

Les performances des modèles hyperélastiques GD et GDM dans Cast3M: Modélisations du Caoutchouc avec effet Mullins

Modèles ECCMR 2011, L. Gornet, R. Desmorat, G. Marckmann, P. Charrier

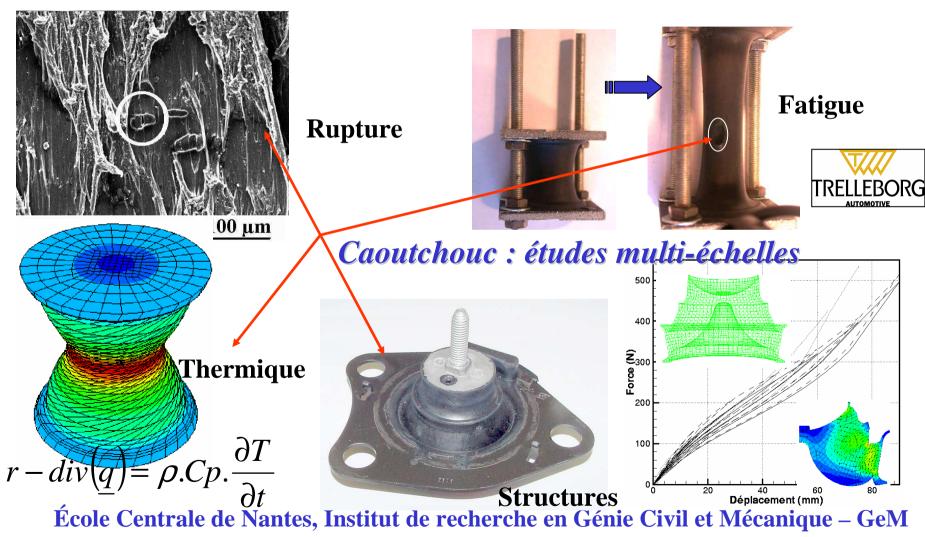
Laurent GORNET

Plan

- Contexte
- La Performance des modèles hyperélastiques
 - Essais et identification de Mooney à GD, GDM
- Développement UMAT
 - Mode, Mate, GD, GDM
- Exemples de validation
 - 2D, 3D, analytique et Abaqus
- Conclusion

Durabilité des structures

Interaction modèle-expérience



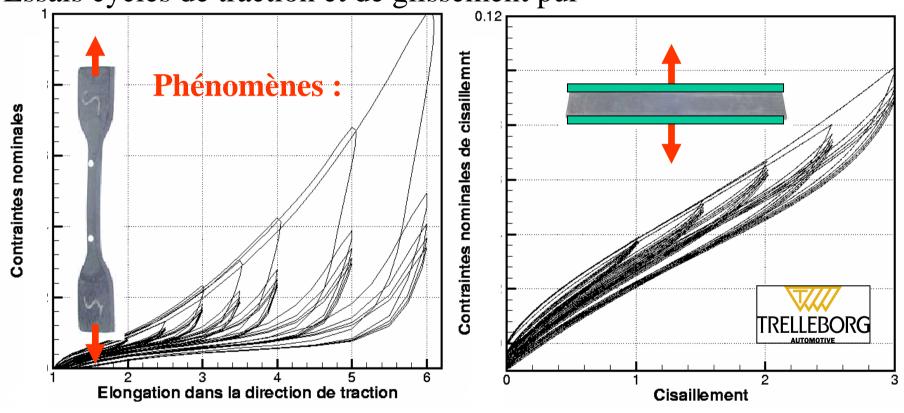
UMR CNRS 6183

Plan

- Contexte
- La Performance des modèles hyperélastiques
 - Essais et identification de Mooney à GD, GDM
- Développement UMAT
 - Mode, Mate, GD, GDM
- Exemples de validation
 - 2D, 3D, analytique et Abaqus
- Conclusion

Génie Civil et Mécanique La physique du caoutchouc

Essais cyclés de traction et de glissement pur



Effet Payne Hystérésis Effet Mullins École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

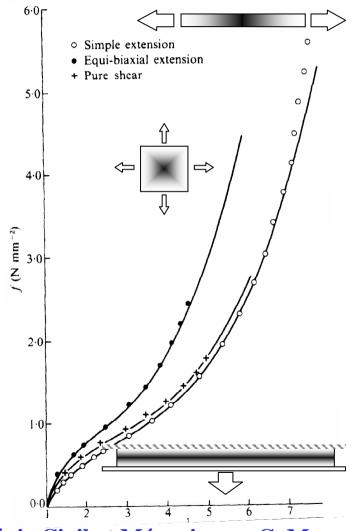
L.R.G. TRELOAR

Expériences 1944

- Caoutchouc naturel vulcanisé
 - Traction simple
 - Traction Equi-Biaxiale
 - Glissement pur

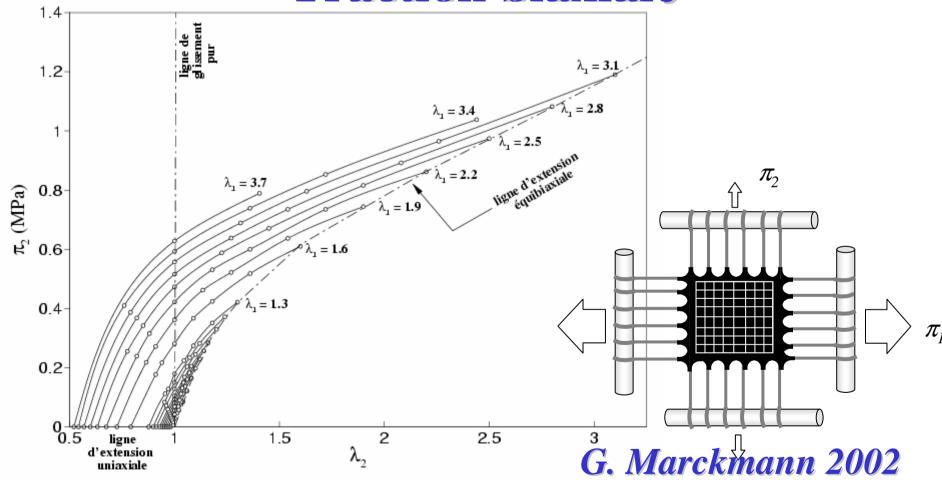
Simulations avec Ogden (1972)

6 constantes



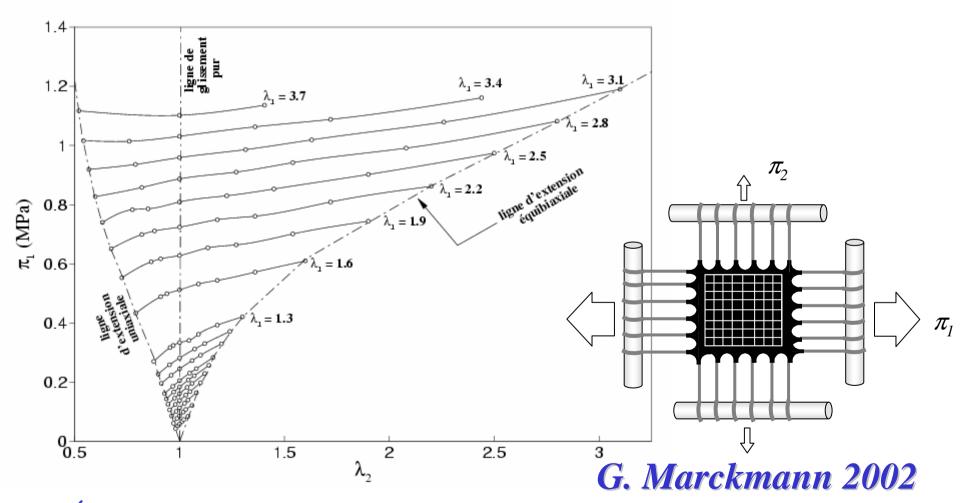
École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Kawabata 1981 Traction biaxiale



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Kawabata 1981 Traction biaxiale



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Treloar, Néo-hookean

Approche statistique (1940)

- Energie de déformation
- Statistique Gaussienne des chaines

$$W = C_{10}(I_1 - 3) C_{10} = 0.5NkT$$

- N: nombre de chaines moléculaires par unité de volume
- K: constante de Botzmann
- T: température absolue

Séries Polynômiales Mooney Rivlin (1948)

$$W = \sum_{i=0, j=0}^{\infty} C_{ij} (I_1 - 3)^i (I_2 - 3)^j$$

• Biderman (1958)

4 constantes

$$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{20}(I_1 - 3)^2 + C_{30}(I_1 - 3)^3.$$

Haines-Wilson (1975)
 6 constantes

$$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{11}(I_1 - 3)(I_2 - 3) + C_{02}(I_2 - 3)^2 + C_{20}(I_1 - 3)^2 + C_{30}(I_1 - 3)^3.$$

Modèles hyperélastique phénoménologiques

Caoutchouc 1940 - 1975

• Mooney Rivlin (1948)

N constantes

$$W = \sum_{i=0, j=0}^{\infty} C_{ij} (I_1 - 3)^i (I_2 - 3)^j$$

•Gent Thomas (1958)

2 constantes

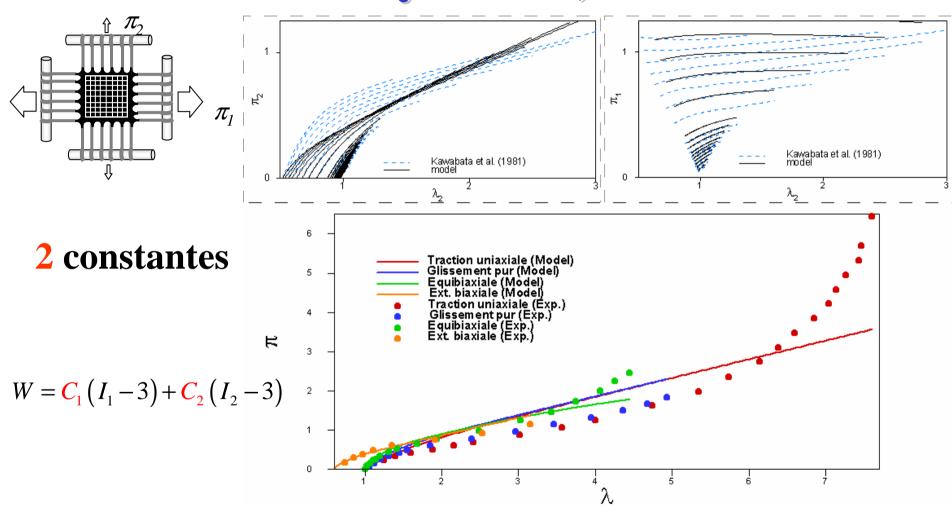
$$W = C_1 (I_1 - 3) + C_2 \ln (I_2 / 3)$$

•Hart-Smith (1967)

3 constantes

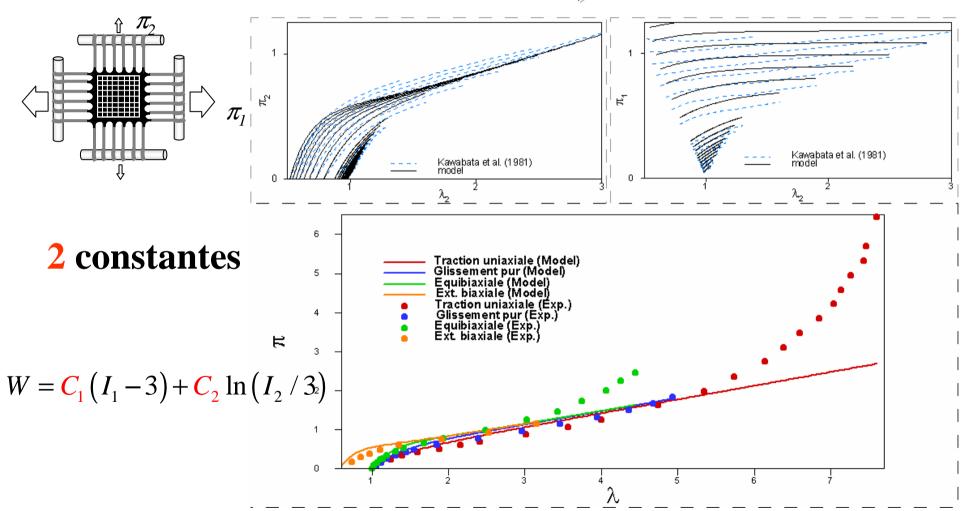
$$W = C_1 \int_0^{I_1 - 3} \exp(C_3 I_1^{'2}) dI_1 + C_2 \ln\left(\frac{I_2}{3}\right)$$

Mooney Rivlin, 1940



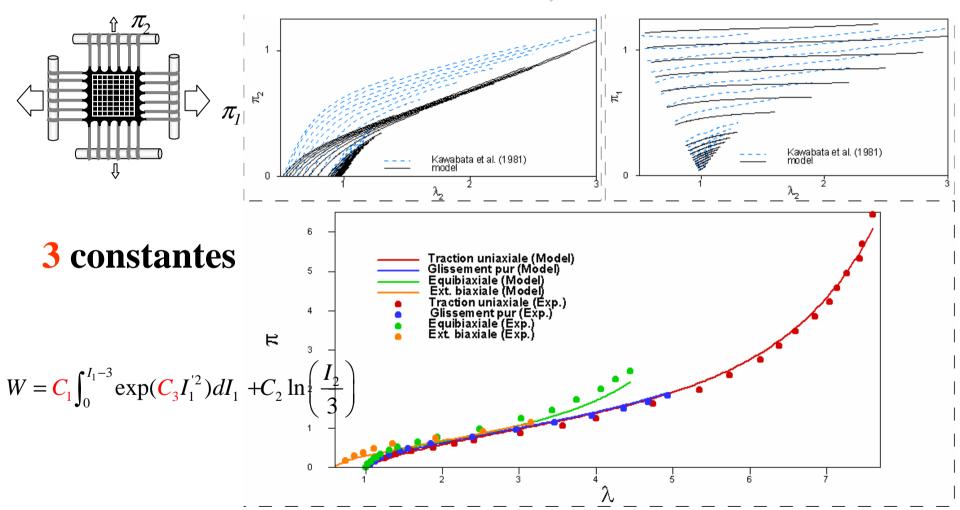
École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Gent Thomas, 1958



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Hart Smith, 1966



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

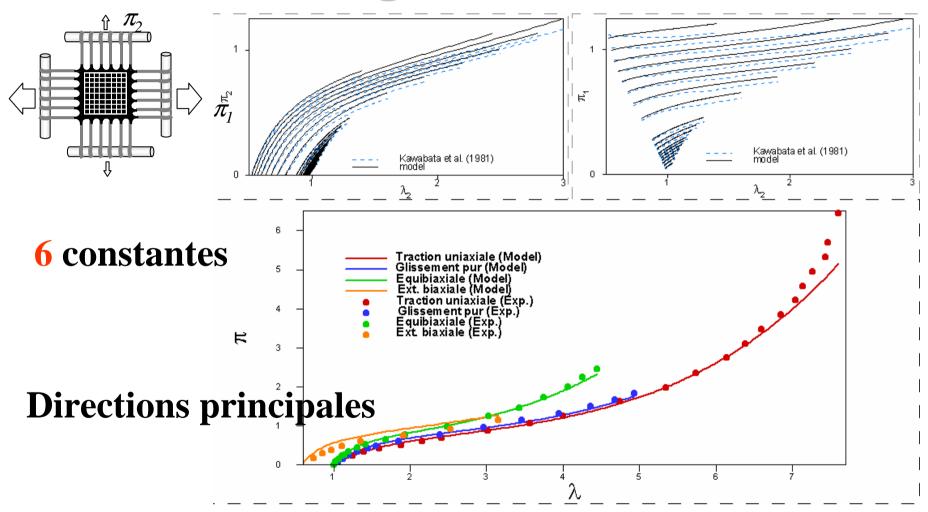
Ogden 1972 phénoménologiques

$$W = \sum_{i=1}^{3} \frac{\mu_i}{\alpha_i} \left(\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 \right)$$

6 constantes

Modèle en directions principales!
Bonne description des essais de Treloar
Identification délicate

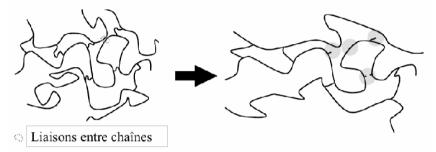
Ogden, 1972



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Echelle microscopique

Chaines macromoléculaires



- Modèles phénoménologiques macromoléculaires
- Statistique Gaussienne
- Statistique non Gaussienne

Les Modèles statistiques justifient les formes des modèles phénoménologiques

Modèles statistiques caoutchouc 1940 - 2011

Modèle Gaussien

Treloar *une chaine* (1943) = Néo-Hookéen 1 constante

Modèle Non Gaussien

Kuhn Grün, *une chaine* (1942) 1 constante

James et Guth, *Trois chaines* (1947) 2 constantes

Arruda et Boyce, *Huit chaines* (1993) 2 constantes

Réseau Fantôme

Modèles en Invariant généralisé

Heinrich et Kaliske, *Modèle tube* (1997) 3 constantes

Kaliske et Heinrich, *Tube étendu (1999)* 4 constantes

Modèles en Invariant

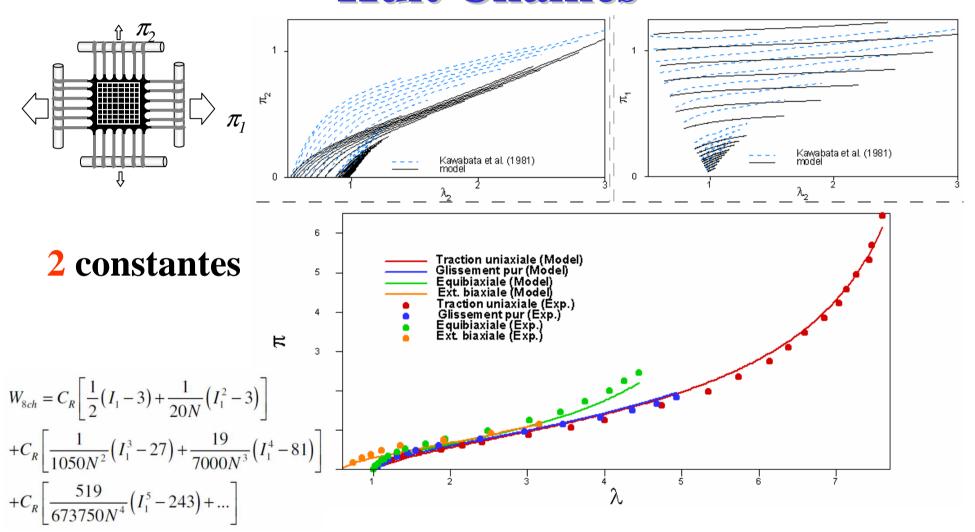
Gornet Desmorat, GD (2009) 2 constantes

Gornet Desmorat Marcknann

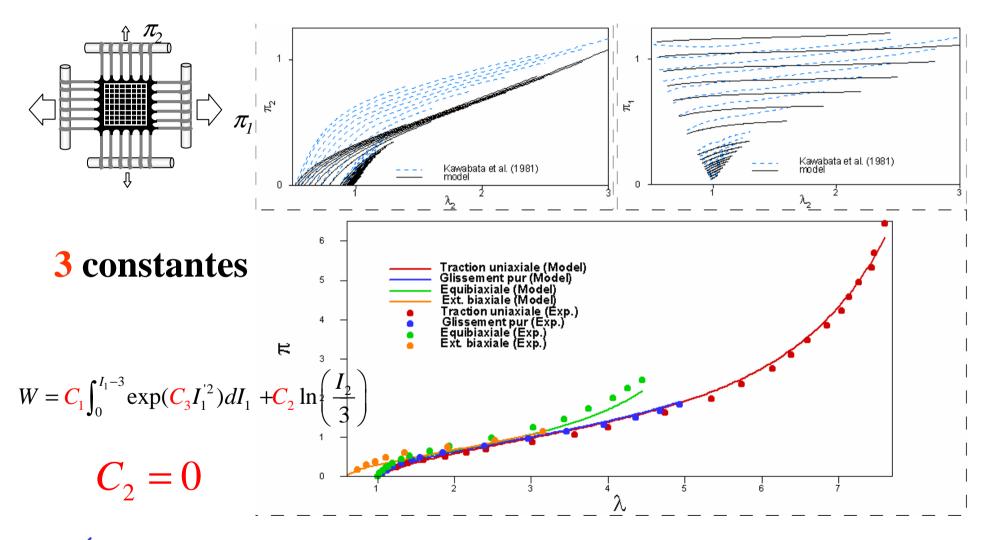
GDM isotrope (2010), GDM (2011)

École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Arruda et Boyce, 1993 Huit Chaines

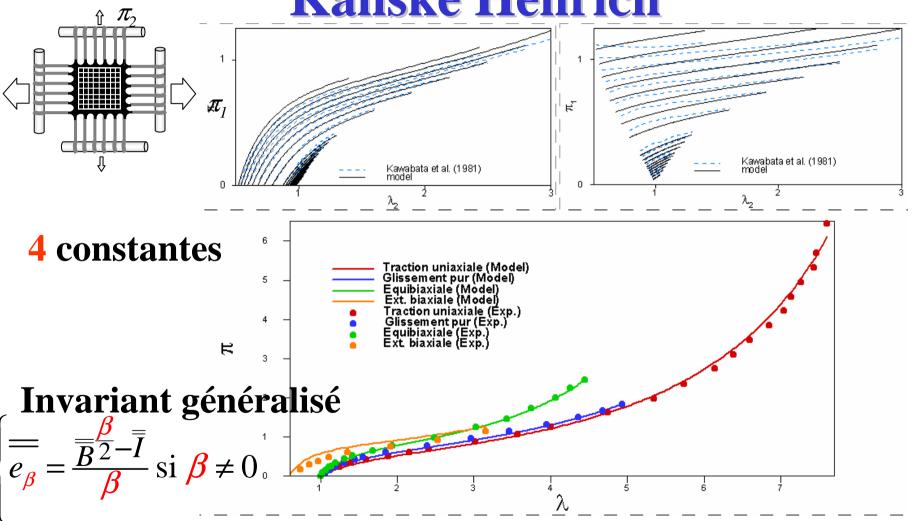


École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183



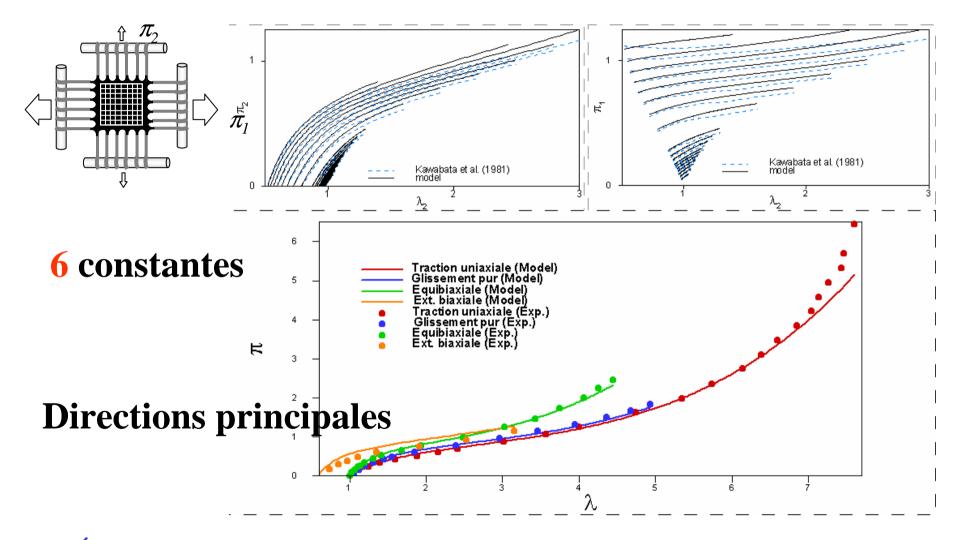
École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Kaliske Henrich



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Ogden, 1972



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

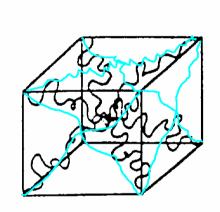
- **Néo-Hook**: déformations < 50%
- Mooney Rivlin: déformations ~100%
- Biderman : exemple de séries de Rivlin
- **Hart-Smith**: déformations >500%
- **Arruda Boyce :** déformations >500%
- Ogden : Bonne corrélation avec les essais
 - Modèle en Directions Principales !
- Modèles Grande Déformation, Mullins
 - Objectif : Bonne corrélation avec les essais
 Modèle en Invariants

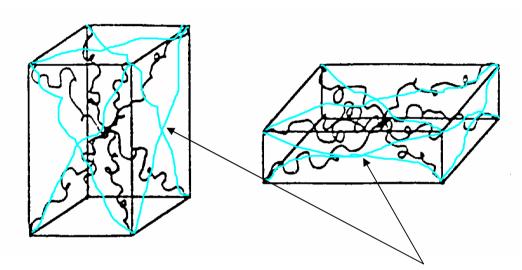
Gornet – Desmorat 2009

Modèle Grande Déformation

•Huit chaines modèle statistique non Gaussien

 $W_1(I_1)$





•Réseau Fantôme et énergie interne du modèle

 $W_2(I_2)$

James, Guth 1949, Boggs 1952, Eichinger 1981

Energie libre:

$$F = e(v,T) + W(I_1)$$

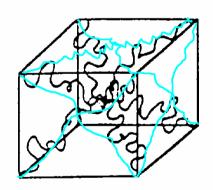
Gornet – Desmorat 2009

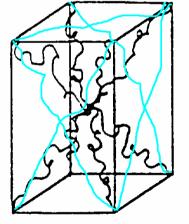
Modèle Grande Déformation

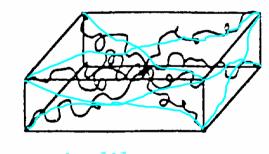
Statistique - phénoménologique

$$W = h_1 \int_0^{I_1 - 3} \exp(h_3 I_1^{'2}) dI_1^{'} + 3h_2 \int_0^{I_2} \frac{dI_2^{'}}{\sqrt{I_2^{'}}}$$

3 constantes



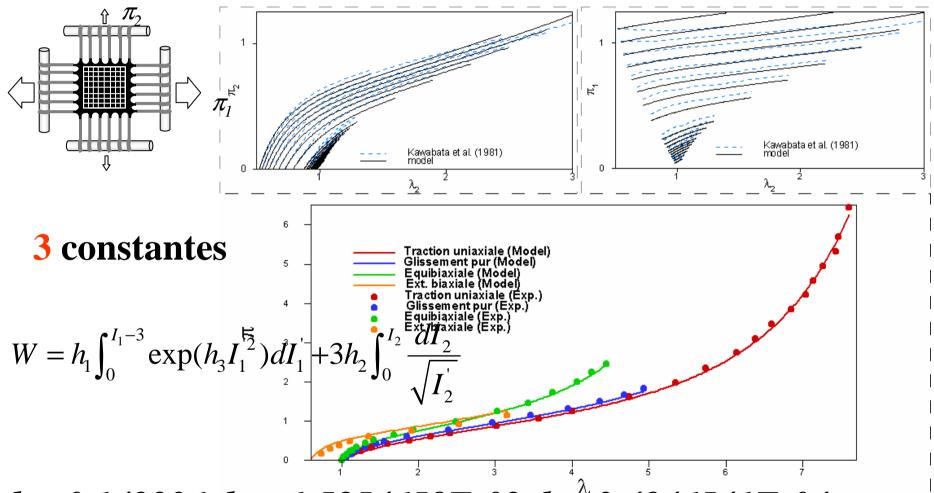




Energie libre

•Huit chaines confinées par un Réseau

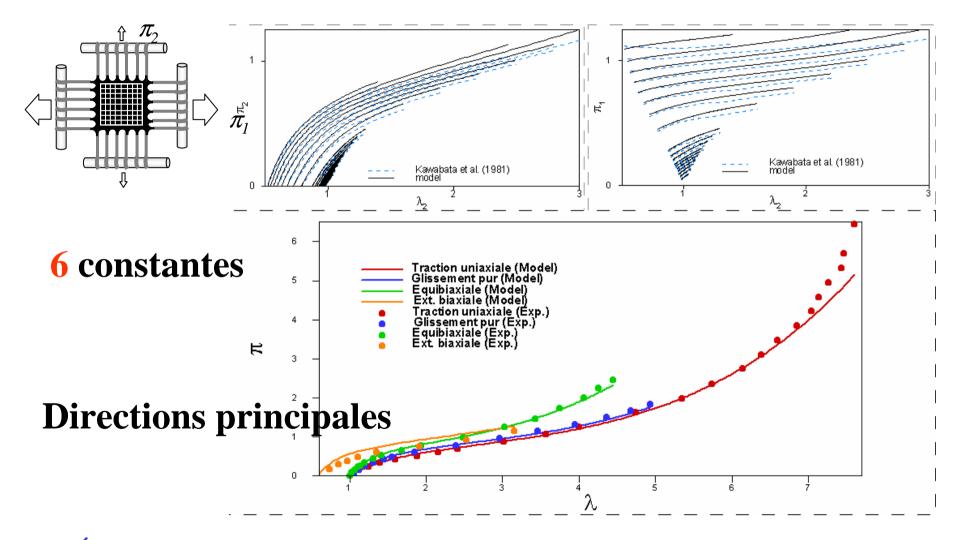
Gornet Desmorat, 2009



 h_1 =0.142236 h_2 =1.5854659E-02 h_3 =3.4946541E-04 École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM

École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Ogden, 1972



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Modèle avec effet Mullins

Mécanique de l'endommagement

Thèse G. Chagnon 2003, Chagnon et al. JMPS 2004

Densité d'énergie hyperélastique : W_0

avec accommodation : $(1-D)W_0$

$$\mathbf{\sigma} = -p\mathbf{I} + (1-D)2\mathbf{B} \frac{\partial W_0}{\partial \mathbf{B}}$$

Critère prenant en compte toutes les directions de l'espace

Mesures
$$I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$$
 $\alpha = \sqrt{I_1/3} - 1$ $I_1 = tr(\mathbf{B})$

$$\alpha = \sqrt{I_1/3} - 1$$

$$I_1 = tr(\mathbf{B})$$

Forme de l'endommagement $D = D(\overline{\alpha}) = D(I_1^{\text{max}})$

$$D = D(\overline{\alpha}) = D(I_1^{\max})$$

Modèle GDM effet Mullins

Mécanique de l'endommagement

Gornet et al. ECCMR 2011

Densité d'énergie hyperélastique : W_0

avec accommodation:
$$W_{GDM}(I_1, I_2) = \frac{100}{100} e^{\frac{100}{100}(I_1 - 3)^2} dI_1 + 3\frac{100}{100} \int \frac{1}{\sqrt{I_2}} dI_2$$

$$h_1^{6} = h_1 (1 - d_1), h_2^{6} = h_2 (1 - d_2), h_3^{6} = h_3 (1 - d_3)$$

Les lois d'évolution de l'endommagement :

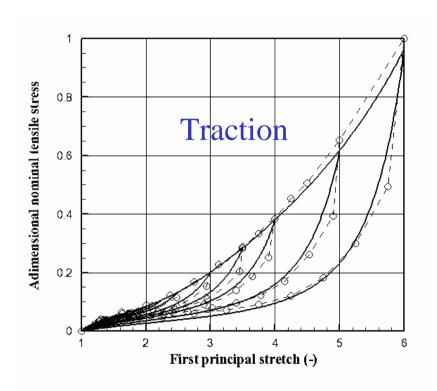
$$d_1 = \frac{d_{1\infty}}{d_1} \left(1 - \exp\left(-\frac{I_1^{\max}}{\eta_1}\right) \right) \qquad d_2 = \frac{d_{2\infty}}{d_2} \left(1 - \exp\left(-\frac{I_1^{\max}}{\eta_2}\right) \right)$$

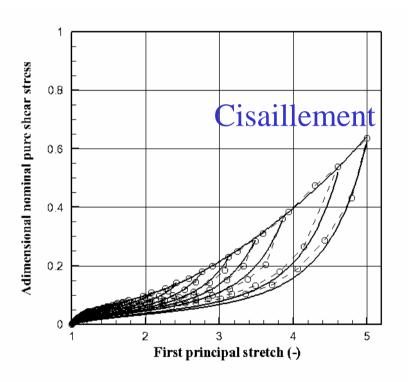
$$d_3 = 1 - F(d_1)$$

$$F(d_1) = \frac{1}{(3(b h_1^{0} - 1))^2}$$

École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Mécanique de l'endommagement Gornet et al. ECCMR 2011





Modèle GDM Mullins

Mécanique de l'endommagement isotrope

Gornet et al. ECCMR 2011

Densité d'énergie hyperélastique : W_0

avec accommodation: $W_{GDM}(I_1, I_2) =$

 $W_{GDM}(I_1, I_2) = h_1^{0} \int e^{h_3(I_1 - 3)^2} dI_1 + 3h_2^{0} \int \frac{1}{\sqrt{I_2}} dI_2$

$$h_1^{\circ} = h_1 (1 - d_1), h_2^{\circ} = h_2 (1 - d_2), h_3$$

Les lois d'évolution de l'endommagement isotrope :

$$d_1 = d_2 = \frac{d_{\infty}}{1 - \exp\left(-\frac{I_1^{\max}}{\eta}\right)}$$

Plan

- Contexte
- La Performance des modèles hyperélastiques
 - Essais et identification de Mooney à GD, GDM
- Développement UMAT
 - Mode, Mate, GD, GDM
- Exemples de validation
 - 2D, 3D, analytique et Abaqus
- Conclusion

Operateur MODE Modèle GD 2010

LCMAT = MOTS 'YOUN' 'NU' 'H1' 'H2' 'H3' 'D';

MODL1 = MODE GEO1 'MECANIQUE'

'ELASTIQUE' 'ISOTROPE' 'NON_LINEAIRE' 'UTILISATEUR' 'NUME_LOI' 33 'C_MATERIAU'

LCMAT;

$$W = h_1 \int_0^{I_1 - 3} \exp(h_3 \bar{I}_1^{'2}) d\bar{I}_1 + 3h_2 \int_0^{I_2} \frac{d\bar{I}_2}{\sqrt{\bar{I}_2}} + \frac{1}{D} (J - 1)^2$$

$$\overline{I}_1 = J^{-2/3} I_1$$
 $\overline{I}_2 = J^{-4/3} I_2$ $J = \det(\overline{\overline{F}})$

Operateur MATE

Modèle GD 2010

MAT1 = MATE MODL1 'YOUN' YU 'NU 'XNU 'H1' H1 'H2' H2 'H3' H3 'D ' CoeD;

En formulation incompressible:

« Contraintes Planes » 'D ' n'est pas utilisé!

$$W = h_1 \int_0^{I_1 - 3} \exp(h_3 \overline{I}_1^{'2}) d\overline{I}_1 + 3h_2 \int_0^{I_2} \frac{d\overline{I}_2^{'}}{\sqrt{\overline{I}_2^{'}}}$$

Procédure PASAPAS

```
TAB1 = TABLE;
TAB1.'VARIABLES_INTERNES' = TABLE;
TAB1. GRANDES DEFORMATIONS = VRAI:
TAB1 . MODELE = MO;
TAB1 . CARACTERISTIQUES = MA;
TAB1 . CHARGEMENT = CH1 ;
TAB1 . TEMPS_CALCULES = PR1;
TAB1. 'TEMPS SAUVES' = PR2;
PASAPAS TAB1;
```

École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Les modèles Cast3M

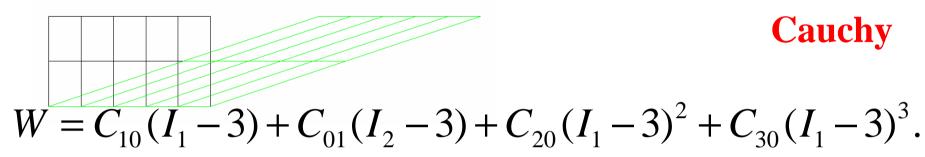
- Formulation Incompressible :
 - Contraintes Planes
- Formulation Quasi-incompressible:
 - Déformations Planes, Axisymétrique
 - Tridimensionnel
- Modèles disponibles : Format ABAQUS
 - Mooney-Rivlin (Néo-Hook), Biderman, Gent-Thomas
 - Hart-Smith, Arruda Boyce, GD, GDM isotrope
- Exemples en incompressible :
 - Traction, Bitraction, Cisaillement simple
- Exemples en quasi-incompressible :
 - Traction 3D et traction Déformations Planes

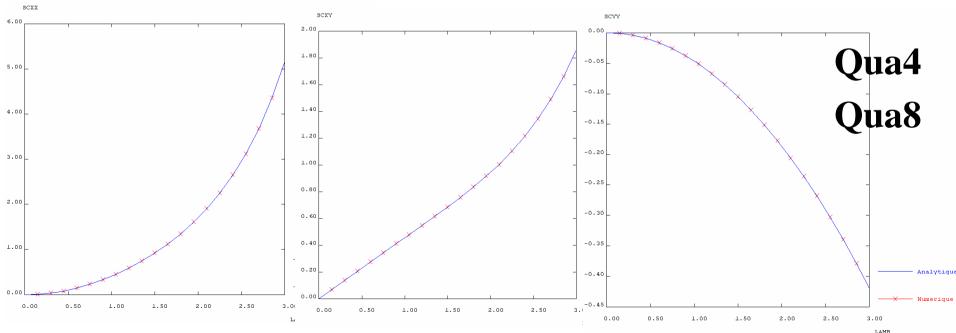
Plan

- Contexte
- La Performance des modèles hyperélastiques
 - Mooney Rivlin...
- Développement UMAT
 - De la théorie à la programmation
- Exemples de validation
 - 2D, 3D, analytique et Abaqus
- Conclusion

Glissement simple

Solution analytique incompressible Biderman

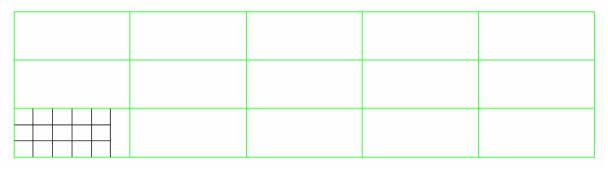




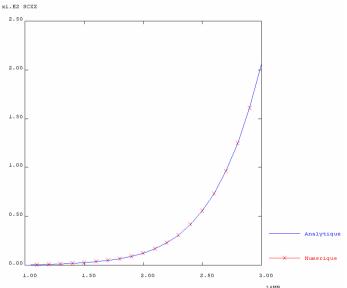
École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

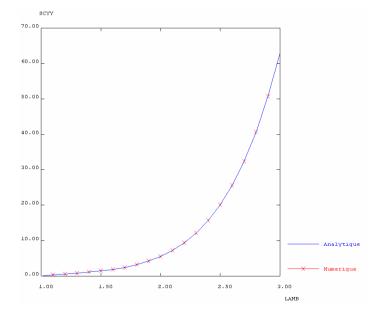
Traction biaxiale

Solution analytique incompressible Biderman



Cauchy



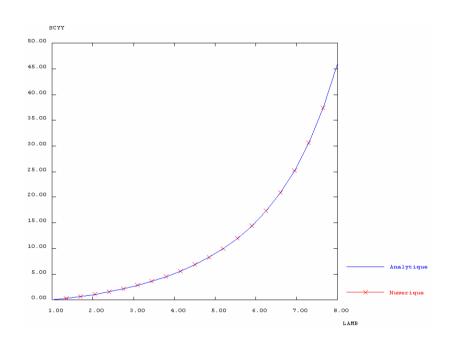


Qua4 Qua8

École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Traction

Solution analytique incompressible Huit Chaines

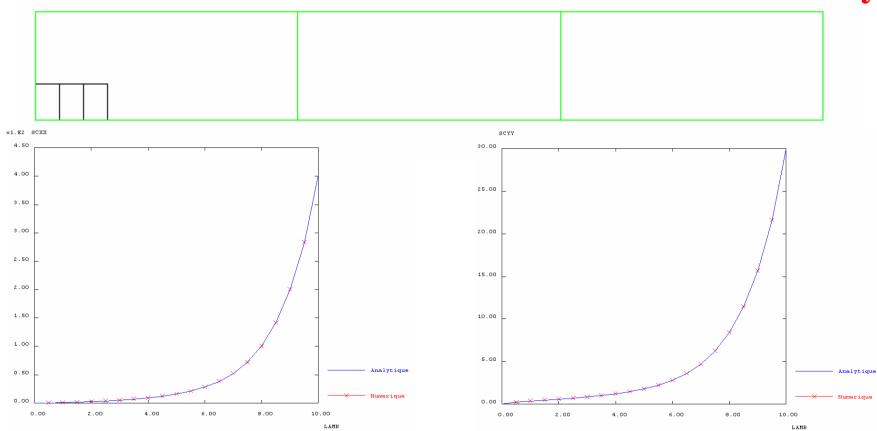


Cauchy

Traction biaxiale

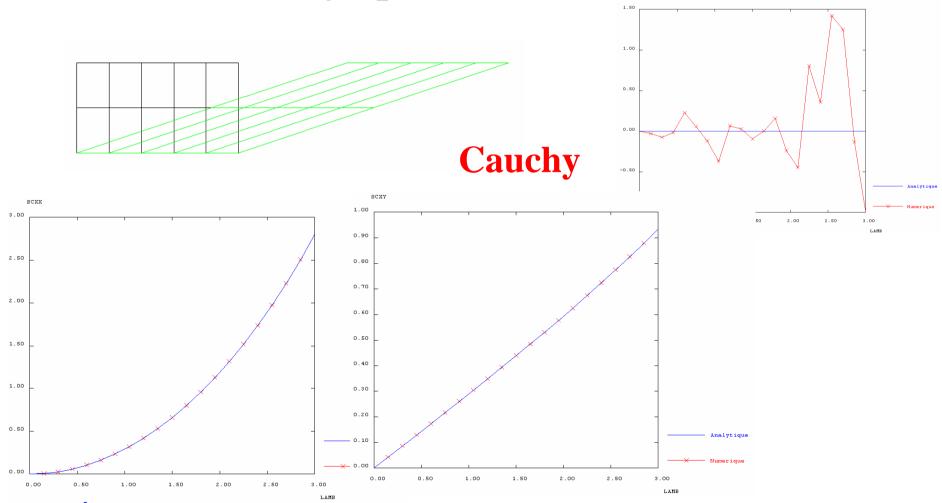
Solution analytique incompressible Huit Chaines

Cauchy



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Solution analytique incompressible Huit Chaines



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

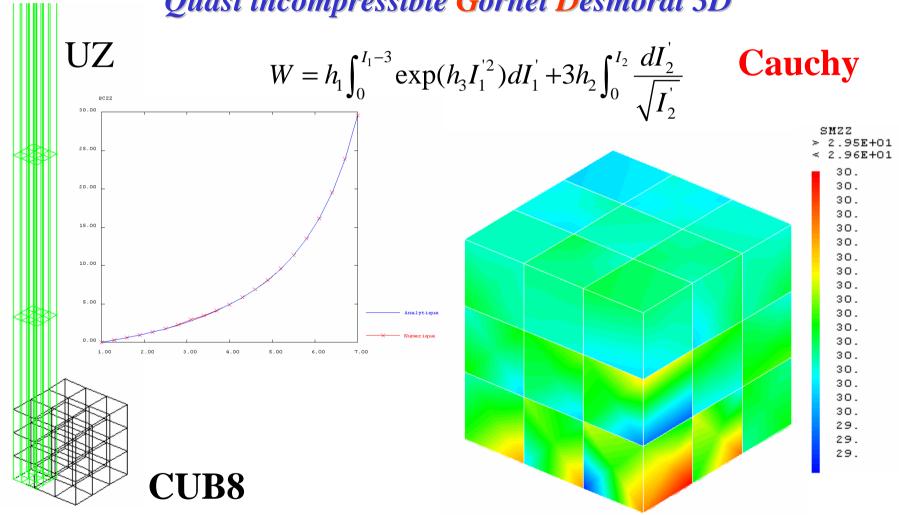
Plan

- Contexte
- La Performance des modèles hyperélastiques
 - De Mooney Rivlin à GD, GDM isotrope, GDM
- Développement UMAT
 - De la théorie à la programmation
- Exemples de validation
 - 2D, 3D, analytique et Abaqus
- Conclusion

Plan

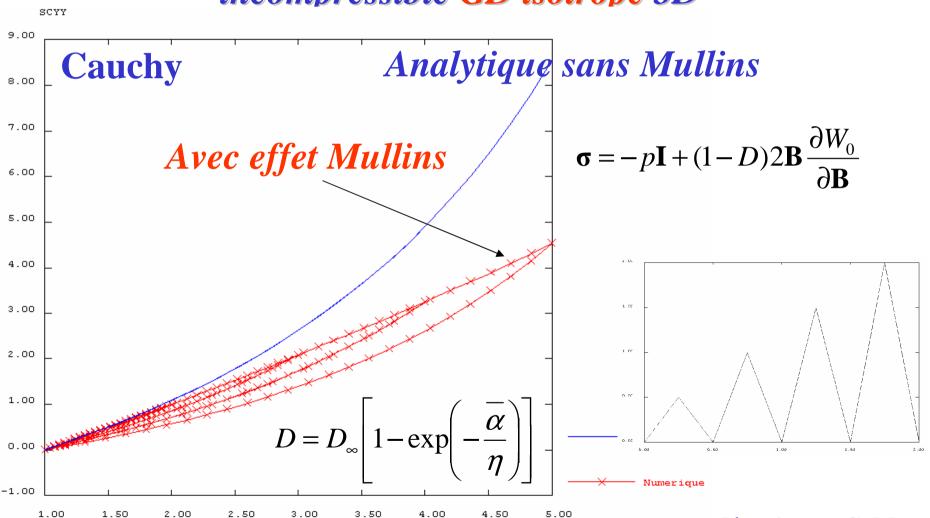
- Contexte
- La Performance des modèles hyperélastiques
 - De la théorie à la programmation
- Développement UMAT
 - De la théorie à la programmation
- Exemples de validation
 - 2D, 3D, Effet Mullins
- Conclusion

Quasi incompressible Gornet Desmorat 3D



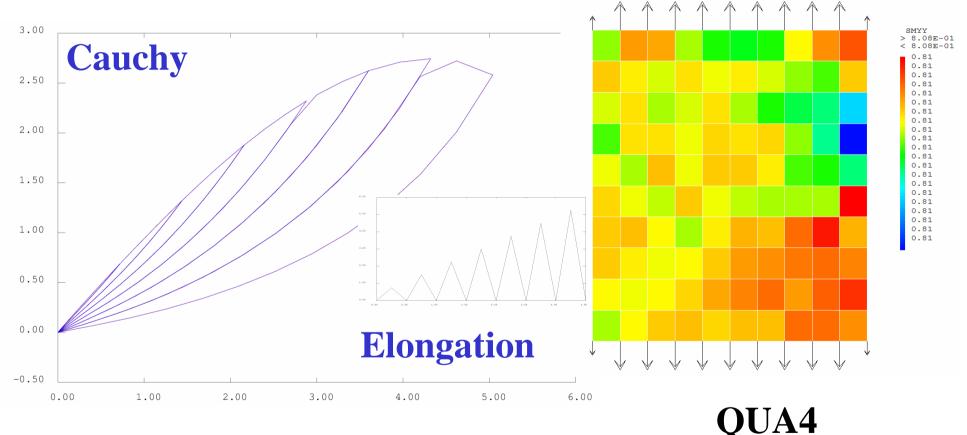
École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM **UMR CNRS 6183**

incompressible GD isotrope 3D



Ecole Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

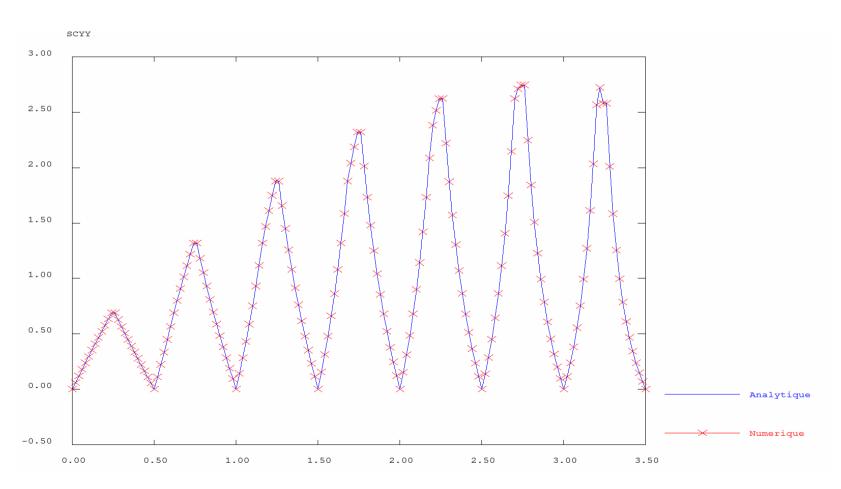
Quasi incompressible GD Mullins



Analytique et EF avec Mullins

École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

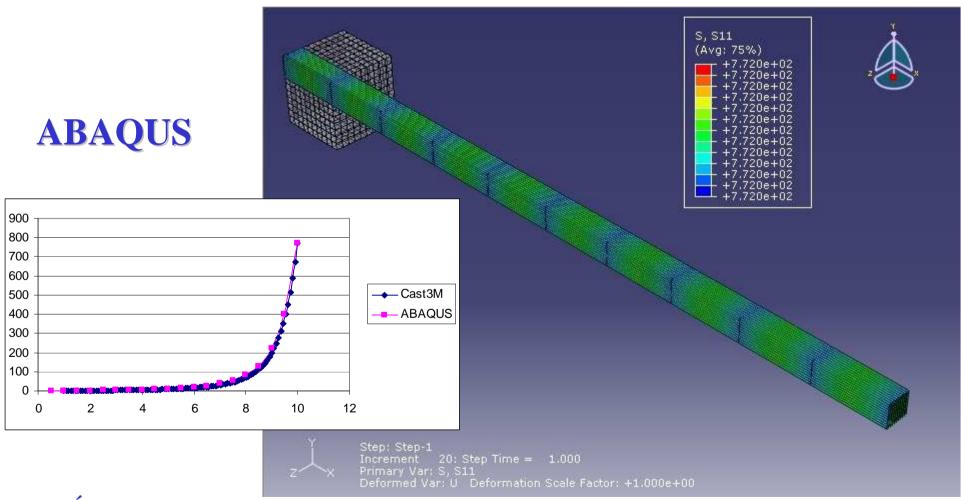
Quasi incompressible GD isotrope Mullins



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Éléments Finis

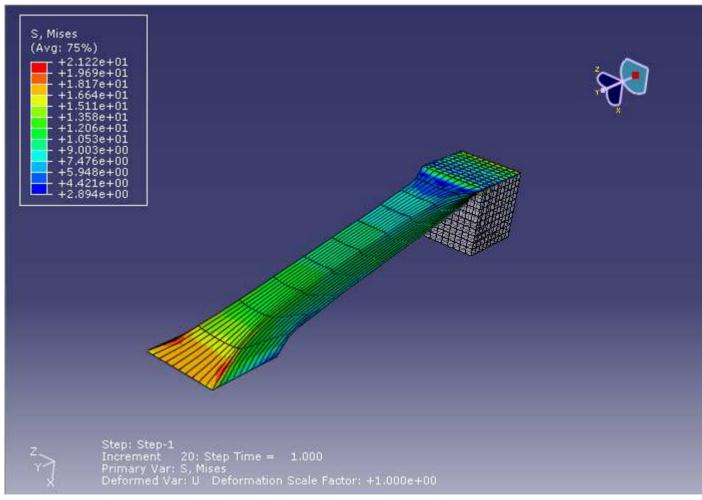
Modèle Gornet Desmorat 2009



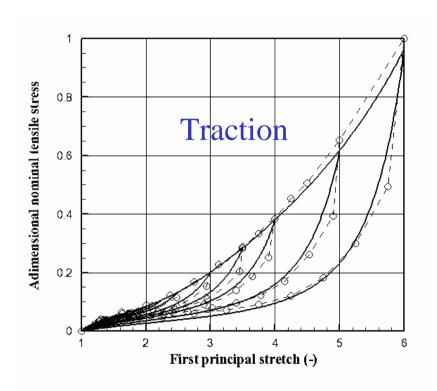
École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

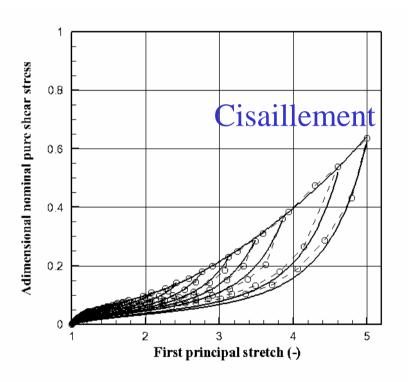
Éléments Finis

Modèle Gornet Desmorat 2009

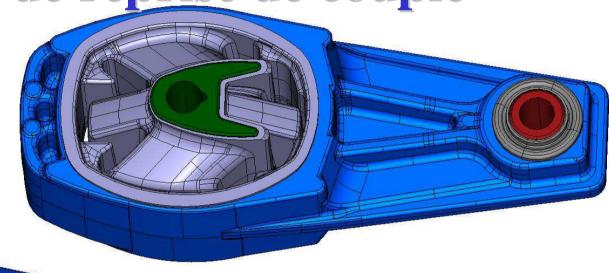


Mécanique de l'endommagement Gornet et al. ECCMR 2011





Biellette de reprise de couple





École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Institut de Recherche en Génie Civil et Mécanique Biellette de reprise de couple

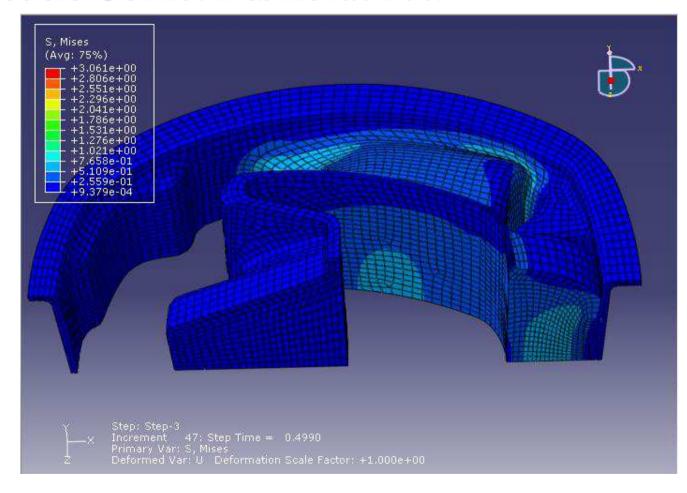
Modèle Gornet Desmorat 2009

ABAQUS

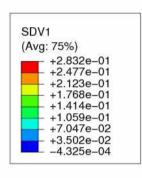
Matériau:

Caoutchouc

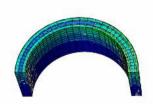
L.R.G. TRELOAR
Expériences 1944

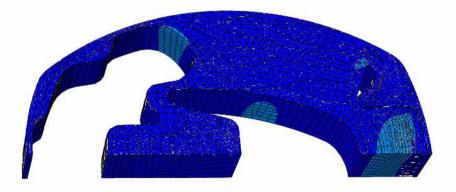


École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

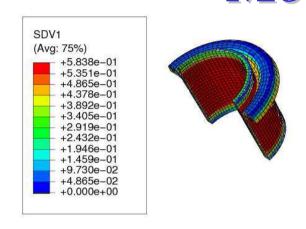


$$D = D_{\infty} \left[1 - \exp \left(-\frac{\overline{\alpha}}{\eta} \right) \right]$$





Institut de Recherche Biellette de reprise de couple Génie Civil et Mécanique Modèle GDM 2011



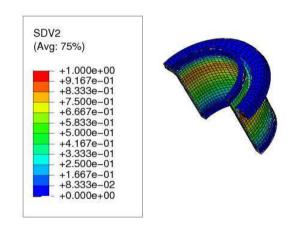
Dégradation d1

$$W_{GDM}\left(I_{1},I_{2}\right) = \frac{R_{0}^{6}}{I_{1}^{6}} e^{\frac{R_{0}^{6}(I_{1}-3)^{2}}{I_{1}^{6}}} dI_{1} + 3\frac{R_{0}^{6}}{I_{2}^{6}} \int \frac{1}{\sqrt{I_{2}}} dI_{2}$$

$$h_1^{6} = h_1 (1 - d_1), h_2^{6} = h_2 (1 - d_2), h_3^{6} = h_3 (1 - d_3)$$

École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

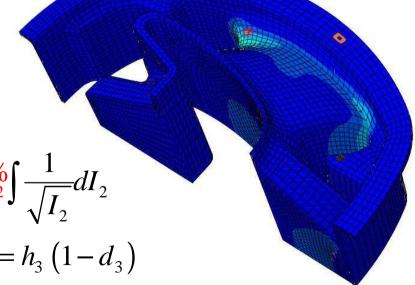
Institut de Recherche Biellette de reprise de couple Génie Civil et Mécanique Modèle GDM 2011



Dégradation d2

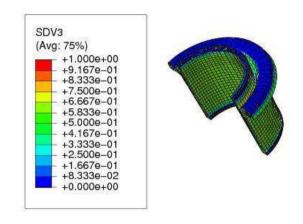
$$W_{GDM}(I_1, I_2) = \frac{R_0}{I_1} \int e^{\frac{R_0}{I_1}(I_1 - 3)^2} dI_1 + 3R_2^{0} \int \frac{1}{\sqrt{I_2}} dI_2$$

$$h_1^{6} = h_1 (1 - d_1), h_2^{6} = h_2 (1 - d_2), h_3^{6} = h_3 (1 - d_3)$$



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

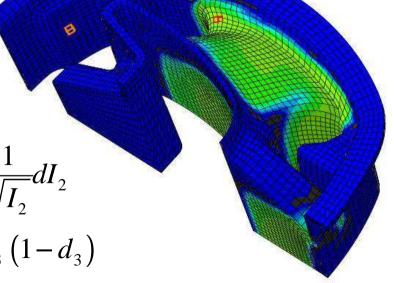
Institut de Recherche Biellette de reprise de couple Génie Civil et Mécanique Modèle GDM 2011



Dégradation d3

$$W_{GDM}(I_1, I_2) = h_1^{6} \int e^{h_3^{6}(I_1 - 3)^2} dI_1 + 3h_2^{6} \int \frac{1}{\sqrt{I_2}} dI_2$$

$$h_1^{6} = h_1(1 - d_1), h_2^{6} = h_2(1 - d_2), h_3^{6} = h_3(1 - d_3)$$



École Centrale de Nantes, Institut de recherche en Génie Civil et Mécanique – GeM UMR CNRS 6183

Conclusion

- Performance des modèles hyperélastiques
- Simulations des essais : Treloar, Kawabata
- Modèles GD, GDM: Treloar, Trelleborg
- Matériaux Incompressibles
 - Traction, Cisaillement, Biaxiale...
- Matériaux Quasi incompressibles
- Implantations Cast3M CEA / ABAQUS