Politecnico di Milano Dipartimento di Meccanica

Matteo Luca Facchinetti

DYNAMIC ANALYSIS OF A Bb CLARINET

Laboratoire de Mécanique des Solides École Polytechnique (Paris)

Bb CLARINET

"beating" simple reed

target: dynamic analysis during sound production

DEVELOPMENT PLAN

computations	FEM modeling \rightarrow Castem 2000	0
real	sole reed	
_		

eigen modes reed + mouthpiece + barrel reed + clarinet

\downarrow

time domain analysis dynamic

 \uparrow

- □ one-side contact reed-mouthpiece
- □ acousto-mechanical instability (sound production)

experiments

eigenfrequencies measurement

→ piezo-electric probe eigenmodes visualization → interferometric holography

REED

• material: homogeneous, elastic, transversely isotropic

• model: thin plate (Kirchhoff-Love)

• **bond**: rigidly fixed end section (ligature)

INSTRUMENT

MOUTHPIECE & BARREL

• material: wet air, ideal mixture of ideal gases

 $\rho, c = f(T, \varphi) \qquad p_{atm}$

(p,U) perturbations with respect to equilibrium acoustic linear behaviuor

• geometry: CMM + manual mesh

- boundary conditions:
 - rigid surface: $\frac{\partial p}{\partial n} = 0$
 - free surface: p = 0
 - fluid-structure interface: $\begin{cases} \underline{U_s} \cdot \underline{n} = \underline{U} \cdot \underline{n} \\ \underline{\underline{\sigma}_s} \cdot \underline{n} = -p \underline{n} \end{cases}$
 - acoustic impedance: $Z_a(\omega) = \frac{p}{U}$

	REED	REED	+ MOUTHPIECE	MOUTHPIECE
f [Hz]	eigenmode	f [Hz]	eigenmode	f [Hz]
		2059	longitudinal flex	1863
2312	longitudinal flex	2251	longitudinal flex	
3257	torsion	3239	torsion	
		4496	"composite" flex	4243
5840	transversal flex	5908	transversal flex	
6214	longitudinal flex	6019	"composite" flex	
		6709	"composite" flex	6433
7389	torsion	7335	torsion	

	REED	REED	+ MOUTHPIECE + BARREL
f [Hz]	eigenmode	f [Hz]	eigenmode
		1401	longitudinal flex
2312	longitudinal flex	2228	longitudinal flex
		3072	longitudinal flex
3257	torsion	3213	torsion
		4794	"composite" flex
5840	transversal flex	5897	transversa flex
		5983	longitudinal flex
6214	longitudinal flex	6491	"composite" flex
7389	torsion	7294	torsion

EXPERIMENTAL VALIDATION

• **model:** reed + mouthpiece + barrel

limited reed oscillations \rightarrow no contact on mouthpiece lay

• eigenfrequencies: piezo-electric probe

• eigenmodes: interferometric holography

 $\lambda = 0.6328\,\mu m$

SENSIBILITY ANALYSIS

• wet air physical properties: $\rho, c = f(T, \varphi)$

reed mechanical properties

$\Delta = 10\%$	E_L	E_T	G_{LT}	$ u_{LT} $	ρ
mean values	10e4 MPa	400 MPa	1300 MPa	0.22	450 $\frac{kg}{m^{3}}$
FL	2.3%	<0.05%	<0.05%	<0.05%	-2.2%
FC	4.9%	<0.05%	<0.05%	<0.05%	-4.5%
FT	1.7%	0.9%	4.9%	<0.05%	-4.8%
Т	1.4%	0.1%	3.1%	<0.05%	-6.4%

• cavity geometry

 $1 mm \rightarrow 1\%$ $\alpha = 0^{\circ} \div 25^{\circ}$ "mouthpiece" mode 2230 Hz

REST OF THE INSTRUMENT

• problem: massive FEM model not efficient

 $\left(\begin{array}{c} computationally expensive \\ 1 note \Leftrightarrow 1 model \end{array}\right)$

• idea: impedance simulation by dashpot system

$$Z_m(\omega) = \frac{f}{x}$$
 $Z_m(\omega) = S^2 \cdot Z_a(\omega)$ $Z_a(\omega) = \frac{p}{U}$

useful adaptability

• measures: [Vincent Gibiat (ESPCI) - 1998]

mouthpiece volume correction

- analytic transformation: $Z_a(O) \rightarrow Z_a(C)$

IDENTIFICATION

Matlab

preliminary data analysis
 filtering (splines)
 phase correction
 incomplete parts

single dashpot parameters: initial estimation

error function minimization

 $E = \int_{\Omega} |f_{sperimentale}(\omega) - f_{calcolata}(\omega)|^2 d\omega$ $\begin{cases} E = \alpha E_{modulo} + \beta E_{fase} \\ \alpha + \beta = 1 \qquad 0 \le \alpha, \beta \le 1 \end{cases}$

algorithm Simplex Search - Nelder Mead

• **smoothing:** *cubic splines* (Matlab)

• system transformation: chain → comb

• progressive opt.

 $m_{connection} \leq 1.7 \cdot 10^{-8} \, kg \quad \Rightarrow \quad \Delta < 1\%$

	REED	REED	+ INSTRUMENT	DASHPOTS
f [Hz]	eigenmode	f [Hz]	eigenmode	f [Hz]
		0	rigid	
		464	longitudinal flex	423
		873	longitudinal flex	1038
		1334	longitudinal flex	
		1438	longitudinal flex	1443
		1767	longitudinal flex	1636
		1864	longitudinal flex	1831
		1980	longitudinal flex	2163
2312	longitudinal flex	2234	longitudinal flex	
3257	torsion	3234	torsion	

BEATING REED (1) set-up

• geometry: CMM + Matlab

• computation: eigenmode projection

$$u(x,t)\simeq \sum_{i=1}^N lpha_i(t)\,w_i(x)$$

algorithm Fu - de Vogelære 4^{th} ordre, explicit

BEATING REED (2) results

"enriched" spectrum

SOUND EMISSION (1) model

reed = pressure-controlled flux valve

- \Box Bernoulli flux \rightarrow modified EF comportement law
- \Box cap dynamic \rightarrow numeric integration

SOUND EMISSION (3) results

FA low

measured acoustic impedance

computed sound spectrum

SOL♯ high

measured acoustic impedance

computed sound spectrum

CONCLUSIONS & PROSPECTS

• target: numerical model { sound generation beating reed low frequencies

widening & development paths

— spectrum — player	<pre>{ frequencies ↑</pre>
	(mechanic contact on the reed
	mouth resonant cavity
— reed	$\left\{\begin{array}{l} {\rm wet \ air \rightarrow wet \ reed} \\ {\rm local \ heterogeneity \ \& \ anisotropies} \end{array}\right.$

applications
 dynamic behaviuor and sound analysis
 artificial reeds (composite)