3D Neutronic Thermal Hydraulic coupling. The HTTR case.

Club Cast3M 2015

27/11/2015

Paris

Imed Limaiem Xu Han Jean Marc Ndombo Fabien Boulland Philippe Jacquet

Agenda

Plan

27/11/2015 – 11h

Brève présentation du HTTR :

- Le réacteur et ses systèmes de protection
- Le système de refroidissement du puits de cuve (VCS)

Présentation de l'essai LOFC

- Descriptif de l'essai : Evacuation de la puissance lors d'un d'accident de type LOFC non protégé ;
- Intérêts de l'étude de l'essai : Plusieurs points de vue (qualification des codes, mécanique, sureté, conception, comparaison / REP)
- Problématique de modélisation
- Capacité à simuler numériquement par la CFD les phénomènes physiques présents en particulier au niveau du puits de cuve

Modélisation et simulation (aspect moyen terme)

- Modélisation sous Cast3M
 - Thermo-hydraulique
 - Couplage neutronicque avec DRAGON / DONJON
- Modélisation sous ANSYS CFX
 - Thermo-hydraulique
 - *Couplage neutronique avec un model de cinétique point (MKP)*

Résultats et analyses (comparaison avec les données expérimentales de JAEA).

- Résultats obtenus avec Cast3M
- Résultats obtenus avec ANSYS CFX

Synthèse et Conclusions

Questions / réponses

The High Temperature Test Reactor / Global View

Fuel

Uranium-235

enrichment

Fuel type

Moderator

Reactor power

Reactor inlet

coolant temp.

Reactor outlet

coolant temp.

Coolant press.

Coolant flow rate

Coolant

Uranium-dioxide Coated fuel particle 3~10wt% (avg. 6wt%)

Pin-in-block type Graphite Helium gas 30MW 395°C

395°C 850°C / 950°C 12.5kg/s or 10.2kg/s

4.0MPa

altran

LOFC Test presentation / scenario

PPWC: Primary pressurized water cooler

SPWC: Secondary pressurized water cooler AHX : Auxiliary heat exchanger

Case no.	Reactor power (MWt)	Reactor inlet/outlet temp. (°C)	Flow rate (ton/h)	
Run 1	9	180 / 320	45(rated)	
Run 2	30 (full power)	395 / 850	45(rated)	атва
Run 3	9	180 / 320	45(rated)	ULT OLT TO

LOFC Test presentation / Test instrumentations

	Measurement item	Detail		
а	Wide range monitoring system	Range from 10 ⁻⁰⁸ % to 35% (fission counter, 3 channels)		
۵	Power range monitoring system	Range from 0.1% to 120% (ionization chamber, 3 channels)		
b	Control rod position	16 encoder sensors		
f	Core inlet coolant temperature	9 K-type thermo- couples		
g	Core outlet coolant temperature	21(=7x3) N-type thermo-couples		
н	Permanent reflector block temperature	9 K-type thermo- couples		
j, k, I, n	Temperature of RPV, VCS, concrete, etc.	Thermo-couples		

For what purpose ? What to model ? With what tool ?

altran

Task 2: System performance validation, calculation coupling scheme

1. Principales hypothèses :

- La partie creuse au centre du compact combustible est remplie par hélium considéré sans transfert de masse ;
- Sans jeu entre : combustible/gaine ; inter-bloc ; bloc/réflecteur permanent ;
- Certaines structures (control rods, BP, RPV head, upper shield blocks, all lower blocks, support post, side shield block, side panels, water tubes, etc.) ne sont pas modélisées ;
- Les trous centraux de manutention et les trous d'insertion des BP dans les blocs combustibles ne sont pas modélisés ;
- Les blocs de graphite (control rod guide block, irradiation block et replaceable reflector block) sont considérés identiques, sans trou d'insertion des barres de contrôle ni trous centraux de manutention ;
- Extraction de la chaleur par le système de refroidissement du VCS (-0,2 MWth) est effectuée par une source froide imposée à la structure béton.

1. Modèle & types de transfert de chaleur :

- Conduction : entre tous les solides modélisés en contact, et entre compact combustible/hélium au milieu du compact ;
- **Convection** : entre gaine/hélium, hélium/bloc graphite, réflecteur permanent/hélium, hélium/cuve, cuve/air, air/béton ;
- Advection : entre gaine/hélium↓, hélium↓/bloc graphite, réflecteur permanent/hélium↑, hélium↑/cuve ;
- **Rayonnement** : entre gaine/bloc graphite, réflecteur permanent/cuve, cuve/béton, béton/milieu extérieur ;
- Sources de chaleurs positives sur les combustibles et négatives sur le VCS.

2. Modèles prêts à coupler :

Modèle crayon 2D R-Z Modèle crayon 3D Modèle assemblage combustible 3D Modèle réacteur HTTR 3D

1. Contraintes liées à l'utilisation du code Cast3M :

• Modèle de rayonnement 'FAC_A_FAC' :

Problème dans le modèle → Forts impacts sur les temperatures ues structures ;

Problème confirmé par le CEA, et remonté au support Cast₃M. (2013)

• Modèles de convection et d'advection :

 Modèle de convection ne permet pas de modéliser le phénomène de convection naturelle ;

S1 S2 Modèle de rayonnement

- Modèle crayon 3D (sans source froide contournant le bloc, sans rayonnement, coefficient d'échange H constant) :
- 1. en stationnaire :
- 2. \rightarrow Températures du combustible : T_{max} = 361°C, T_{min} = 185°C, T_{moy} \approx 295°C ;
- 3. \rightarrow Températures du bloc graphite : T_{max} = 322°C, T_{min} = 180°C, T_{moy} \approx 244°C ;
- 4. \rightarrow Températures de l'hélium : T_{ent} = 180°C, T_{sor} = 322°C.

- Modèle assemblage combustible 3D (sans source froide contournant le bloc, sans rayonnement, H constant) :
- 1. en stationnaire :
- 2. → Températures du combustible : $T_{max} = 354$ °C, $T_{min} = 185$ °C, $T_{moy} \approx 291$ °C ;
- 3. \rightarrow Températures du bloc graphite : T_{max} = 317°C, T_{min} = 180°C, T_{moy} \approx 242°C ;
- 4. \rightarrow Températures de l'hélium : T_{ent} = 180°C, T_{sor} = 317°C.

- Modèle réacteur 3D (avec source froide contournant le bloc, sans rayonnement, coefficient d'échange H constant) :
- 1. <u>en stationnaire</u> :
- 2. \rightarrow Températures des combustibles : T_{max} = 363°C, T_{min} = 185°C ;
- 3. \rightarrow Températures des blocs graphite : T_{max} = 323°C, T_{min} = 181°C ;
- 4. \rightarrow Températures des réflecteurs permanents : T_{max} = 240°C, T_{min} = 182°C ;
- 5. \rightarrow Températures de l'hélium (montée) : T_{ent} = 180°C, T_{sor} = 182°C.

altran

- Modèle réacteur 3D (avec source froide contournant le bloc, sans rayonnement, coefficient d'échange H constant) :
- 1. <u>en stationnaire</u> :
- 2. \rightarrow Températures des combustibles : T_{max} = 363°C, T_{min} = 185°C ;
- 3. \rightarrow Températures des blocs graphite : T_{max} = 323°C, T_{min} = 181°C ;
- 4. \rightarrow Températures des réflecteurs permanents : T_{max} = 240°C, T_{min} = 182°C ;
- 5. \rightarrow Températures de l'hélium (montée) : T_{ent} = 180°C, T_{sor} = 182°C.

- Modèle crayon 3D (avec source froide contournant le bloc, sans rayonnement, coefficient d'échange H adapté) :
- 1. <u>en stationnaire</u> :
- 2. \rightarrow Températures du combustible : T_{max} = 416°C, T_{min} = 191°C, T_{moy} \approx 342°C ;
- 3. \rightarrow Températures du bloc graphite : T_{max} = 319°C, T_{min} = 179°C, T_{moy} \approx 243°C ;
- 4. \rightarrow Températures de l'hélium : T_{ent} = 180°C, T_{sor} = 320°C.

- Modèle crayon 3D (avec source froide contournant le bloc, sans rayonnement, coefficient d'échange H corrélé) :
- 1. en transitoire :
- 2. P_{nuclé} et débit d'hélium issus des données expérimentales JAEA ;
- 3. Pic de température : écarts de temps et de température vis-à-vis des résultats expérimentaux japonais.

- Modèle crayon 3D (avec source froide contournant le bloc, avec rayonnement, coefficient d'échange H corrélé) :
- 1. en transitoire :
- 2. Echange radiatif ne joue pas un rôle important dans le modèle canal.

Modèle neutronique

Modèle neutronique sous Dragon/Donjon

• Nouveau schéma de calcul pour les calculs cinétiques :

Couplage aux codes de calcul

- Gestion des JDD d'entrée et de sortie dans Donjon et dans Cast3M ;
- Gestion automatique des critères de convergence et des pas de temps : <u>Time step</u> <u>management</u>.
- Modification dans « Promethee.R » : #runshell\$trap("INT") # to not allow ctrl-c to stop whole JVM, just this runshell

LOFC Test modeling / Geometry and mesh modeling (CFD)

Global definition of the mesh

- o The mesh contains 2 055 968 cells
- Number of Tetra cells: 1 802 957
 - \checkmark In the solid and fluid zone
- Number of Hexa cells 246 593
 - ✓In the fluid zone
- o Height of the domain: 24,1943 m

Methodologies used to the mesh generation

Some region where there is helium flow is made using the hexahedral cells.

- Bloc, surface projection. This method can be very expensive regarding the time.
- But refinement of the mesh is more mastered.

Some region are meshed using the tetrahedral cells, especially in the solid region.

- Generation of the mesh using **Delanauy** processing or a Robust/Tetra processing.
 - This process is very quick.
 - But there is a very bad master of the mesh (number per direction for example)

Interfaces definition

It is recommended to minimize the number of **users** interface definition CFX is able to properly create default interface domain in the **same** grid

- The model contains 16 independent grids
- Interface number: 63

LOFC Test modeling / Radiation modeling (CDF)

The transport equation of the Radiation intensity is given by:

$$\frac{dI_{v}(\boldsymbol{r},\boldsymbol{s})}{ds} = \left(-\left(K_{av}+K_{sv}\right)I_{v}(\boldsymbol{r},\boldsymbol{s})+K_{av}I_{b}(v,T)+\frac{K_{sv}}{4\pi}\int_{4\pi}dI_{v}(\boldsymbol{r},\boldsymbol{s}')\Phi(\boldsymbol{s}\cdot\boldsymbol{s}')d\Omega'+S\right)$$

r = position vector I_b = Blackbody emission intensity

s = direction vector $I_v =$ Spectral radiation intensity which depends on position (r) and direction (s)

- s = path length T = local absolute temperature
- K_a = absorption coefficient Ω = solid angle
- K_s = scattering coefficient Φ = in-scattering phase function

LOFC Test modeling / Methodology of the coupling KPM / CFD

- USER-Cell FORTRAN 77 type routine
- Thermal feed-back (Doppler & Moderator);
- Iodine and Xenon modeling;
- 6 precursors groups;
- Decay heat calculation;
- Reactor Source level modelling;
- Time-depending P(z) emulation;
- Porous Media/ Heterogeneous Linear Temperature dez-homogenization

Results Steady state (run 1) / CR Temperature discrepancy (CFD)

Surface temperature on the CR are in Good agreement with the experiment Data of JAEA. The relative difference does not exceed 6%.

Nom du capteur dans le modèle CFX	Monitor position	Mesur es (°C)	$v_{CFX} - v_{JAEA}$	$\frac{\frac{v_{CFX} - v_{JAEA}}{v_{JAEA}} * 10}{0\%}$
s36	CR guide tube surface temperature 1	180	-7	-4%
s37	CR guide tube surface temperature 2	181	-8	-5%
s38	CR guide tube surface temperature 3	180	-7	-4%
s41	CR guide tube surface temperature 6	180	-7	-4%
s42	CR guide tube surface temperature 7	183	-10	-5%

Nom du capteur dans le modèle CFX	Monitor position temperature	Mesures (°C)	$v_{CFX} - v_{JAEA}$	$\frac{v_{CFX} - v_{JAEA}}{v_{JAEA}} * 100\%$
s43	CR guide tube surface 8	183	-8	-5%
s44	CR guide tube surface 9	181	-11	-6%
s45	CR guide tube surface10	183	-10	-6%
s46	CR guide tube surface temperature 11	183	-4	-2%
s48	CR guide tube surface13	181	-7	-4%
s49	CR guide tube surface14	181	-7	-4%
s50	CR guide tube surface 15	181	-8	-4%
s51	CR guide tube surface 16	179	-6	-3%
s52	CR guide tube surface 17	181	-9	-5%
s53	CR guide tube surface 18	181	-9	-5%
s54	CR guide tube surface 19	178	-7	-4%
s55	CR guide tube surface 20	182	-8	-4%
s57	Hot plenum 1A	335	-16	-5%

Surface temperature on the control rod

Results Steady state (run 1) / Plate behavior (CFD)

Complex helium flow around the reactor core support plate.

Helium streamline around the plate • Temperature peak due to the simplification of the model ٠ **Temperature Peak** emperature Contour 1 plaque 5.019e+02 4.964e+02 4.9100+02 4.855e+02 4.801e+02 4.747e+02 4.692e+02 4.638e+02 4.584e+02 4.529e+02 Hot Flow 4.475e+02 Cold Flow Streamline altran 25

Conclusion and future works

- Numerical simulation of thermal hydraulic and neutronic coupling of a Loss of forced coolant accident has been done in the HTTR case.
- Numerical results was compared with the experimental data provide by the JAEA (Japan Atomic Energy Agency)
- The study was performed using two codes
 Cast3M and ANSYS CFX
- For Cast3M
 - The core is completely modeled
 - There is a problem in the radiation module development (2013)
 - Natural convection it is not modeled
 - Steady and transient simulation are made.
- For ANSYS CFX
 - The mesh contains 2 millions cells.
 - The VCS is modeled using a thermal circuit (conduction, natural convection and radiation)
 - For the permanent calculation, simulation are in good agreement aLTRac
 - with the experimental data.

26