

A numerical study of brittle fracture in monocrystalline silicon

Boulaajaj Zineb, Fourmeau Marion, Nélias Daniel

Univ Lyon, INSA Lyon, CNRS, LaMCoS

 25^{th} of November 2022

Background : Crack velocity measurement

- Crack speeds nearing waves' velocities ~ Cr
- Small experimental specimen \rightarrow Very short phenomena

Background : Crack velocity measurement on monocrystalline silicone

- Brittle material
- Used in photovoltaic cells (wafers)
- Interesting fracture properties (cleavage fracture)

<u>Figure 1</u>: Measurement of crack speed using high-speed camera (Wang, 2018)^[1]

[1] M. Wang, L. Zhao, M. Fourmeau, D. Nelias, Journal of the Mechanics and Physics of Solids 122 (2019) 472–488

Introduction

Experimental set-ups Crack velocity

Numeri

Numerical model parameters

Results

Background : Crack velocity predictions vs Crack velocity measurement

- Freund's analytical solution for elastodynamics problems of brittle fracture :

$$V_{crack_max} = C_r$$

- Experimental data :

Dynamic brittle fracture model : Numerical settings

Introduction	Experimental set-ups	Crack velocity	Numerical model parameters	Results	Future perspectives	
--------------	----------------------	----------------	----------------------------	---------	---------------------	--

Numerical model : Specimen dimensions and mesh properties

Specimen mesh :

-

- Spatial discretization → Coarse mesh: 15 x 30 x 6 éléments
- A simplified model \rightarrow Dimensions: 7 x 6 x 1 mm
 - Element type \rightarrow Structural linear Hexahedron CUB8

Material properties:

- Monocrystalline silicone

Poisson's ratio = 0.28

Young's modulus= 130 GPa

Density =
$$2.33 * 10^{-9} tons/mm^3$$

Fracture energy
$$^{[3]}$$
 = 1.73 * 10^{-3} mJ/mm²

[3] Masolin et al., « Thermo-Mechanical and Fracture Properties in Single-Crystal Silicon ».

Numerical model : Specimen dimensions and mesh properties

Crack representation:

- Type \rightarrow Straight-through notch
- Length \rightarrow 1.2 mm breaking 6 elements
- XFEM \rightarrow Discontinuity enrichment only Heaviside function

$$H(x) = \begin{cases} +1 & \text{if } x > 0\\ -1 & \text{if } x < 0 \end{cases}$$

<u>Crack tracking :</u>

- Using both level sets : $\phi(x)$ and $\psi(x)$

Numerical model : Mechanical loading

- Tensile loading \rightarrow Imposed displacement
- Two mechanical loadings are applied successively

1. Quasi-static loading

- Static computations
- Retrieve the first value of the displacement loading above which the crack onset is initiated (checked by computing the Jintegral)

2. Constant loading

- Dynamic computations
- The value of the applied loading is constant. The applied displacement is the one retrieved after undergoing a quasi-static loading

Numerical model : Temporal integration

1. Implicit integration scheme

- Large time step \rightarrow Fast calculations
- No dynamic phenomena is considered
- Store enough energy within the specimen to trigger crack propagation afterwards

Using the available method PASAPAS – Cast3m

2. Explicit integration scheme

- Small time step \rightarrow 2.23 * 10⁻⁹ s
- Follow the dynamic behaviour of crack propagation
- Follow the rapid crack propagation without providing any external work

Implementing Finite Difference Scheme in Cast3M

Numerical model : Temporal integration – Mass lumping

XFEM : discontinuous enrichment

 \rightarrow New DoF : 'AX' , 'AY' and 'AZ'

A mass lumping technique including the new Dofs^[4]

[4] Menouillard, T.; Réthoré, J.; Moes, N.; Combescure, A.; Bung, H. Mass lumping strategies for x-fem explicit dynamics: application to crack propagation. International Journal for Numerical Methods in Engineering 2008, 74, 447–474

In	tro	du	ct1	nn
	ιυ	uu	ιu	υΠ
				-

Numerical model : Crack propagation

Numerical model : Results

<u>Figure 2</u>: Crack propagation – Amplification = 1

Introduction	Experimental set-ups	Crack velocity	Numerical model parameters	Results	Future perspectives	13

Numerical model : Results

Numerical model : Results

• J-integral and crack length calculations

- Oscillation of J values : reaching negative values !
 - Crack propagation is very constrained

unless J values allow 1,2,... elements' fracture \rightarrow discontinuous enrichment only

Introduction

Numerical model : Future perspectives

Future perspectives

Evaluate the dynamic J integral (Depending on the crack speed)
 Use of the singular enrichment

> Mass lumping technique using both the discontinuous and the singular enrichment

Thank you for your attention

Background : On simulating high crack velocities

1- Crack inititation criteria :

Energetic approach:

$$dW_{fiss} = 2\gamma dA$$

 $G = \int_{\partial \Omega_2} \mathbf{F}_d \cdot \frac{\partial \mathbf{u}}{\partial A} dS + \int_{\Omega} \mathbf{f}_d \cdot \frac{\partial \mathbf{u}}{\partial A} d\Omega - \frac{\partial W_{elas}}{\partial A}$

Local approach : stress intensity factors

$$K_{1} = K_{1}^{cin} = \lim_{r \to 0} \sqrt{2\pi r} \sigma_{22}(\theta = \pi) = \lim_{r \to 0} \frac{\mu}{1+k} \sqrt{\frac{2\pi}{r}} \left[u_{2}(\theta = \pi) \right]$$

$$K_{2} = K_{2}^{cin} = \lim_{r \to 0} \sqrt{2\pi r} \sigma_{12}(\theta = \pi) = \lim_{r \to 0} \frac{\mu}{1+k} \sqrt{\frac{2\pi}{r}} \left[u_{1}(\theta = \pi) \right]$$

$$K_{3} = K_{3}^{cin} = \lim_{r \to 0} \sqrt{2\pi r} \sigma_{23}(\theta = \pi) = \lim_{r \to 0} \frac{\mu}{4} \sqrt{\frac{2\pi}{r}} \left[u_{3}(\theta = \pi) \right]$$

2- Crack propagation criteria :

In general, crack velocity/crack extension is governed by empirical laws, such as :

* Kanninen Law (Crack velocity)

$$\dot{a} = \left(1 - \frac{K_{1c}}{K_{\theta\theta}^{dyn}}\right)^{1/m} c_{\eta}$$

If $G < 2 \gamma$: No propagation If $G = 2 \gamma$: Crack initiation and stable crack growth If $G > 2 \gamma$: Unstable crack growth

- Maximum circumferential stress Criterion
- Maximum Radial Shear Stress Criterion
- Minimum Strain Energy Density Criterion
- Modified Twin Shear Stress Factor Criterion^[2]

Paris' Law (Rate of growth of a fatigue crack)

$$\frac{da}{dN} = C(\Delta K)^m$$