calcul	Augmentation de la "viscosité numérique" Diminution du temps de calcul
Augmentation (toutes choses égales par ailleurs)	Augmentation de la "viscosité numérique" Diminution du temps de calcul	Augmentation de la "viscosité numérique" Diminution du temps de calcul	Diminution de la "viscosité numérique" Augmentation du temps de calcul

Gradient de dégradation du module d'Young E dans les voûtains suite à l'incendie rouge = 1 % du E de base, bleu = 100 %

Cette simulation particulière de l'incendie ne permet pas de retrouver les ordres de grandeurs des déformations constatées in situ entre avant et après l'incendie : le couplage thermomécanique est nécessaire (étude en cours)

Simulation de l'incendie :

- État initial : structure après poids propre
- Incendie appliqué à l'extrados des voûtains
- Hypothèse : dégradation du module d'Young des pierres uniquement

•

Chargement vertical de plomb sur les arases supérieures des tas de charge

Déplacements des interfaces appuis-voûtes :

Conditions limites :

- Conditions de symétries : déplacement <u>bloqué en X</u>, déplacement <u>bloqué en Y</u>
- Déplacement <u>bloqué en X, Y, Z</u>
- Déplacement imposé selon +/- X

Calcul des voûtes de Notre-Dame de Paris

Principe : on sollicite en déplacement horizontal δ les interfaces appuis-voûte et on récupère les efforts résultants F_i aux interfaces

<u>2^{ème} étape :</u> Mises en déplacements... ...vers l'intérieur du vaisseau central

<u>1^{ère} étape :</u>

<u>3^{ème} étape :</u>

Mises en déplacements...

...vers l'intérieur du vaisseau central

Calcul des voûtes de Notre-Dame de Paris

Lois de comportement : poussées en fonction du déplacement horizontal

<u>4^{ème} étape :</u>

Mises en déplacements...

...vers l'intérieur du vaisseau central

Calcul des voûtes de Notre-Dame de Paris

Lois de comportement : poussées en fonction du déplacement horizontal

On obtient ainsi :

- Les réserves de capacités en force côté arc-boutant et côté voûte selon les cas
- Une manière de comparer les différentes voûte de la cathédrale
- Une évaluation de l'effet de l'incendie, de l'ajout d'une chape de confortation ou de tout autre chargement sur les capacités de la voûte

Quelques ordres de grandeur de calculs numériques : Nombre d'éléments :

384 855 nœuds 1 101 813 éléments Puissance de calcul à distance de calcul :

28 processeurs 2,4 GHz 120 Go de RAM

6 - 7 jours pour un déplacement imposé de 15 mm

Déplacements vers l'intérieur

Contrainte principale σ_{III} sur la déformée amplifiée 20 fois

Déplacements vers l'extérieur

Calcul des voûtes de Notre-Dame de Paris