Utilisation de CASTEM pour des études de mécanique des fluides dans une enceinte de réacteur nucléaire

Application et validation sur les essais PHEBUS FPT0 et FPT1

E. Studer, IPSN J.P. Magnaud, CEA

Caractérisation de l'écoulement vapeur dans la cavité du réacteur en situation accidentelle

C. Caroli, ENEA - Italy Work carried out by ENEA in collaboration with IPSN

Vertical cut of the DISCO mock-up

Experiment	Initial RPV Pressure	Hole Diameter	Gas	Note
	МРа	mm		
B2	1.100	50	N ₂	Experiment with pure gas
L05	0.600	50	N ₂	Experiment with pure gas
D5	1.200	50	N ₂	Gas + Water
D6	0.619	50	N ₂	Gas + Water
D7	0.620	25	N ₂	Gas + Water
H1	0.641	25	Не	Gas + Water

Table 1: Main characteristics of the modeled Disco-C experiments

The 3-D model

Conservation equations: $\frac{\partial u}{\partial t} + \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z} = 0$

 $\underline{u} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho w \\ \rho e_t \end{pmatrix}, \qquad \underline{f_x} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uw \\ \rho uw \\ \rho uh_t \end{pmatrix}, \qquad \underline{f_y} = \begin{pmatrix} \rho v \\ \rho vu \\ \rho vu \\ \rho v^2 + p \\ \rho vw \\ \rho vw \\ \rho vh_t \end{pmatrix}, \qquad \underline{f_z} = \begin{pmatrix} \rho w \\ \rho wu \\ \rho wu \\ \rho wv \\ \rho w^2 + p \\ \rho wh_t \end{pmatrix}$

Jump conditions:

 $[\rho \cdot u_n] = 0$, $[\rho \cdot u_n \cdot h_t] = 0$, $[\rho + \rho \cdot u_n^2] = 0$, $[\rho \cdot u_n \cdot u_{t1}] = 0$, $[\rho \cdot u_n \cdot u_{t2}] = 0$

Model hypotheses:

Polytropic gas

Viscous and diffusion phenomena neglected

VAL - ISO

Disco D5 - P1/P2=12,d=50,N2 - t [s]= 6.14143E-05 P [Pa]

VAL - ISO > 5.13E+04 < 1.20E+06 A 6.03E+04 D 1.14E+05 G 1.68E+05 J 2.22E+05 M 2.76E+05 P 3.30E+05 S 3.83E+05 V 4.37E+05 Y 4.91E+05 b 5.45E+05 e 5.99E+05 h 6.53E+05 k 7.06E+05 n 7.60E+05 q 8.14E+05 t 8.68E+05 w 9.22E+05 z 9.76E+05 2 1.03E+06 5 1.08E+06 8 1.14E+06

@ 1.19E+06

Disco D5 - P1/P2=12,d=50,N2 - t [s]= 1.22231E-04 P [Pa]

@ 1.19E+06

VAL - ISO

Disco D5 - P1/P2=12.d=50.N2 - t [s]= 2.44964E-04 P [Pa]

UX UY UZ

COMPOSANTES VECTEURS

COMPOSANTES VECTEURS

UX UY UZ

Disco D5 - P1/P2=12,d=50,N2 - t [s]= 6.14143E-05 RhoU [kq/m2/s]

Disco D5 - P1/P2=12,d=50,N2 - t [s]= 1.22231E-04 RhoU [kg/m2/s]

COMPOSANTES VECTEURS UX UY UZ

COMPOSANTES VECTEURS

UX UY UZ

Disco D5 - P1/P2=12.d=50.N2 - t [s]= 1.85073E-04 Rhou [kg/m2/s]

VAL - ISO

VAL - ISO > 1.71E+04 < 1.07E+06 A 2.54E+04 D 7.49E+04 G 1.24E+05 J 1.74E+05 M 2.24E+05 P 2.73E+05 S 3.23E+05 V 3.72E+05 Y 4.22E+05 b 4.71E+05 e 5.21E+05 h 5.70E+05 k 6.20E+05 n 6.69E+05 q 7.19E+05 t 7.69E+05 w 8.18E+05 z 8.68E+05 2 9.17E+05 5 9.67E+05 8 1.02E+06 @ 1.07E+06

Disco D5 - P1/P2=12,d=50,N2 - t [s]= 1.00000E-02 P [Pa]

VAL - ISO > 2.91E+04 < 9.09E+05 A 3.59E+04 D 7.72E+04 G 1.18E+05 J 1.60E+05 M 2.01E+05 P 2.42E+05 S 2.84E+05 V 3.25E+05 Y 3.66E+05 b 4.07E+05 e 4.49E+05 h 4.90E+05 k 5.31E+05 n 5.72E+05 q 6.14E+05 t 6.55E+05 w 6.96E+05 z 7.37E+05 2 7.79E+05 5 8.20E+05

8 8.61E+05

@ 9.03E+05

@ 1.11E+06

VAL - ISO > 3.05E+04 < 7.10E+05 A 3.58E+04 D 6.77E+04 G 9.95E+04 J 1.31E+05 M 1.63E+05 P 1.95E+05 S 2.27E+05 V 2.59E+05 Y 2.91E+05 b 3.22E+05 e 3.54E+05 h 3.86E+05 k 4.18E+05 n 4.50E+05 q 4.82E+05 t 5.13E+05 w 5.45E+05 z 5.77E+05 2 6.09E+05 5 6.41E+05 8 6.73E+05 @ 7.05E+05

Disco D5 - P1/P2=12,d=50,N2 - t [s]= 2.00000E-02 P [Pa]

COMPOSANTES VECTEURS

UX UY UZ

COMPOSANTES VECTEURS

UX UY UZ

Disco D5 - P1/P2=12,d=50,N2 - t [s]= 1.00000E-02 RhoU [kg/m2/s]

COMPOSANTES VECTEURS

COMPOSANTES VECTEURS

UX UY UZ

Disco D5 - P1/P2=12.d=50.N2 - t [s]= 5.00000E-02 Rhou [kg/m2/s]

Disco D5 - P1/P2=12,d=50,N2 - t [s]= 2.00000E-02 RhoU [kq/m2/s]

Disco D6 - Pressure along the axis

Disco D6 - Velocity along the axis

Disco D6 - Mach along the axis

Disco D6 - Pressure in the cavity floor

Disco D6 - Velocity in the Cavity floor

Disco D6 - Mach in the cavity floor

Velocity in the annular space v.s. time

Disco experiment B2 (Pure Gas) - RPV pressure histories

Disco experiment - RPV pressure histories for different hole sizes

Disco experiment- RPV pressure histories for different initial pressure

Conclusions

- Global validity of the modeling approach followed (inviscid compressible flow of perfect gases)
- Need to consider a two-phase flow model to correctly describe some aspects of the flow (blow down and annular space velocities behavior)
- Gas flow characterized by a fast transient at the beginning of the blow down followed by quasisteady state (depressurization time constant much larger than the flow field time constant)
- Blow through time much more dependent on the failure size and on the gas specie than on the initial pressure drop.
- Gas velocities at the RPV failure supersonic over a large time interval no matter the considered case.
- Gas flow in the cavity essentially confined in a thin layer parallel to the cavity floor. A recirculation observed but with a limited velocity level.