

Modélisation du comportement thermomécanique de pièces en acier 316L produites par fabrication additive arc-fil (WAAM)

<u>Damien Artières</u>^{1,2,⊠}, Diogo Gonçalves¹, Serge Pascal¹, Sylvain Dépinoy², Vladimir A. Esin² Contributeur·rice·s : Rémi Robidet¹, Hawa Badji¹

¹ Université Paris-Saclay, CEA, Service d'Études Mécaniques et Thermiques, Gif-sur-Yvette, France
 ² Mines Paris, PSL University, Centre des Matériaux - (CNRS UMR 7633), Évry, France

☑ : damien.artieres@cea.fr

Fabrication additive métallique : réalisation de géométries complexes, en minimisant les pertes de métal d'apport.

Procédés de fabrication additive Fusion sur lit de poudre (L-PBF)		Taux de dépôt	Précision géométrique	Efforts de recherche	
		+	+++++	+++++	
Dépôt de matière sous énergie concentrée (DED)	LENS (poudre)	++	+++	++++	
	WAAM (arc-fil)	+++++	+	+++	
	WLAM (laser-fil)	+++	++	++	
Position du dévidoir Électrode		Adaptés	 Wire Arc Additive Manufacturing (WAAM) Wire Laser Additive Manufacturing (WLAM) Adaptés à la production de pièces de grandes dimensions, avec un bon taux de dépôt. 		
Apport de fil	Direction d	e dépôt	influence des paramètres o <mark>étés macroscopiques</mark> et mic acier inoxydable	pératoires du WAAM sur <mark>roscopiques</mark> de pièces en 316L	
Passes déposées —	de fil. Adapté de [Frazier, 20	014]	Couplage expérimental – si	mulation numérique	

Partie 1.Définition d'un modèle thermomécanique
du procédé WAAM (arc-fil)

3

Procédures Cast3M utilisées (1/2)

Simulations par éléments finis avec Cast3M

→ Utilisation des procédures SOUDAGE et WAAM disponibles depuis Cast3M 2021

SOUDAGE Entrées

Table des paramètres procédés (vitesse de dépôt, diamètre de fil, vitesse de fil, puissance de l'arc électrique, largeur de passe)

→ Trajectoire du dépôt en fonction du temps (déplacements de l'électrode avec ou sans apport de matière/arc électrique, temps de refroidissement)

Procédures Cast3M utilisées (2/2)

Simulations par éléments finis avec Cast3M

- WAAM Entrées
- → Table contenant les sorties de **SOUDAGE**
- → Paramètres numériques (pas d'apport de matière, taille de maille, pas de temps de calcul).
- Sorties → Maillage séquencé en fonction du temps. Ajout d'éléments en cours de calcul

→ Liste des temps calculés avec déraffinement progressif lorsque $P_{arc \, électrique} = 0 W$ → Utilisation des procédures SOUDAGE et WAAM disponibles depuis Cast3M 2021

Modèle thermique transitoire non linéaire.

- Conduction dans toute la pièce
- Refroidissement à la surface de la pièce par convection et rayonnement
- Majoration de la convection sous le substrat pour approximer le pompage thermique de la table d'essai.
- Paramètres de l'acier 316L dépendants de la température.

Majoration de la conductivité thermique au-delà de T_{fus} pour approximer les effets fluides (effet Marangoni), non pris en compte

Club Cast3M

Damien ARTIÈRES et al.

Modélisation de l'arc électrique : source gaussienne isotrope transverse

$$Q(r',z') = \sqrt{\frac{2^5}{\pi^3}} \cdot \frac{Q_{tot}}{Z_0 \cdot R_0^2} \cdot e^{-2 \cdot \left(\left(\frac{r'}{R_0}\right)^2 + \left(\frac{z'}{Z_0}\right)^2\right)},$$

avec $\frac{\partial Q_{tot}}{\partial t} = \begin{cases} P_{tot} & \text{lors d'une passe} \\ 0 & \text{sinon} \end{cases}$

Modèle : « apport d'éléments à T_{fus} + puissance complémentaire sous forme de gaussienne »

$$P_{tot} = \frac{U.I.\eta_{source}}{A_{correction}} - \left(\rho_{1450\,^{\circ}C}.H_{mass} + \int_{20}^{1450} \rho(T).c(T)dT\right).\frac{\pi.d^2}{4}.v_f$$

 $A_{correction}$: correction des pertes dues à la géométrie du maillage H_{mass} : enthalpie massique de changement d'état

 η_{source} : rendement de l'arc électrique v_f : vitesse de fil

Club Cast3M

Damien ARTIÈRES et al.

8

Partie 2. Calibration du modèle et réalisations expérimentales

Maillage d'étude

Reproduction des dimensions expérimentales.

Trois zones à différentes densités de maille :

- cordon et substrat sous le cordon ;
- substrat à proximité du cordon ;
- reste du substrat.

3 thermocouples numériques (TC1 à 3).

→ T(t) local pour comparaison à l'expérimental.

Investigation paramétrique (1/2) – monocordons

Critères de sélection [Dass et Moridi, 2019] : Monocordons en acier 316L 1. Sélection visuelle. h 2. Rapport largeur/hauteur : Paramètres considérés : $\alpha = \arctan\left(\frac{2h}{w}\right) \sim 30^{\circ} \Leftrightarrow \frac{w}{h} \sim 3.5$ α Puissance de la source d'énergie, P W р X : direction de dépôt 3. Dilution du cordon dans le substrat : Vitesse de dépôt, v 1000µm Y : direction transverse $d = \frac{p}{p+h} \in [0.1; 0.3]$ Υ Vitesse d'apport de fil, v_f Z : direction de fabrication + : paramétries retenues Puissance de l'arc électrique (W) (a) Plage 3500 satisfaisant X Cordon non continu le critère de = 25 mm 3250 dilution (c) 3000 X Cordon irrégulier 2750 Plage = 25 mm satisfaisant le (e) 2500 critère w/h Cordon correct 2250 1000 2000 3000 4000 = 25 mm

Vitesse d'apport de fil (mm.min⁻¹)

Damien ARTIÈRES et al.

Investigation paramétrique (2/2) – murs et blocs

Trajectoire « raster » (aller – aller)

 $P = 2400 \text{ W}, v = 200 \text{ mm.min}^{-1}, v_f = 2500 \text{ mm.min}^{-1}, \text{trajectoire AA}$

 $P = 2400 \text{ W}, v = 150 \text{ mm.min}^{-1}, v_f = 3125 \text{ mm.min}^{-1}, trajectoire AA$

P = 3000 W, v = 200 mm.min⁻¹, v_f = 3750 mm.min⁻¹, trajectoire AA

Caractérisation géométrique et considération du taux de dépôt.

P = 3000 W, v = 200 mm.min⁻¹, v_f = 3750 mm.min⁻¹, trajectoire AR

Bloc multipasse

P = 3600 W, v = 200 mm.min⁻¹, v_f = 3750 mm.min⁻¹, d_{intercordons} = 70 %, trajectoire A(123)R(321)

Trajectoire utilisée pour la réalisation du bloc multipasse : A(123)R(321).

Damien ARTIÈRES et al.

Critères de calibration : rendement de l'arc électrique, coefficients de convection à la surface de la pièce.

n = 0.9 $H = 30 W/m^2.K$ $H_{pompage} = 200 W/m^2.K$

"Mur 3" P = 3000 W, v = 200 mm.min⁻¹, v_f = 3750 mm.min⁻¹, trajectoire AA

Bon suivi du champ de température durant la fabrication → Simulation satisfaisante à l'échelle macroscopique.

- Mur WAAM de 20 passes simulé pour la paramétrie (P = 3000 W, v = 200 mm.min⁻¹, $v_f = 3750$ mm.min⁻¹, $t_{interpasse} = 100$ s).
 - Vitesse x100, déformations x5

Partie 3. Applications au cas de la réalisation de murs monocordons (échelle macroscopique)

Cyclage thermique dans les pièces réalisées.

[&]quot;Mur 3" P = 3000 W, v = 200 mm.min⁻¹, v_f = 3750 mm.min⁻¹, trajectoire AA

Pour chaque passe : bonne reproduction des dimensions des bains numériques par rapport aux bains expérimentaux.

Cyclages thermiques : refusion de la passe inférieure + restauration des 3 passes précédentes

> Application : suivi de l'histoire thermique. Mise en évidence des zones refondues.

Damien ARTIÈRES et al.

16

Club Cast3M

Temps passé dans une plage de température donnée.

"Mur 4" P = 3000 W, v = 200 mm.min⁻¹, v_f = 3750 mm.min⁻¹, trajectoire AR

Estimation du temps cumulé passé dans la plage de température 500 – 900 ⁰C.

t_{500-900 °C} (s)

2,00E+02 1.80E+02 1.60E+02 1.40E+02 1.20E+02 1.00E+02 80.

60.

40.

20.

0.0

Calcul du temps passé dans la plage de température 500 °C – 900 °C.

 \rightarrow Plage de température favorisant la précipitation de carbures, nocives aux propriétés du matériau [B. Py, 2022].

Temps modéré passé dans la plage de température 500-900 °C.

Faible influence des paramètres opératoires étudiés

Application : prédiction des changements microstructuraux dans la pièce.

Accumulation de chaleur dans les murs.

"Mur 4" P = 3000 W, v = 200 mm.min⁻¹, v_f = 3750 mm.min⁻¹, trajectoire AR

Température maximale (^aC) atteinte au centre des murs et comparaison expérimentale.

	(⁰ C)	
max	(\cup)	

2.80E+03 2.78E+03 2.76E+03 2.74E+03 2.72E+03 2.70E+0.32.68E+03 2.66E+0.32.64E+03 2.62E+03 2.60E+03 Accumulation de chaleur en fin de dépôt dans le cas d'une trajectoire aller-aller.

→ Lié à l'effondrement observé expérimentalement.

Trajectoire aller-retour :

pas d'accumulation de chaleur mise en évidence, pas d'effondrement expérimental

Application : prédiction des déformations macroscopiques par estimation de l'accumulation de chaleur dans la pièce.

cea

Estimation des champs de déformations et de contraintes résiduelles.

"Mur 4" : P = 3000 W, v = 200 mm.min⁻¹, v_f = 3750 mm.min⁻¹, **trajectoire AR**

Contrainte résiduelle de Von Mises (x1) sur maillage déformé (x5)

Mise en évidence de la présence de contraintes résiduelles. → Intérêt d'un traitement thermique post-fabrication.

Application : prédiction des déformations, contrôle des valeurs de contraintes résiduelles atteintes.

Partie 4.Applications dans le cas de la réalisation de monocordons
(échelle mésoscopique)

Simulations thermomécaniques pour le cas du procédé WAAM.

Bonne reproduction du champ thermique → prédiction de la fusion complète du cordon et de la pénétration dans le substrat

Champ thermique simulé : rouge \rightarrow zone fondue

Comparaison des zones fondues expérimentales et numériques (rouge) pour deux jeux de paramètres.

Non prédiction de la forme du bain de fusion \rightarrow

Prédominance des effets fluides dans le cordon (effet Marangoni etc.), non pris en compte dans le calcul.

Possibilités de post-traitements numériques :

- Suivi du champ de température au cours de la fabrication.
- Faisabilité opératoire de la fabrication d'un cordon en fonction des paramètres procédés.

Application : prédiction de la faisabilité opératoire du dépôt

Estimation du gradient de température

Estimations à l'arrière du bain :

Gradient thermique G Vitesse de solidification V

V (m/s)

3.00E-03

2.75E-03 2.50E-03 2.25E-03

2.00E-03

1.75E-03 1.50E-03

5.00E-04

2.50E-04 0.0

4.00E+05 3.75E+05 3.50E+05

3.25E+05 3.00E+05 2.75E+05

2.50E+05 2.25E+05 2.00E+05 1.75E+05

1.25E+05

5.00E+04 2.50E+04 0.0

mécanisme de solidification

Club Cast3M

Damien ARTIÈRES et al.

Estimation de la vitesse de refroidissement

 $PDAS = 80. \varepsilon^{-0.33}$ $SDAS = 25. \varepsilon^{-0.28}$

[Katayama & Matsunawa, 1984]

Mesure des espacements interdendritiques primaires (PDAS) et secondaires (SDAS). Estimation de la vitesse de refroidissement (ϵ) : ~100 K/s pour un monocordon WAAM.

(a) Définition des espacements interdendritiques. (b) Microstructure de solidification – attaque électrolytique. (c) Cartographie de phases en EBSD (austénite : rouge, ferrite : vert). numérique : entre 150 et 300 K/s

Partie 5. Discussion et conclusions

[Muránsky *et al.*, 2012] Estimation des contraintes dans le cadre du soudage TIG et comparaison expérimentale.

Écrouissage isotrope : légère surestimation des contraintes.

Écrouissage cinématique : sous estimation des contraintes. → Encadrement du champ de contraintes réel.

Champs des contraintes résiduelles estimés pour la réalisation du mur 3 avec deux lois de plasticité différentes.

Damien ARTIÈRES et al.

Temps de calcul de l'approche proposée.

Remaillage en cours de calcul pour la simulation d'un mur avec la procédure ADAPTE de Cast3M.

Conclusions

Réalisation d'un modèle thermomécanique avec Cast3M pour simuler le procédé WAAM et le confronter aux résultats expérimentaux.

Champ de température simulé :

- estimation de la zone fondue,
- estimation de l'accumulation de chaleur en lien avec les déformations expérimentales,
- contrôle du temps passé dans les plages thermiques favorisant le changement de phase (T entre 500 °C et 900 °C).

A l'échelle mésoscopique :

- prédiction de la faisabilité opératoire,
- corrélation avec la microstructure de solidification.

Simulations mécaniques : champ de déformations et champ de contraintes résiduelles. → Mise en évidence du fort intérêt d'un traitement thermique post-procédé.

(a) Coupe transverse du bloc réalisé, attaquée à l'eau régale.
(b) Exemple de cartographie EBSD, projetée dans la direction de fabrication.

28

(a)

5mm

(b)

Austénite, cfc

Merci de votre attention

<u>Damien Artières</u>^{1,2,⊠}, Diogo Gonçalves¹, Serge Pascal¹, Sylvain Dépinoy², Vladimir A. Esin² Remerciements : Stéphane Gounand¹, Charlotte Metton¹, Rémi Robidet¹, Hawa Badji¹

¹ Université Paris-Saclay, CEA, Service d'Etudes Mécaniques et Thermiques, Gif-sur-Yvette, France
 ² Mines Paris, PSL University, Centre des Matériaux - (CNRS UMR 7633), Evry, France

🖂 : damien.artieres@cea.fr