Club Cast3m 2010

Post-doctorat

03/2010 - 03/2011

Comportement et endommagement de jonctions soudées 9Cr1Mo mod. en fluage entre 450 et 650°C

Projet TEMAS DTN/STPA – DM2S/SEMT – DMN/SRMA EDF/MMC Renardières – AREVA-NP

eraie atomique • energies alternatives

CEA/DEN/CAD/DER/SESI/LE2S

Contexte

- 9Cr1Mo mod. (Gr 91) = matériau actuellement candidat pour le générateur de vapeur des réacteurs nucléaires de génération IV (VHTR, SFR).
- Pas de composant sans soudures.
- Hautes températures = Fluage à évaluer.

→ Amélioration de la compréhension du comportement et de l'endommagement du 9Cr1Mo mod. et de ses joints soudés (JS) dans la gamme de température visée.

Objectifs

• **Compléter** les données de fluage du métal de base (MB) et du joint soudé (JS) pour modifier les courbes de fluagedéformation, fluage-rupture du RCC-MR (Règles de Conception et de Construction des Matériels mécaniques des ilots nucléaires RNR).

• **Identifier** les manques dans la base de données expérimentales pour calculer les coefficients de réduction de durée de vie en fluage.

• **Disposer** d'un modèle de fluage entre 450°C < T < 650°C, pour étudier des cas réels de structures avec joints soudés.

Fluage = déformation d'un matériau induite pendant le maintien constant de la température et de la contrainte
 → Déformation viscoplastique, dépendante du temps de maintien.

eneraie atomiaue • eneraies alternatives

• Exemple de géométrie d'éprouvette de caractérisation en fluage du joint soudé :

Courbe de fluage : cas général

• Courbe de fluage : cas du métal de base 9Cr1Mo mod. à 500°C

• Courbe de fluage : cas du joint soudé 9 Cr1Mo mod. à 500°C

T. Massé

CEA/DEN/CAD/DER/SESI/LE2S

7

01/02/2019

Étude données matériaux

- Base de données alimentée par :
 - Coopération tripartie entre CEA / EDF / AREVA,
 - Thèses :
 - V. Gaffard MinesParistech/CEA/EDF/AREVA 2004, principalement 625°C, mais aussi 550 et 450°C
 - F. Vivier MinesParistech/CEA/EDF/AREVA 2008, quasi exclusivement 500°C.
 - Essais SRMA, SEMT, STPA,
 - Collaborations internationales (RAPHAEL, ECCC),
 - Bibliographie (principalement Japon).
- Données expérimentales à utiliser sont :
 - Les courbes de traction monotone,
 - Les courbes de fluage (déformation, rupture).

Entre 450 et 650 °C

Synthèse des essais de fluage

• Synthèse des 210 essais du **métal de base** et des 388 essais sur **joint soudé** en acier 9Cr1Mo mod.

Synthèse des essais de fluage

• Synthèse des 388 essais du **joint soudé** en acier 9Cr1Mo mod. classés selon le lieu de la rupture

Synthèse des essais de fluage

Approche codification / Approche numérique

• Utilisation de coefficients de joints soudés pour représenter la durée de vie en fluage :

Par exemple RCC-MR définit coefficient J_R

$$J_{r} = \frac{S_{r_moy}(JS)}{S_{r_moy}(BM)}$$

→ S_{r_moy} = contrainte moyenne qui provoque la rupture pour une température θ et un temps d'application t (déterminée à partir de la courbe moyenne définit par le polynôme de degré 3).

- Approche de codification se fait donc à partir des essais de fluage sur éprouvettes de laboratoire.
 - \rightarrow Qu'en est-il sur les structures réelles ?
 - \rightarrow Utilisation de modèles éléments finis.

→ Modèle de fluage Cast3m anisotherme entre 450°C et 650°C

ique • energies alternative

Objectifs / étapes de la modélisation :

- Implémenter modèle de comportement de fluage couplé à une loi d'endommagement dans Cast3m,
- 2. Créer la géométrie de l'éprouvette et le fichier de test,
- 3. Valider implémentation sur le comportement du P92,
- **4. Identifier** paramètres pour le Gr 91 (MB, puis ZAT et MF) à partir base de données,
- 5. Valider identification par la simulation essais de fluage sur élément de volume (cas MB) puis sur éprouvette complète (joint soudé entier) : vérification courbe de fluage, temps à rupture, localisation rupture,
- 6. Appliquer le modèle aux structures réelles avec / sans joints soudés.

1. Implémentation modèle de fluage

→ Modèle de Hayhurst – Perrin développé pour acier 0,5%Cr, modifié par C. Petry (Edf) pour les aciers 9%Cr (notamment le P92): [C. Pétry, G. Lindet, « Modelling creep behaviour and failure of 9Cr-0.5Mo 1.8W-VNb steel », International Journal of Pressure Vessels and Piping 86 (2009) 486-494]

$$\underline{\dot{\varepsilon}}^{vp} = \frac{3}{2} \underbrace{\dot{\varepsilon}_{0}}_{sinh} \left(\underbrace{\frac{\sigma_{eq}(1 - H)}{K(1 - D)}}_{K(1 - D)} \right) \frac{\underline{\sigma}^{D}}{\sigma_{eq}}$$

Evolution de l'écrouissage

peraie atomique • energies alternatives

$$\begin{cases} H = H_1 + H_2 & \text{Cinétique} \\ \dot{H}_1 = \frac{h_1}{\sigma_{eq}} (H_1^* - H_1) \dot{p} & \text{d'endommagement} \\ \dot{H}_2 = \frac{h_2}{\sigma_{eq}} \dot{p} & \dot{D} = A_0 \sinh\left(\frac{\alpha\sigma_1 + (1 - \alpha)\sigma_{eq}}{\sigma_0}\right) \end{cases}$$

→ Critère de rupture : $t_R = Min\{(\varepsilon = 10\%), t(D = D_c)\}$

1

1. Implémentation modèle de fluage

→Utilisation de la procédure PASAPAS pour la résolution du calcul mécanique non-linéaire

2. Création de la géométrie de l'éprouvette

- Eprouvette cylindrique → calcul axisymétrique →
 ¼ de l'éprouvette à modéliser
- Maillage à 340 éléments (opérateur DALLER)
- Eléments massifs de type quadrangles à 8 nœuds à deux degrés de liberté (QUA8)
- Inconnues nodales en calcul axisymétrique : déplacements UR et UZ.
- Calcul en fluage sur éprouvette: temps CPU ~ 4h (sur Pentium 4, 3GHz, 2 Go de RAM, pour 10% de déformation)

3. Validation de l'implémentation du modèle (sur un élément de volume)

- → Réalisé sur le P92 (métal de base ; modèle déjà testé et appliqué avec succès sur ce matériau),
- → Comparaison sur les essais de fluage :

ique • energies alternative

[C. Pétry, E. Gariboldi, « Experimental characterisation and modelling of a P92 weldment », 4th EPRI Expert Workshop on Creep-Fatigue Damage Interaction]

avec $D_c = 0.25$ pour le P92

CEA/DEN/CAD/DER/SESI/LE2S

T. Massé

3. Validation de l'implémentation du modèle (sur un élément de volume)

- → Réalisé sur le P92 (métal de base ; modèle déjà testé et appliqué avec succès avec ce matériau),
- \rightarrow Comparaison sur les essais de traction à 600°C :

nique • energies alternative

CEA/DEN/CAD/DER/SESI/LE2S

01/02/2019

5. Validation par la resimulation des essais de fluage

Perspectives :

- **1. Compléter** données exp. fluage long terme pour confirmer valeur de $Dc \rightarrow d$ étermination précise courbe limite.
- 2. Valider modèle pour le Gr 91 sur le MB en traction,
- **Identifier** paramètres du modèle pour ZAT et MF, 3.
- 4. Valider identification par la simulation essais de fluage sur éprouvette complète (vérification courbe de fluage, temps à rupture, localisation rupture),
- **5.** Appliquer le modèle aux structures réelles avec / sans joints soudés.

atomique · energies alternatives

t = t_{Rupt}

Déformations équivalentes

inélastiques

fluage des jonctions soudées en 9Cr. Rapport d'avancement 2008. SEMT/LISN/RT/08-35/A1

CEA/DEN/CAD/DER/SESI/LE2S

T Massé

01/02/2019

MERCI

22

01/02/2019

Projet TEMAS

- Coordonné entre les acteurs français CEA, AREVA et EDF.
- **Couvre** l'ensemble des actions relatives au choix et au développement des matériaux envisagés pour l'assemblage combustible (hors combustible) et pour les structures du futur RNR-Na.
- Intègre le retour d'expérience des réacteurs Phénix, SuperPhénix et du projet EFR.
- Se focalise également sur le développement, notamment les règles de dimensionnement et les lois de comportement, du code RCC-MR qui a été retenu par le CEA, AREVA et EDF pour la construction des réacteurs RNR-Na.

Modes de rupture des joints soudés

- Lieux de rupture différents :
 - Forte $\sigma \rightarrow \text{cours } t_R \rightarrow \text{rupture dans le métal fondu,}$

[P. Mayr et al., Long-term creep behaviour of 9% Cr steel weldments, Proc. of CREEP8, July 22-26, 2007, San Antonio, Texas]

• Faible $\sigma \rightarrow \log t_R \rightarrow$ rupture dans la ZAT (ICHAZ de type IV).

nique • energies alternative

→ Pourquoi des lieux de rupture différents ?

Modes de rupture des joints soudés

- \rightarrow Car mécanismes de rupture différents :
 - Forte σ : rupture ductile intergranulaire dans les cupules assistée par la viscoplasticité

- Nucléation de cavités aux joints de grains,
- Croissance de cavités assistée par la déformation des grains et coalescence des petites cavités intergranulaires,
- Striction est déclenchée par le recouvrement d'une microstructure en latte de martensite qui entraine la rupture ductile (faible fraction de volume de cavités (10%).

[V. Gaffard et al., High temperature creep flow and damage properties of 9Cr1MoNbV steels: Base metal and weldment, Nuclear Engineering and Design 235 (2005) 2547–2562]

- Faible σ : rupture gouvernée par l'endommagement de fluage par cavitation assistée par la diffusion :
 - Nucléation de cavités (en forme de fissures) aux joints de grains :
 - Croissance de cavités assistée par diffusion le long des joints de petits grains équiaxes.
 - Coalescence des cavités pour formation micropuis macro-fissure

Modes de rupture des joints soudés

 \rightarrow Pourquoi rupture type IV dans ICHAZ (InterCritical Heat Affected Zone) ?

 MB = distribution uniforme des précipités + forte densité de dislocations → Structure fine de sous grains stabilisée par ancrage des particules et durcissement de la solution solide

→ Microstructure avec excellente résistance au fluage

[V. Gaffard et al., High temperature creep flow and damage properties of 9Cr1MoNbV steels: Base metal and weldment, Nuclear Engineering and Design 235 (2005) 2547–2562]

atomique • energies alternatives

- Cycle thermique de soudage + traitement thermique post soudage (PWHT) modifie distribution :
 - Dissolution non complète des carbures pendant le soudage,
 - Grossissement des carbures pendant le PWHT.
 - → formation d'une bande étroite à faible résistance = la ZAT (HAZ)
- Microstructure ICHAZ =
 - petits grains équiaxes (taille 5-6µm)
 - Grains constellés par des particules aux joints de grains
 - Grains à forte désorientation cristallographique

[P. Mayr et al., Long-term creep behaviour of 9% Cr steel weldments, Proc. of CREEP8, July 22-26, 2007, San Antonio, Texas]

→ Sensibilité de l'ICHAZ à la fissuration aux joints de grains

Détermination de D_c et de la courbe limite

1. a/ Utilisation de la vitesse minimale de déformation pour déterminer la contrainte correspondant au changement de mécanisme de fluage

- \rightarrow loi puissance de type Norton
- \rightarrow Changement de pente =

Changement valeur exposant p(T)

 \rightarrow Obtention de σ_{lim}

•
$$\varepsilon_{min} = a(T)\sigma^{p(T)}$$

energies alternative