

DE LA RECHERCHE À L'INDUSTRIE

Mesoscopic modelling of the behaviour of interfaces between reinforcing steel and concrete

Mohammad ABBAS

Director:Benoît BARYDES/ISAS/DPC/SECRCo-director:Ludovic JASONDES/ISAS/DM2S/SEMT

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Reinforced concrete structures functions go beyond their simple mechanical resistance.

Cracking has a direct impact on the transfer properties that govern the potential **leakage** rate in containment buildings for nuclear power plants.

The **bond between steel and concrete** plays an essential role in determining the structural performance of reinforced concrete structures and in the **crack** properties.

This **steel-concrete interface** is very complicated due to the presence of various phenomena at this region.

Donald Cock Nuclear power plant, 1993

giatecscientific.com/education/cracking-in-concrete-procedures/

EZ

Can be used to calibrate the **macroscopic** interface laws.

27

- The steel-concrete bond can be characterized by pull out tests (RILEM TC, 1983).
- Direct wrenching of a steel bar from a concrete specimen.
- The relation between the tensile force and the relative displacement between steel and concrete is measured.
- The load is increased up to failure of the adhesion (RILEM, 1970).

Modelling a RC sample at the **mesoscopic** scale:

- <u>Detailed geometry</u> of the steel bar
 - Smooth bars mostly used in previous studies or ribs having a rectangular section
 - Ribs' shapes **control** cracking at the interface
- Including coarse aggregates:
 - Neglected in macroscopic scale
 - Simplified geometries in most of mesoscopic studies (spheres, circles)
 - **Control** the crack directions in the concrete
- <u>3D</u> Study:
 - Studies used 2D approach with complex shapes
 - Studies used 3D approach with simple shapes

Pull-out tests:

- Used to study steel-concrete interface
- Aim is to apply it to any RC/PC element

FEM:

- Solid structures
- Complex geometry (irregularities)
- Less time compared to DEM

- Generated via a script, Combs, developed in python language.
- Used previously in several studies: (Nguyen et al., 2015), (Bary et al., 2017) and (Bernachy-Barbe and Bary, 2019).

Steel bar

Cubic sample composed of three different phases

Coarse Aggtegates

Mortar

Sample Generation – Steel bar

Parameters	Steel bar A	Steel bar <i>Ɓ</i>	Steel bar \mathcal{B}^{\star}				
Total length	150 mm	160 mm	80 mm				
Adhesive length	50 mm	80 mm	40 mm				
d	16 r	8 mm					
t	1.6	0.8 mm					
sw	1.6	0.8 mm					
Iw	3.2	1.6 mm					
s	12 r	6 mm					

(c) Steel bar side views

Commissariat à l'énergie atomique et aux énergies alternatives

Cea

Sample Generation – Aggregates & Mortar

Commissariat à l'énergie atomique et aux énergies alternatives

Cea

Sample Generation – Meshing

Unstructured mesh			Linear tetr	edral
Phase	Numl	ber of Elemer	nts of	
	Sample ${\cal A}$	Sample B	Sample ${oldsymbol{\mathcal{B}}}^*$	
Steel bar	115 K	75 K	308 K	A
Coarse aggregates	740 K	900 K	462 K	
Mortar	2 140 K	2 560 K	1 328 K	
Total	3 M	3.353 M	2.1 M	Steel bar
				Mortar Aggregates

Commissariat à l'énergie atomique et aux énergies alternatives

DPC/SECR/LECBA

Linear simulations - Models and Parameters

Linear simulations – Elastic Spring model

Linear simulations – Identical stiffnesses

- Identical values are taken for both stiffnesses.
- Two simulations were performed on Sample \mathcal{B} .

Steel/mortar interface	Normal stiffness $K_n (N/m^3)$	Shear stiffness $K_s (N/m^3)$
First simulation	10 ¹²	10 ¹²
Second simulation	10 ¹⁵	10 ¹⁵

Imposed displacement is 0.05 mm (5 x 10^{-5} m).

14

Commissariat à l'énergie atomique et aux énergies alternatives

DPC/SECR/LECBA

DISPLACE >

Linear simulations – Variation of the K_s

Commissariat à l'énergie atomique et aux énergies alternatives

Linear simulations – Variation of the K_n

Commissariat à l'énergie atomique et aux énergies alternatives

DPC/SECR/LECBA

Non-linear simulations (Early results)

- Non-regularized formulation is used in the first try
- $K_s = K_n = 10^{15} \text{ N/m}^3$
- Simulations performed on **Sample** *B*

Parameters for mortar	By default in Cast3M
$\boldsymbol{\epsilon_{D_0}} = \ 10^{-4}$	
$A_{t} = 0.8$	To be calibrated
$\boldsymbol{B_t} = 1.7 \cdot 10^4$	
$A_{c} = 1.4$	
$\boldsymbol{B_c} = 1.9 \cdot 10^3$	
$\beta = 1.06$	

Imposed displacement is 0.0125 mm (1.25×10^{-5} m).

Commissariat à l'énergie atomique et aux énergies alternatives

DPC/SECR/LECBA

- 0.8 - 0.6 - 0.4 - 0.2 - 1.0e-12

21 décembre 2020

Non-linear simulations (Early results)

- A regularization is used with an exponential evolution by taking $A_t = -1$ (CAST3M)
- $K_s = K_n = 10^{15} \text{ N/m}^3$
- Simulations performed on Sample B*

Commissariat à l'énergie atomique et aux énergies alternatives

DPC/SECR/LECBA

Usage of a phase field approach to describe regularized damage	
Effect of loading or confining the sample	
Distribution of the aggregates near the steel bar in a gradual way	
Effect of reducing the mesh size	
Effect of reducing the smallest	

antent NA.

CL

aggregate size

Effect of the shape of aggregates

Merci de votre attention

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr