* fichier : pressuw.dgibi * * Containment pressurization (Phebus size) * * 3D mesh of a 14.5 m3 cylindrical containment with a 10cm in depth vertical wall. * Initial pressure and temperature are 1bar and 40oC with the wall at 60oC. * Steam is injected at a constant 50g/s mass flow rate and a temperature of 150oC. * * Transient is computed for 50s. We check the pressure, the averaged temperature, * the velocity ans the condensation mass flow rate (that starts at 20s) evolutions. * * This test case is similar as pressu2.dgibi except for the wall : it is * splitted in two pieces to illustrate how to define several layers by * using the rxt . 'PAROIS' data structure. * * Auteurs : E. Studer, J.P. Magnaud Novembre 1999 * 'OPTI' 'DIME' 3 'ELEM' 'CU20' 'TRAC' 'PSC' ; 'DENS' 1. ; * COMPLET = FAUX ; GRAPH = faux ; 'SI' COMPLET ; nbit = 100 ; DT0 = 1. ; n1 = 1 ; n2 = 4 ; n3 = 4 ; nn = 2 ; 'SINO' ; nbit = 5 ; DT0 = 10. ; n1 = 1 ; n2 = 2 ; n3 = 2 ; nn = 1 ; 'FINS' ; epsi = 1.D-2 ; * * * Mesh * * * ri=cavity radius, h1=cavity height, sp=wall depth, * fg1=break to cavity radius ratio ri = 1.052 ; h1 = 4.163 ; sp = 0.05 ; fg1 = 0.25 ; fg2 = fg1 * (2.0 ** 0.5) / 2. ; * p0 = 0.000 0.000 0.000 ; p1 = (ri*fg1) 0.000 0.000 ; p2 = (ri*fg2) (ri*fg2) 0.000 ; p3 = 0.000 (ri*fg1) 0.000 ; p4 = ri 0.000 0.000 ; p5 = 0.000 ri 0.000 ; p6 = (ri+sp) 0.000 0.000 ; p7 = 0.000 (ri+sp) 0.000 ; p8 = (ri+sp+sp) 0.000 0.000 ; p9 = 0.000 (ri+sp+sp) 0.000 ; * * Fluid and structure basement surfaces * (built by symetry) l1 = 'DROI' p0 p1 n1 ; l2 = 'DROI' p1 p2 n1 ; l3 = 'DROI' p2 p3 n1 ; l4 = 'DROI' p3 p0 n1 ; l5 = 'CERC' p4 p0 p5 (2*n1) ; l6 = 'CERC' p6 p0 p7 (2*n1) ; l7 = 'CERC' p8 p0 p9 (2*n1) ; basf0 = 'DALL' l1 l2 l3 l4 'PLAN' ; basf1 = ('REGL' (l2 'ET' l3) l5 n2) ; * l44 = 'COTE' 2 basf1; ax4 = ('INVE' l4) 'ET' l44 ; l11 = 'COTE' 4 basf1; ax1 = l11 'ET' ('INVE' l1) ; basf = basf0 'ET' ('REGL' (l2 'ET' l3) l5 n2) ; 'ELIM' basf epsi ; basf = basf 'ET' ('SYME' basf 'DROI' p0 p3) ; ax11 = ('SYME' ax1 'DROI' p0 p3) 'ET' ('INVE' ax1) ; 'ELIM' basf epsi ; basf = basf 'ET' ('SYME' basf 'DROI' p0 p1) ; ax44 = ('INVE' ax4) 'ET' ('SYME' ax4 'DROI' p0 p4) ; 'ELIM' basf epsi ; basm1 = 'REGL' l5 l6 n3 ; basm1 = basm1 'ET' ('SYME' basm1 'DROI' p0 p3) ; 'ELIM' basm1 epsi ; basm1 = basm1 'ET' ('SYME' basm1 'DROI' p0 p1) ; 'ELIM' basm1 epsi ; basm2 = 'REGL' l6 l7 n3 ; basm2 = basm2 'ET' ('SYME' basm2 'DROI' p0 p3) ; 'ELIM' basm2 epsi ; basm2 = basm2 'ET' ('SYME' basm2 'DROI' p0 p1) ; 'ELIM' (basm1 'ET' basm2) epsi ; * * Fluid and structure volumes * (built by translation) nz1 = ('ENTI' (h1 '/' (ri '/' 2.))) '*' nn ; v1 = 0. 0. h1 ; mt = basf 'VOLU' nz1 'TRAN' v1 ; wall1 = (basm1 'VOLU' nz1 'TRAN' v1) 'COUL' 'ROUG' ; wall2 = (basm2 'VOLU' nz1 'TRAN' v1) 'COUL' 'VERT' ; plan1 = ax11 'TRAN' nz1 v1 ; plan4 = ax44 'TRAN' nz1 v1 ; 'ELIM' (mt et wall1 'ET' wall2 'ET' plan1 'ET' plan4) epsi ; * * Break at the basement if any pjg = 'POIN' basf 'PROC' (0. 0. 0.) ; breche = ('ELEM' basf 'APPUIE' 'LARGEMENT' pjg) 'COUL' 'VERT' ; * * * Data for execrxt.procedur * * rxt = 'TABLE' ; rxt . 'VERSION' = 'V0' ; rxt . 'vtf' = mt ; rxt . 'epsi' = epsi ; rxt . 'pi' = 0. 0. 0.5 ; * rxt . 'DISCR' = 'MACRO'; rxt . 'KPRE' = 'CENTRE'; rxt . 'DT0' = DT0 ; * rxt . 'MODTURB' = 'NUTURB' ; rxt . 'NUT' = 1.D-2 ; * rxt . 'ECHAN' = 10. ; rxt . 'PAROIS' = table ; rxt . 'PAROIS' . 'Peinture' = table ; rxt . 'PAROIS' . 'Peinture' . 'vtp' = wall1 ; rxt . 'PAROIS' . 'Peinture' . 'LAMBDA' = 15. ; rxt . 'PAROIS' . 'Peinture' . 'ROCP' = 3.9E6 ; rxt . 'PAROIS' . 'Peinture' . 'Tp0' = 60. ; rxt . 'PAROIS' . 'Acier' = table ; rxt . 'PAROIS' . 'Acier' . 'vtp' = wall2 ; rxt . 'PAROIS' . 'Acier' . 'LAMBDA' = 15. ; rxt . 'PAROIS' . 'Acier' . 'ROCP' = 3.9E6 ; rxt . 'PAROIS' . 'Acier' . 'Tp0' = 60. ; * rxt . 'VAPEUR' = VRAI ; rxt . 'TF0' = 40.0 ; rxt . 'PT0' = 1.0e5 ; rxt . 'Yvap0' = 0.0023 ; * rxt . 'Breches' = 'TABLE' ; rxt . 'Breches' . 'A' = 'TABLE' ; rxt . 'Breches' . 'A' . 'scenario' = 'TABLE' ; rxt . 'Breches' . 'A' . 'Maillage' = breche ; rxt . 'Breches' . 'A' . 'diru' = (0. 0. 1.) ; rxt . 'Breches' . 'A' . 'scenario' . 't' = 'PROG' 0.0 1000.0 ; rxt . 'Breches' . 'A' . 'scenario' . 'qeau' = 'PROG' 0.050 0.050 ; rxt . 'Breches' . 'A' . 'scenario' . 'qair' = 'PROG' 0.000 0.000 ; rxt . 'Breches' . 'A' . 'scenario' . 'tinj' = 'PROG' 150.0 150.0 ; * rxt . 'GRAPH' = GRAPH ; rxt . 'DETMAT' = VRAI ; rxt . 'FRPREC' = 5 ; rxt . 'RENU' = 'RIEN' ; * * * Transient (with restart after 2 time steps) * * EXECRXT 2 rxt ; EXECRXT (nbit - 2) rxt ; * * * Tests * * 'SI' ('NON' COMPLET) ; ERR1 = 0 ; 'LIST' rxt.TIC.'Tfm' ; 'LIST' rxt.TIC.'PT' ; 'LIST' rxt.TIC.'Qc' ; 'LIST' rxt.TIC.'LMAXU'; ltfm = 'PROG' *40.000 65.434 73.712 81.158 86.814 90.738 ; 40.000 65.434 73.712 81.158 86.809 90.721 ; lPT = 'PROG' *1.00000E+05 1.06009E+05 1.21199E+05 1.29592E+05 1.36462E+05 1.43998E+05; 1.00000E+05 1.06009E+05 1.21199E+05 1.29592E+05 1.36461E+05 1.43987E+05; Lqc = 'PROG' *0.0000 0.0000 0.0000 3.81471E-04 2.57962E-03 4.78997E-03 ; 0.0000 0.0000 0.0000 4.06133E-04 2.65247E-03 4.88852E-03 ; Lmaxu = 'PROG' *0.0000 0.81320 2.0813 2.6901 2.2350 2.5277 ; 0.0000 0.81320 2.0813 2.6901 2.2350 2.5277 ; tic = rxt . 'TIC' ; ERtf = 'SOMM' ('ABS'(ltfm - tic . 'Tfm')) '/' 80. ; ERPT = 'SOMM' ('ABS'(lPT - tic . 'PT' )) '/' 1.e5 ; ERQc = 'SOMM' ('ABS'(lqc - tic . 'Qc' )) ; ERum = 'SOMM' ('ABS'(Lmaxu - tic . 'LMAXU')) '/' 2. ; 'MESS' 'ERtf=' ERtf 'ERPT=' ERPT 'ERQc=' ERQc 'ERum=' ERum ; 'SI' (ERtf '>' 1.e-4) ; err1 = err1 '+' 1 ; 'FINS' ; 'SI' (ERPT '>' 1.e-3) ; err1 = err1 '+' 1 ; 'FINS' ; 'SI' (ERQc '>' 1.e-4) ; err1 = err1 '+' 1 ; 'FINS' ; 'SI' (ERum '>' 1.e-2) ; err1 = err1 '+' 1 ; 'FINS' ; 'SI' ('NEG' ERR1 0) ; 'ERRE' 5 ; 'FINS' ; 'FINS' ; * * * Plots devoted to pressu... cases * * 'SI' GRAPH ; tbt = rxt . 'TBT' ; tic = rxt . 'TIC' ; * $vtf = rxt . 'GEO' . '$vtf' ; vtf = 'DOMA' $vtf 'MAILLAGE' ; * Mpl1 = 'CHAN' 'QUAF' plan1 ; Mpl4 = 'CHAN' 'QUAF' plan4 ; 'ELIM' (vtf 'ET' Mpl1 'ET' Mpl4) epsi ; $mpl1 = 'MODE' Mpl1 'NAVIER_STOKES' 'MACRO' ; $mpl4 = 'MODE' Mpl4 'NAVIER_STOKES' 'MACRO' ; plan1 = 'DOMA' $mpl1 'MAILLAGE' ; plan4 = 'DOMA' $mpl4 'MAILLAGE' ; plan = plan1 'ET' plan4 ; cplan = 'CONT' plan ; * 'SI' ('EXIS' tic 'TP') ; $vtp = rxt . 'GEO' . '$vtp' ; vtp = 'DOMA' $vtp 'MAILLAGE' ; 'FINS' ; paroif = rxt . 'GEO' . 'paroif'; cparoif = 'CONT' paroif ; * axe = p0 d nz1 (p0 plus v1) ; axe = 'CHAN' axe 'QUAF' ; 'ELIM' (axe 'ET' mt) epsi ; * un = tic . 'UN'; unp = 'REDU' un plan ; ung = 'VECT' un 0.5 'UX' 'UY' 'UZ' 'JAUN' ; ungp = 'VECT' unp 0.5 'UX' 'UY' 'UZ' 'JAUN' ; tf = tic . 'TF' ; rho = tic . 'RHO' ; rair = tic . 'RAIR' ; 'SI' tbt . 'THE' ; rhe = tic . 'RHE' ; 'FINS' ; 'SI' tbt . 'TH2' ; rh2 = tic . 'RH2' ; 'FINS' ; 'SI' tbt . 'TCO' ; rco = tic . 'RCO' ; 'FINS' ; 'SI' tbt . 'TCO2' ; rco2 = tic . 'RCO2' ; 'FINS' ; 'SI' tbt . 'VAPEUR' ; rvp = tic . 'RVP' ; 'FINS' ; * evauz = 'EVOL' 'CHPO' ('EXCO' un 'UZ') axe ; 'DESS' evauz 'TITR' 'Velocity with the z axis' 'MIMA' 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' m/s' ; 'TRAC' ung plan ('CONT' plan) 'TITR' ' Velocity' ; * evatf = 'EVOL' 'CHPO' tf axe ; 'DESS' evatf 'TITR' 'Gas temperature with the z axis' 'MIMA' 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' C' ; 'TRAC' tf plan cplan 'TITR' ' Temperature' ; 'TRAC' tf paroif cparoif 'TITR' ' Temperature' ; * evarh = 'EVOL' 'CHPO' rho axe ; 'DESS' evarh 'TITR' 'Gas density with the z axis' 'MIMA' 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' kg/m3' ; 'TRAC' rho plan ('CONT' plan) ungp 'TITR' ' Density & velocity' ; 'TRAC' rho paroif cparoif 'TITR' ' Density' ; * evavap = 'EVOL' 'CHPO' rvp axe ; 'DESS' evavap 'TITR' 'Steam density with the z axis' 'MIMA' 'GRIL' 'POIN' 'GRIS' 'TITX' 'z' 'TITY' ' kg/m3' ; 'TRAC' rvp plan cplan 'TITR' ' Steam density' ; * Fcond = rxt . 'TIC' . 'Fcondw'; 'TRAC' fcond paroif cparoif 'TITR' ' Fcond kg/m**2' ; * * Wall temperature 'SI' ('EXIS' tic 'TP') ; 'TRAC' tic . 'TP' vtp 'TITR' ' Wall temperature' ; 'FINS' ; 'FINSI' ; 'FIN' ;