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Résumé : En plus de la nouvelle réglementa-
tion sismique mise en place en 2011 sur le terri-
toire français, l’accident nucléaire de Fukushima la
même année a poussé le gouvernement français à
investir pour la sécurité des bâtiments nucléaires.
Pour assurer la viabilité de telles structures, des
modèles performants sont nécessaires et doivent
intégrer une description fine des phénomènes phy-
siques. Dans le cas de structures en béton armé, la
plus grande difficulté vient du manque de connais-
sances sur l’évolution de l’endommagement et la
capacité du béton à dissiper de l’énergie.

Depuis les années 1970, l’amortissement est
considéré comme un élément prédominant pour
l’analyse de structures sous chargements dyna-
miques. Dans le cas des structures en béton armé,
de nombreuses sources d’amortissement agissent
en parallèle. Lorsqu’une structure est soumise à
un séisme, elle dissipe de l’énergie par hystéré-
sis à l’échelle du matériau et par d’autres phéno-
mènes modélisés par un amortissement visqueux
(échelle globale). La revue bibliographique en dé-
but de thèse vise à traiter la notion d’amortisse-
ment dans la littérature avec des modèles propo-
sés plus ou moins complexes, et l’identification de
cette grandeur dans le but d’améliorer les modèles.

Différentes questions relatives à la notion
d’amortissement se sont posées dans le cadre de
ces travaux : Dans le cadre d’analyses dynamiques
non-linéaires, quelles sont les formulations d’amor-
tissement visqueux les plus représentatives des ré-
ponses structurales ? Comment évolue l’amortisse-
ment au cours d’analyses non-linéaires ? Comment
peut-on améliorer les modèles d’amortissement à
l’échelle locale pour réduire l’amortissement vis-
queux nécessaire à l’échelle globale ?

Pour répondre à ces questions, un modèle
multi-fibre est développé, sous le logiciel Cast3M,
à partir de données expérimentales sur des poutres

en béton armé. Des modèles de comportement
non-linéaires pour le béton sont utilisés. Expé-
rimentalement, les armatures en acier n’ont pas
plastifié donc les travaux se concentrent sur la fis-
suration du béton lorsque les aciers d’armature res-
tent dans le domaine linéaire. Le modèle numérique
est calibré sur des essais quasi-statiques. Seize for-
mulations de matrices d’amortissement classiques
sont ensuite étudiées, sur des essais dynamiques,
avec des taux d’amortissement variant de 0.5%
à 5%. Les réponses des différents modèles sont
comparées grâce aux réponses expérimentales et
à des analyses énergétiques. Il apparaît donc né-
cessaire de modéliser suffisamment de phénomènes
physiques à l’échelle locale (fissuration, friction, ef-
fet unilatéral) afin d’obtenir des résultats cohérents
avec les réponses expérimentales.

Dans le dernier chapitre, une méthode d’iden-
tification de l’amortissement est développée sur un
modèle à un degré-de-liberté équivalent au modèle
multi-fibre de la poutre en béton armé. L’objec-
tif est d’identifier l’évolution temporelle du taux
d’amortissement visqueux en parallèle de l’endom-
magement de la poutre. La principale conclusion
est que le taux d’amortissement visqueux évolue
exponentiellement par rapport à un indice d’en-
dommagement, défini à partir de la dégradation
de la rigidité de la poutre. Cependant, si la va-
leur d’endommagement est inférieure à 0.6, consi-
dérer un taux d’amortissement constant égal à 4%
semble adéquat. Finalement, un modèle d’amortis-
sement actualisé à l’échelle locale est proposé en
se basant sur le développement des non-linéarités
dans le béton. L’avantage de ces modèles, en
plus d’être représentatifs des résultats expérimen-
taux, est alors leur base physique à l’échelle lo-
cale du matériau. Les phénomènes principalement
influents sont le développement des fissures (en-
dommagement) et le frottement dans les fissures.
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Abstract : In addition to the new seismic zoning
of the French territory in 2011, the Fukushima nu-
clear accident the same year prompted the French
government to focus on the safety of nuclear buil-
dings. To ensure the viability of such structures,
performative models are required, so they must in-
tegrate fine physical phenomena descriptions. In
the case of reinforced concrete structures, the si-
gnificant difficulty comes from the lack of know-
ledge about the damage evolution and the ability
of concrete to dissipate energy.

Since the 1970s, damping has been considered
a predominant element in analysing structures un-
der dynamic loading. For reinforced concrete struc-
tures, many sources of damping act in parallel.
When a structure is subjected to an earthquake,
it dissipates energy by hysteresis at the material
scale and other phenomena modelled by viscous
damping (global scale). The bibliographical review
at the beginning of the thesis aims to treat the no-
tion of damping in the literature with more or less
complex proposed models and the identification of
this quantity to improve the models.

Various problematic relating to the concept
of damping are of interest in this PhD work :
In the framework of nonlinear dynamic computa-
tions, which local and global viscous damping for-
mulations best represent the experimental struc-
tural response ? How are local and global dam-
ping energy dissipation mechanisms evolving du-
ring nonlinear dynamic computations ? How could
we improve the damping modelling at the local
scale, on a physical basis, to reduce the require-
ment of arbitrary equivalent viscous damping at
the global scale ?

A multi-fibre model is developed in Cast3M

software from experimental data on reinforced
concrete beams to answer these research ques-
tions. Nonlinear behaviour models for concrete are
used. Experimentally, the steel reinforcement is not
plasticised, so the work focuses on concrete cra-
cking when the steel reinforcement remains in the
linear domain. The numerical model is calibrated
on quasi-static tests. Sixteen formulations of clas-
sical damping matrices are then studied, on dyna-
mic tests, with damping rates varying from 0.5% to
5%. The responses of the different models are com-
pared with the experimental responses and energy
analyses. Therefore, it appears necessary to model
sufficient physical phenomena at the local scale
(cracking, friction, unilateral effect) to obtain re-
sults consistent with the experimental responses.

In the last chapter, a damping identification
method is developed on a one degree-of-freedom
model equivalent to the multi-fibre model of the
reinforced concrete beam. The objective is to iden-
tify the transient evolution of the viscous damping
rate in parallel with the beam damage. The main
conclusion is that the viscous damping rate evolves
exponentially with respect to a damage index defi-
ned from the degradation of the beam stiffness.
However, if the damage value is less than 0.6,
considering a constant damping rate equal to 4%
seems adequate. Finally, a locally updated damping
model is proposed based on the development of
nonlinearities in concrete. The advantage of these
models is their physical basis at the local scale
of the material, in addition to their representation
of the experimental results. The main influencing
phenomena are crack development (damage) and
friction in cracks.







Résumé substantiel

Contexte
La mise en place en 2005 de l’Eurocode 8 (NF EN 1998-1, 2005) ainsi que l’évolution de la connaissance
scienti�que sur le risque sismique ont conduit, en 2011, à la décomposition du territoire français en cinq
zone de sismicité. Seules les structures classiques dans la zone de sismicité 1 ne sont pas soumises à
des règles sismiques. Entre l’ancien et le nouveau découpage, le nombre de municipalités françaises
soumises aux règles sismiques est passé de 5 000 à 20 000. De plus, l’accident nucléaire de Fukushima
en 2011 a poussé le gouvernement français à investir pour la sécurité des bâtiments nucléaires, motivé
en particulier par la présence de cinq centrales nucléaires sur des zones de sismicité 3 ou 4. Pour assurer
la viabilité ou augmenter la durée de vie de ces structures, des calculs numériques doivent être réalisés
prenant en compte la nouvelle réglementation sismique et l’état actuel de vieillissement des structures.
Les modèles doivent donc intégrer �nement les phénomènes physiques tout en restant robustes, e�caces
et précis.

La di�culté avec les structures en béton armé provient du manque de connaissance sur l’évolution
de leur endommagement, telle que la �ssuration, lorsqu’elles sont soumises à des séismes, ainsi que
la capacité du béton à dissiper de l’énergie sismique. Ces dissipations sont classiquement modélisées à
deux échelles : locale et globale. À l’échelle locale, les dissipations sont décrites par des lois de comporte-
ment non-linéaires considérant plus ou moins de phénomènes physiques. L’identi�cation des modèles
se fait grâce à des essais en laboratoire. La considération de ces dissipations à l’échelle de la structure
est obtenue par intégration des données locales. À l’échelle globale, en revanche, les dissipations carac-
térisent les interactions de la structure avec son environnement. Elles sont classiquement modélisées par
un amortissement visqueux, c’est-à-dire proportionnel à la vitesse. Cette stratégie permet de prendre
en compte les phénomènes physiques non modélisés ou encore mal compris.

Enjeux scienti�ques, problématique et objectifs
Depuis les années 1970, l’amortissement est considéré comme un élément prédominant pour l’analyse
de structures sous chargements dynamiques. Dans le cas des structures en béton armé, de nombreuses
sources d’amortissement agissent en parallèle. Smyrou, Priestley, and Carr (2011) ont proposé une classi-
�cation de ces sources d’amortissement entre les sources internes et externes. Les sources externes cor-
respondent aux interactions de la structure avec son environnement. Pour les sources internes, les dissi-
pations dépendent des phénomènes activés par le séisme et modi�ent les caractéristiques des matériaux
(béton, acier et interface acier-béton). La di�culté pour considérer ces phénomènes est la méconnais-
sance de certains d’entre eux et l’existence de couplages. C’est pourquoi di�érentes stratégies existent
dans la littérature pour pallier ces problèmes.

Lorsqu’une structure est soumise à un séisme, elle dissipe de l’énergie par hystérésis à l’échelle du
matériau (locale) et par d’autres phénomènes modélisés par un amortissement visqueux. En ingénierie,
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des modèles d’amortissement visqueux sont souvent utilisés avec des modèles matériaux linéaires a�n
de gagner en temps de calculs. Les modèles d’amortissement visqueux classiques sont soit de type
Rayleigh, c’est-à-dire proportionnels aux matrices de masse et/ou de rigidité du problème, soit de type
modal, c’est-à-dire calculés à partir des propriétés modales de la structure. La matrice de Rayleigh,
déduite des travaux de Rayleigh (1877) and Rayleigh (1896), est toujours la plus utilisée de par sa sim-
plicité d’utilisation. Des di�cultés apparaissent cependant lorsque des analyses non-linéaires sont réa-
lisées. En e�et, considérer la matrice de rigidité initiale ne permet pas de prendre en compte l’évolution
du matériau au cours du temps. De nombreux articles scienti�ques se sont intéressés à la matrice de
Rayleigh, en particulier Hall (2006), aux problèmes découlant de son utilisation, ainsi qu’à des solutions
pour améliorer les résultats. Les principales adaptations de la matrice de Rayleigh sont : (i) éliminer
la matrice de masse qui induit des forces non réelles (F. Charney et al., 2017), (ii) utiliser la matrice de
rigidité tangente pour prendre en compte le développement des non-linéarités (Hall, 2006; Petrini et al.,
2008), ou encore (iii) mettre à jour les paramètres de proportionnalité grâce à des analyses modales sur la
structure endommagée, . . . D’autres formulations classiques de matrices d’amortissement, c’est-à-dire
construites à partir de matrices de masse et rigidité, ont également été proposées par T. K. Caughey
(1960), T. K. Caughey and O’Kelly (1965a), and Bernal (1994). Les matrices modales sont, quant-à-elles,
construites à partir des modes propres de la structure. Wilson and Penzien (1972) and Chopra and
McKenna (2016) ont, par exemple, proposé des formulations de ce type. De nombreux autres mod-
èles d’amortissement ont également été proposés dans la littérature mais sont rarement utilisés en in-
génierie en raison de leur complexité. Dans les logiciels d’éléments �nis, les matrices de type Rayleigh
et modales sont toujours majoritairement mises en œuvre. C’est pourquoi de nombreux articles scien-
ti�ques s’intéressent également à comparer ces formulations classiques sur des exemples précis. Cepen-
dant, très peu de ces analyses sont basées sur des résultats expérimentaux et accompagnées d’analyses
énergétiques pour compléter la comparaison des formulations.

L’identi�cation de l’amortissement sur des structures réelles représente également un dé� scien-
ti�que d’actualité. Tout d’abord, elle est nécessaire a�n de déterminer les paramètres des modèles
d’amortissement discutés précédemment. Elle est également un moyen de faire de la détection d’en-
dommagement puisque les propriétés modales d’une structure sont intimement liées à ses propriétés
physiques. La recherche s’intéresse à cette notion d’identi�cation de l’amortissement que ce soit sur
des éléments structuraux ou sur des structures complètes au travers de stratégies expérimentales ou
numériques. Une majorité des taux d’amortissement visqueux équivalents identi�és est comprise entre
1% et 5% (Carneiro et al., 2006; Heitz, Giry, et al., 2017), ce qui est cohérent avec les 5% souvent con-
sidérés dans les codes de calculs. Cependant, lorsque des éléments endommagés sont étudiés, des taux
d’amortissement pouvant atteindre 20% (Tinawi et al., 2000) peuvent être identi�és, ce qui démontre la
nécessité de devoir actualiser cette grandeur lorsque des analyses non-linéaires sont réalisées. Cram-
buer (2013) montre même qu’actualiser correctement un taux d’amortissement pendant des analyses
non-linéaires permet de s’a�ranchir de modèles matériaux complexes, conduisant à un gain de temps
de calcul.

À la suite d’une analyse bibliographique présentée dans le premier chapitre de ce manuscrit, dif-
férentes problématiques sont considérées et servent de �l directeur pour les travaux réalisés :

Dans le cadre d’analyses dynamiques non-linéaires, quelles sont les formulations
d’amortissement visqueux les plus représentatives des réponses structurales ?
Comment évolue l’amortissement au cours d’analyses non-linéaires ?
Comment peut-on améliorer les modèles d’amortissement à l’échelle locale pour ré-
duire l’amortissement visqueux nécessaire à l’échelle globale ?

Il est important de noter que la portée du travail se limite à la �ssuration du béton lorsque les aciers
d’armature restent dans le domaine linéaire.
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Structure de la thèse
Pour répondre aux di�érentes problématiques, le manuscrit est décomposé en trois chapitres. Il synthé-
tise les travaux réalisés pendant les trois années de thèse. Le premier chapitre est une synthèse biblio-
graphique et une revue critique des travaux existants dans la littérature, tandis que le deuxième chapitre
s’intéresse au modèle multi-�bre ainsi qu’à l’analyse numérique des di�érents modèles d’amortissement.
En�n, le troisième chapitre présente les di�érents travaux réalisés autour de la notion d’amortissement
(identi�cation et modèle local). Finalement, un conclusion générale vient clôturer le travail et ouvrir
des perspectives à plus ou moins long terme.

Analyse des modèles d’amortissement classiques
(chapitre 2)
Au cours de ses travaux de thèse, Heitz (2017) a réalisé une campagne expérimentale importante sur
des poutres en béton armé au CEA (Commissariat à l’énergie atomique et aux énergies alternatives)
sur la table sismique AZALÉE. L’objectif de la campagne était de réaliser des essais quasi-statiques et
dynamiques a�n d’obtenir des données pour évaluer les dissipations d’énergie sismique en fonction de
la structure, des matériaux et des signaux sismiques. À partir de la connaissance du banc d’essai, des
matériaux et des résultats expérimentaux, un modèle numérique multi-�bre a été développé, dans le
contexte de la présente thèse, sur le logiciel Cast3M. Un modèle multi-�bre a été choisi car il présente
de nombreux avantages : (i) gain de temps de calcul et de mémoire nécessaire (faible nombre de degrés-
de-liberté par rapport à un modèle solide 3D), (ii) facilité d’utilisation, (iii) prise en compte de mo-
dèles locaux non-linéaires simples car 1D et (iv) une analyse des résultats simple car similaire à un
problème poutre. Une poutre en béton armé de six mètres de long est modélisée, avec une section de
20 × 40 cm2. Di�érents types d’armatures sont utilisés mais la poutre principalement utilisée dans les
analyses réalisées est une poutre constituée de huit armatures à haute adhérence. Lors des essais ex-
périmentaux, les aciers sont restés dans leur comportement linéaire donc un modèle simple est utilisé
pour les armatures. Pour le béton, deux modèles non-linéaires, implémentés dans Cast3M, sont con-
sidérés ici a�n d’étudier l’in�uence de leur complexité. En e�et, le premier modèle, BARFRA, utilisé
par exemple par Dufour (1998) and Crambuer, Richard, et al. (2013), est plus simple car il ne considère
qu’un modèle d’endommagement dissymétrique traction/compression. Le second, RICBET, développé
par Richard and Ragueneau (2013), est plus complexe puisqu’il considère de la plasticité en compression
et de l’endommagement et du frottement en traction, en plus de prendre en compte l’e�et unilatéral du
béton. Les modèles matériaux ont été calibrés grâce aux essais quasi-statiques. Pour les conditions aux
limites, des appuis élastiques (rigidités en translation et rotation) ont été considérés a�n de représenter
le comportement modal non endommagé des poutres. La calibration des rigidités a été réalisée grâce
aux fréquences propres expérimentales non endommagées des deux premiers modes de la poutre. En�n,
a�n de correspondre aux poutres testées expérimentalement, des masses additionnelles ont été ajoutées
aux quart et trois-quart de la poutre multi-�bre. Ces masses permettaient, expérimentalement, d’avoir
des propriétés modales correspondant aux propriétés du banc d’essai.

Seize formulations de matrices d’amortissement di�érentes ont été implémentées dans Cast3M, avec
ou sans actualisation au cours du temps. A�n de comparer les réponses de chacune d’elles, des calculs
énergétiques ont été réalisés, ainsi que des analyses des réponses dynamiques (accélérations, déplace-
ments, forces, fréquences propres endommagées) de la poutre. En particulier, il a été démontré qu’il est
nécessaire de modéliser su�samment de phénomènes physiques à l’échelle locale (�ssuration, friction,
e�et unilatéral) a�n d’obtenir des résultats cohérents avec les réponses expérimentales. Parmi les formu-
lations d’amortissement étudiées, les matrices de type Rayleigh ont mis en évidence de meilleurs corréla-
tions avec les résultats expérimentaux dynamiques et énergétiques. En particulier, la matrice de rigidité
seule ou accompagnée de la matrice de masse, présente de bonnes capacités à caractériser la réponse ex-
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périmentale, surtout lorsque la matrice tangente est utilisée. Cependant, il est également démontré que
les conclusions dépendent fortement des choix de paramètres utilisés (taux d’amortissement visqueux,
choix des modes à amortissement imposé, actualisation des paramètres de proportionnalité, actualisa-
tion de la matrice de rigidité, amplitude du signal d’entrée, . . . ). En particulier, le taux d’amortissement
visqueux utilisé pour la détermination des paramètres de proportionnalité doit être choisi attentivement
et aucune valeur fonctionnant dans tous les cas ne peut être fournie. On peut tout de même dire que,
dans le cas de l’utilisation de modèles dissipant de l’énergie par hystérésis, un taux d’amortissement
inférieur à 2% semble su�re, même si celui-ci dépend encore fortement du signal d’entrée. Au niveau
énergétique, l’énergie dissipée par amortissement visqueux représente généralement la majeure partie
de l’énergie dissipée démontrant qu’une part importante de phénomènes dissipatifs n’est toujours pas
connue et ne peut pas être modélisée physiquement. En ce qui concerne les phénomènes dissipatifs à
l’échelle du béton, le frottement est le plus important et nécessite d’être correctement modélisé.

Identi�cation de l’amortissement
(chapitre 3 - sections 3.1 à 3.4)
Pour répondre à la deuxième problématique, une méthode d’identi�cation de l’amortissement est dé-
veloppée sur un modèle à un degré de liberté (DDL) équivalent au modèle multi-�bre de la poutre en
béton armé. Pour réaliser l’équivalence, une projection sur le premier mode de la poutre est utilisée. Il
est tout d’abord démontré que le développement de non-linéarités n’entraîne pas de couplage supplé-
mentaire entre les modes de la poutre. La projection sur base modale est donc acceptable. Puisque le
modèle de la poutre, avec les masses additionnelles et les appuis élastiques, ne permet pas de dé�nir
les modes propres analytiquement, une méthode pour approximer les données modales à partir de
sous-systèmes est proposée. Que ce soit sur les fréquences propres ou les premiers modes propres,
les réponses approchées obtenues sont proches des modèles expérimentaux et numériques validant la
méthode d’approximation. La méthode d’identi�cation de l’amortissement est inspirée des travaux de
Demarie and Sabia (2011). L’objectif est d’identi�er l’évolution temporelle du taux d’amortissement
visqueux en parallèle de l’endommagement de la poutre. Premièrement, la méthode est développée avec
un modèle de comportement linéaire avec identi�cation du taux d’amortissement et de la fréquence pro-
pre permettant de déterminer un indicateur d’endommagement. Ensuite, l’algorithme est adapté a�n de
prendre en compte un modèle matériau dissipant de l’énergie par hystérésis. Le modèle IDEFIX proposé
par Heitz, Giry, et al. (2019) est utilisé et le taux d’amortissement visqueux équivalent est identi�é et
étudié en parallèle du développement des non-linéarités dans le modèle IDEFIX.

Avec l’identi�cation linéaire, di�érents essais expérimentaux sont analysés. La principale con-
clusion est que le taux d’amortissement visqueux évolue exponentiellement par rapport à un indice
d’endommagement, dé�ni à partir de la dégradation de la rigidité de la poutre. Cependant, si la valeur
d’endommagement est inférieure à 0.6, considérer un taux d’amortissement constant égal à 4% semble
adéquat. Au-delà de cette limite, il est en revanche nécessaire d’actualiser le taux d’amortissement en
fonction du niveau d’endommagement de la poutre. La di�culté observée avec cette méthode d’identi-
�cation linéaire est une mauvaise représentation des dissipations d’énergie. C’est pourquoi un modèle
non-linéaire a été développé a�n d’améliorer la représentation des dissipations physiques.

Modèle d’actualisation de l’amortissement
(chapitre 3 - sections 3.5 à 3.6)
Grâce à la méthode d’identi�cation présentée précédemment et des résultats obtenus, on en déduit que
le taux d’amortissement est fortement dépendant de l’endommagement. C’est pourquoi un travail, sur
le modèle équivalent à un DDL, a été réalisé pour déterminer des modèles d’amortissement actualisés
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à partir des variables internes des modèles non-linéaires. Tout d’abord, une analyse paramétrique de
modèles d’amortissement et de modèles de comportement a été réalisée. On démontre ainsi que les
modèles d’amortissement visqueux, c’est-à-dire proportionnels à la vitesse, sont les plus performants
et que le phénomène de frottement doit être pris en compte dans le modèle de comportement a�n de
représenter la réponse expérimentale des poutres. Di�érents modèles, liant directement les variables des
phénomènes non-linéaires à une valeur d’amortissement, sont choisis et leur capacité à représenter le
comportement réel des poutres est étudiée. Des réponses dynamiques représentatives des réponses ex-
périmentales ont été obtenues. L’avantage des modèles proposés est alors leur base physique à l’échelle
locale du matériau.

Le dernier objectif présenté dans ce manuscrit est l’adaptation des modèles locaux d’actualisation
de l’amortissement du problème à un DDL au problème multi-�bre. Pour cela, le calcul de deux types
de matrices a été implémenté dans Cast3M : un modèle de matrice d’amortissement diagonale et un
modèle avec couplages. De plus, di�érentes variables ont été analysées telles que l’endommagement,
la variable représentative du frottement, ainsi que la contrainte dans l’acier qui est représentative de
l’endommagement dans la poutre. La di�culté principale de la méthode proposée est l’identi�cation
de la fonction d’évolution de l’amortissement. Une fois ce travail réalisé, on obtient des résultats dy-
namiques représentatifs des résultats expérimentaux, validant la méthodologie. Une fois de plus, la
décomposition des dissipations est, quant-à-elle, fortement modi�ée.

Contributions originales et conclusions
Les contributions originales de cette thèse sont :
X La mise en relation de données expérimentales et numériques,
X La comparaison de modèles de matrices d’amortissement à partir de données énergétiques dans

le cadre d’analyses non-linéaires,
X Le développement d’une méthode d’identi�cation de l’évolution temporelle de l’amortissement

en parallèle de l’endommagement des éléments structuraux,
X L’évaluation des modes de vibration analytiques approximés pour un système complexe,
X Le développement d’un nouveau modèle d’amortissement actualisé à l’échelle locale à partir des

variables internes de modèles de comportement non-linéaires.

Les principales conclusions de cette thèse sont développées dans le chapitre 3.7.2. Tout d’abord, l’étude
de la littérature scienti�que relative à l’amortissement de structures en béton armé a montré que :
X Les principaux modèles d’amortissement à l’échelle de la structure sont de type "visqueux" et sont

classés entre les modèles "classiques" et "modaux". La matrice d’amortissement de Rayleigh est
toujours la plus utilisée dans les codes de calculs malgré les di�cultés qu’elle entraîne. La di�culté
principale rencontrée par les modèles généralement utilisés est leur manque de représentativité
physique.

X Des modèles locaux sont proposés pour mieux représenter les phénomènes physiques. Dans le cas
du béton armé, les phénomènes dissipatifs sont complexes, nombreux et souvent couplés, rendant
leur modélisation di�cile.

X L’identi�cation de l’amortissement est un dernier point largement développé dans la littérature.
Les objectifs étant de déterminer les valeurs d’amortissement à utiliser dans les analyses numéri-
ques ou d’évaluer l’évolution de l’amortissement en fonction de l’endommagement des structures.
La di�culté avec les méthodes proposées est qu’elles peuvent conduire à de fortes variations de
valeurs d’amortissement pour des données similaires.

Le chapitre 2 s’intéresse au modèle multi-�bre et à la comparaison des modèles d’amortissement. Les
principales conclusions sont :
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X Le choix du modèle multi-�bre s’est avéré pertinent pour les objectifs de l’étude. Les propriétés des
poutres testées expérimentalement et non-endommagées ont pu être retrouvées numériquement
et les modèles non-linéaires ont pu être calibrés sur les essais quasi-statiques.

X À partir des réponses dynamiques, on remarque que le modèle de comportement RICBET (mo-
délisant le plus de phénomènes dissipatifs) est à privilégier pour caractériser les réponses expéri-
mentales. En terme de matrice d’amortissement, les matrices de type Rayleigh avec la matrice
tangente sont celles caractérisant le mieux les réponses expérimentales. Le taux d’amortissement
à utiliser avec ce type de matrice est de l’ordre de 2% lorsque des non-linéarités se développent
dans la poutre.

X À partir des analyses énergétiques, il a été démontré que l’énergie d’amortissement visqueux est
toujours celle qui dissipe le plus d’énergie. À l’échelle du matériau, le phénomène dissipant le
plus d’énergie est le frottement entre les lèvres des �ssures.

En comparant tous les résultats étudiés, on remarque tout de même que le choix de la formulation et
des paramètres du modèle d’amortissement est fortement dépendant des grandeurs d’intérêt. C’est donc
a�n de mieux comprendre les phénomènes en lien avec l’amortissement que les travaux du chapitre 3
ont été réalisés. Les principales conclusions sont :
X Le développement des non-linéarités au cours du calcul n’entraîne pas de couplage entre les modes

de la base modale du système, donc les analyses sur base modale peuvent être réalisées.
X Ainsi, il a été développé une méthode d’identi�cation de l’amortissement à partir de la projection

sur base modale des données expérimentales et/ou numériques. En identi�ant avec un modèle
linéaire, on obtient une évolution exponentielle de l’amortissement en fonction de la dégrada-
tion de la rigidité de la poutre. En-dessous d’un endommagement de l’ordre de 0.6, il a été dé-
montré qu’un amortissement visqueux équivalent constant de 4% peut être utilisé. Mais, au-delà,
l’actualisation de l’amortissement est nécessaire. En�n, utiliser un modèle de comportement non-
linéaire dans l’identi�cation permet d’améliorer la représentativité des dissipations.

X Finalement, le modèle d’amortissement actualisé à l’échelle locale a démontré de bonnes per-
formances pour représenter les résultats expérimentaux que ce soit sur le modèle équivalent
à un degré-de-liberté ou sur le modèle multi-�bre. Les principales variables à considérer pour
l’actualisation sont les variables d’endommagement et de frottement.
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Les travaux présentés dans ce manuscrit ont été valorisés par :
X la publication d’un article scienti�que dans une revue avec révision par les pairs : "Seismic en-
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X la participation à des conférences nationales et internationales :
� 10ème Colloque National AFPS (2019) : rédaction d’un article de conférence "Analyse de la
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and Earthquake Engineering (2021) : rédaction d’un article de conférence "Local scale damp-
ing model for reinforced concrete elements" - 12 pages - et présentation.

De plus, deux articles supplémentaires sont en cours de rédaction :
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Introduction

Societal, economic and industrial context
The establishment of a European seismic building code in 2005 - Eurocode 8 (NF EN 1998-1, 2005) - and
the scienti�c knowledge evolution about seismic hazard resulted in developing new seismic zoning in
France. So, since October 22, 2010, the French territory has been decomposed into �ve seismic zones, as
presented in �gure 1 in parallel to the old division. For seismic zone classi�ed 1, no regulation is applied
for typical risk structures. However, seismic building codes are required for all other zones following
Eurocode 8 (BRGM, 2019). It increased from 5,000 to above 20,000 the number of French cities submitted
to seismic regulations (Haquet, 2011; Enerzine.com, 2011).

Zonage sismique en vigueur jusqu’au 1er mai 2011
D’après le décret n°91-461 du 14 mai 1991 (abrogé)

Figure 1: Evolution of the seismic zoning in France before and after 2011 (BRGM, 2019)

In parallel to the regulation evolution regarding "classical structures", the Fukushima nuclear acci-
dent in 2011 prompted the French government to focus on the safety of nuclear buildings. Before those
events, the seismic risk was already considered for nuclear buildings, with speci�c methods and par-
ticular excitations. However, �ve nuclear power plants have been located in a "moderate" seismic zone

1



2 INTRODUCTION

(3) since 2011, requiring particular attention from the French nuclear safety authority: ASN ("Autorité
de Sûreté Nucléaire"). Funds were therefore raised for research on seismic risk. To ensure the viability
of such critical structures or increase their lifespan, computations must be carried out, considering the
new seismic regulations and the structure current states. The models to develop should integrate sophis-
ticated physical phenomena description while respecting robustness, e�ciency, and accuracy criteria.
The research works performed during this PhD take place in this context because it focuses on improv-
ing numerical models for dynamic nonlinear structural analyses of reinforced concrete structures.

Scienti�c context
A signi�cant di�culty with reinforced concrete structures comes from the lack of knowledge about its
nonlinear phenomenon evolutions when submitted to seismic accelerations and the ability of concrete
to dissipate energy through its hysteretic behaviour. Di�erent scales can be considered in line with the
described phenomena: the local scale or the global scale to model the energy dissipations observed in a
structure.

In a continuous model framework, dissipative mechanisms are described at the local scale by con-
stitutive laws including more or less complex phenomena and their couplings (concrete cracking, fric-
tion, steel/concrete sliding, . . . (Vassaux et al., 2015)). Figure 2 proposes a schematic representation of
some phenomena at the steel/concrete interfaces (Jehel, 2009) or concrete level. The identi�cation of
the constitutive relationship parameters is classically obtained by laboratory tests or virtual testing on
a representative material sample or the characterised interface. Dissipations are transcribed into the
global structure responses through the nonlinear internal forces obtained by integrating elementary
quantities in the �nite element method framework.

Steel/Concrete interface
(Jehel, 2009)

Concrete behaviour
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Figure 2: Dissipative phenomena mechanisms of reinforced concrete

On the global scale, dissipative phenomena resulting from the structure interaction with its envi-
ronment, from the internal dissipations at the junctions between structural elements, are traditionally
described by classical viscous damping, that is to say, a quantity proportional to the velocity. This term
allows, in practice, to represent the dissipations, whose physics is poorly controlled or too complex.
The damping rate orders of magnitude involved being relatively low, the dissipation identi�cations and
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descriptions are generally made in the modal basis of the associated undamped vibratory problem. For
example, this is the case with experimental modal analyses of structures or structural elements, leading
to the notion of "viscous damping ratio". In this context, forms of damping matrices, which are functions
of structural mass and sti�ness matrices or de�ned on a modal basis, are commonly used. This descrip-
tion allows keeping the decoupled equations written in the modal basis for a linear regime (Chopra,
1995). Moreover, the damping identi�cation and construction are performed from a limited number
of coe�cients because the �rst eigenmodes mainly drive the responses of civil engineering structures.
For example, the Rayleigh damping matrix is a linear combination of the mass and sti�ness matrices.
This previous damping description has the signi�cant drawback of not having a physical basis for its
expression. In addition, because the damping representation is based on a quantity derived from the
integration of local material properties (i.e. sti�ness matrix), the nonlinear material evolution leads to
an uncontrolled modi�cation of the global damping matrix. Alternatives to this description propose, in
particular, to consider an update of the sti�ness matrix by considering the structural tangent sti�ness
(Jehel, Léger, and Ibrahimbegovic, 2014). Despite the response description improvement, this strategy
has a slight physical basis and remains costly in computational time, especially when there is no ana-
lytical expression of the tangent modulus for the considered material constitutive law.

Recent work (Heitz, Le Maoult, et al., 2018) in the framework of T. Heitz’s thesis (Heitz, 2017) pro-
poses an experimental analysis and a dissipation identi�cation of a reinforced concrete beam based
on an equivalence between the local internal dissipations and a global viscous dissipation. This work
allowed them to identify and discriminate the local quantities that strongly in�uence the equivalent vis-
cous damping. This work, and the experimental database produced, represents a solid basis for analysing
and understanding local dissipation evolutions and their in�uence on global damping to transcribe them
in the framework of accurate numerical modelling in dynamics of nonlinear structures.

Research questions
Stevenson (1980) de�ned damping as the "means by which the response motion of a structural system is
reduced as the result of energy losses". In the same idea, S. Crandall (1970) de�ned it as the "mechanism
that removes energy from a system". So, they are both pointing to the link between energy dissipations
and damping. Viscous damping models at the global scale aim at representing all unmodelled dissipative
phenomena. However, they strongly lack a physical basis. Mainly, in engineering, linear constitutive
models are considered with the use of global viscous damping models because of the gain in compu-
tational time. To improve the representativeness of structural models, nonlinear constitutive models
must be considered in structural analyses. Nevertheless, their in�uence of damping on structural dy-
namic responses are still poorly understood, and few recommendations are proposed in the literature to
combine viscous damping models with nonlinear constitutive laws. Therefore, the following research
questions are of interest in this PhD work.

In the framework of nonlinear dynamic computations, which local and global viscous
damping formulations best represent the experimental structural responses?

How are local and global damping energy dissipation mechanisms evolving during
nonlinear dynamic computations?

How could we improve the damping modelling at the local scale, on a physical basis,
to reduce the requirement of arbitrary equivalent viscous damping at the global scale?
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Methodology

Figure 3: Dynamic experimental setup (Heitz, Le Maoult,
et al., 2018)

Reinforced concrete beams are con-
sidered throughout this thesis work.
The experimental campaign performed
by Heitz, Le Maoult, et al. (2018) is
considered as a reference. The beams
have a length of 6 m for a section of
0.4 × 0.2 m2. Di�erent rebar patterns
are studied, but the one especially used
herein is eight high adherence rebars of
diameter 8 mm. For concrete, two for-
mulations classi�ed in Eurocode 2 (NF
EN 1992-1-1, 2005) were used, and, in
this thesis, a focus is done on concrete
C25/30. Normalised tests were exper-
imentally performed, given the con-
crete and steel properties. Quasi-static
and dynamic tests, applied to beam weak axis, were performed respectively on strong �oor and shake
table AZALÉE at CEA. Figure 3 shows, for example, the dynamic setup. Additional masses of 310 kg
were added on the quarter and three-quarters of the beam to match the beam eigenfrequencies to avail-
able facilities. They were placed on air cushion devices to avoid the beam cracking under its weight and
friction with the shake table. E�ect of moderate earthquakes was of interest, so the maximal accelera-
tions applied on the beams are around 3 m/s2. In quasi-static, imposed displacement until 100 mm were
considered. In addition, the beam damage evolution was followed using the modal properties deduced
from hammer shock tests.

To answer the proposed research questions, and based on the presented experimental campaign, work
developed in that thesis is divided into three parts:

(1) The �rst part aims at evaluating the performances of classical viscous damping formulations to
perform nonlinear dynamic analyses. The experimental campaign carried out by Heitz, Le Maoult, et
al. (2018) provides an extensive database that can be used to compare the numerical responses to ex-
perimental data. Numerical models are developed in Cast3M software with a multi-�bre approach and
nonlinear constitutive models. The analysis of energy dissipations and numerical computations charac-
terises the links between global and local dissipations, depending on viscous damping model properties.
Two existing nonlinear constitutive models in Cast3M (BARFRA and RICBET discussed in chapter 2) are
studied to represent concrete behaviour under seismic excitations. They are considering some dissipa-
tive phenomena, given information about the most in�uential ones. Those analyses allow understanding
the behaviour of nonlinear constitutive models in reinforced concrete structural computations. These
models are seldom used in practical engineering applications, and linear models with viscous damping
models are preferred to dissipate the energy. Indeed, the codes, generally, only ask linear computations.
The nonlinear models are more challenging to use, and further expertise is required. In addition, they
sometimes lack robustness because computations can diverge. The computation time is also increased,
but the multi-�bre approach partially compensates for this increase compared to complete 3D solid �-
nite element models. Finally, using nonlinear models is a way to reduce the safety margins by being
more representative of reality. Thus, recommendations can be made for engineers performing nonlinear
dynamic computations by studying such models.

(2) The second part presents an original damping identi�cation method to evaluate its evolution par-
allel to damage development. A comparison of linear and nonlinear constitutive models characterising
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the reinforced concrete behaviour is proposed to understand the in�uence of viscous damping all along
with dynamic computations. The method is based on an equivalent single-degree-of-freedom (SDOF)
model computed by the projection on the modal basis of the studied system.

(3) Finally, the third part is based on observations deduced from the identi�ed viscous damping
coe�cients to propose new models to update damping for the equivalent SDOF system. These suggested
models are then implemented to develop an updated damping matrix strategy at the element level for the
multi-�bre computations. The de�ned damping matrices, updated considering local damage variables
(d, επ , . . . ), are used to perform nonlinear dynamic computations for comparison with classical damping
formulations studied in chapter 2.

An essential aspect of the performed works is that steel rebars remain in their elastic range, as
experimentally designed. Indeed, the objective is to study the contribution of concrete cracking to
damping and energy dissipation in the case of moderate earthquake excitations.

Original contributions
During the three parts of thesis works, di�erent original contributions are developed and document the
research questions:
X Correlations between measured and computed data,
X Comparison of damping models based on energy balance studies in nonlinear dynamic analyses,
X Development of a methodology to identify the transient evolution of damping concerning the

structural element damage,
X Evaluation of an approximate analytical eigenbasis of a complex system,
X Development of a new local model of damping based on nonlinear internal variables of the con-

crete constitutive models (d, επ , . . . ).

Content of thesis
The thesis is split into three chapters. The �rst one provides a literature review focusing on damping
phenomena at local and global scales. After de�ning the notion of damping, di�erent damping models
are studied. Then, methodologies to characterise that modal property is described, and some links
between damping and damage indices are analysed. Finally, the shake table experimental campaign on
reinforced concrete beams, which is the basis of herein developed works, is presented.

The second chapter is interested in modelling reinforced concrete beams with nonlinear behaviour.
A multi-�bre model in Cast3M is proposed. General information on multi-�bre models is given be-
fore the beam model is presented. Then, the calibration of the model against quasi-static tests is ex-
plained, and the studied viscous damping formulations are presented. Finally, the dynamic computa-
tions performed with di�erent modelling parameters (damping matrix formulation, viscous damping
ratios, modes with imposed viscous damping ratios, matrix updates, . . . ) are analysed by comparing the
global response with experimental data, as well as energy calculations.

The third chapter presents the development of updated damping models. The in�uence of mode
couplings in nonlinear dynamic computations and a theoretical eigenbasis are �rst studied for the beam
of interest. Then, the damping identi�cation method is developed and applied with a linear model.
Improvements are then performed using a nonlinear constitutive model. Finally, damping models de-
pending on nonlinear internal variables are proposed for the SDOF equivalent system. Then, they are
implemented on the multi-�bre model by proposing newly updated damping matrix formulations based
on elemental internal variables.
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1.1 Energy dissipation in earthquake engineering
When an earthquake excites a structure, energy is imparted to the system (Crambuer, 2013). This en-
ergy is a function of the earthquake acceleration. Some of the energy returns to the ground while the
rest is dissipated. These dissipations may be a consequence of the nonlinearities developing within
the structure. Yet, to ensure the structural element safety and the structure ability to resist the earth-
quake excitation, the state of nonlinearity reached by the structure must be evaluated. A too strong
degradation could lead to the structure collapse. That is why dissipative phenomena are studied to be
adequately modelled and to dissipate the right amount of energy during seismic excitations. In sec-
tion 1.1.1 physical dissipative phenomena are presented, and the global dynamic equations are then
introduced in section 1.1.2 to discuss dissipated energies in section 1.1.3.

1.1.1 Introduction to dissipative phenomena
S. Crandall (1970) de�ned a "damping mechanism" as a "mechanism that removes energy from a system".
So, it avoids the structural displacements to grow without any limit if the structure is excited to its
resonant frequency. In the same idea, Stevenson (1980) de�ned "damping" as "the means by which
the response motion of a structural system is reduced as the result of energy losses". In particular, for
reinforced concrete (RC) structures, many coupled sources act together to dissipate the energy (Heitz,
2017). Kareem and Gurley (1996) said that "there are as many damping mechanisms as there are modes
of converting mechanical energy into heat". Smyrou, Priestley, and Carr (2011) proposed a classi�cation
of the damping sources between the external (1.1.1.1) and internal (1.1.1.2) ones.

1.1.1.1 External sources
"External sources" represent all interactions between the structure and its environment, so they are
not relative to the constitutive materials (Heitz, 2017). They do not in�uence the mechanical structure
properties (Crambuer, 2013). Many external dissipative sources have to be considered.

(a) Fluid-structure interaction The �uid-structure interaction is de�ned when a structure is in
contact with a �uid. It can be the interaction with water in the case of dams (Hall, 1988; Seghir,
Tahakourt, and Bonnet, 2009) or o�-shore structures and tanks (Livaoğlu and Doğangün, 2006; Seghir,
Tahakourt, and Bonnet, 2009; Ozdemir, Souli, and Fahjan, 2010). The second �uid studied in seismic

Figure 1.1: E�ect of the soil-structure
interaction (Ele, 2017)

analyses is the air associated with the wind. The friction of
the building in the air is seen as a dissipative phenomenon
favourable for the structure but generally completely negli-
gible.

(b) Soil-structure interaction (�g. 1.1) The second
type of external source is the soil-structure interaction,
acting mainly through the interaction between the struc-
ture, its foundations and the soil, which are interdependent
(Dutta and Roy, 2002). Seismic waves propagate in the soil
when an earthquake occurs and lead to structural move-
ment. Then, the structure induces additional forces on the
ground creating new seismic waves (Ele, 2017). The interac-
tion is strongly dependent on the structural and soil prop-
erties. In earthquake engineering, the soil-structure inter-
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action consideration seems bene�cial because of the energy dissipated in the soil (Institut-Seism, 2021).
Part of the energy transmitted to the structure returns to the ground and is dissipated by two mecha-
nisms: (i) radiation weakening when the waves are moving away from the structure, and (ii) internal
damping of soil as it deforms (Ele, 2017).

Figure 1.2: "Pounding damage at Hotel
De Carlo" (Arnold, 1985)

(c) Structure-structure interaction When structures
are close to each other, interactions can occur when they are
vibrating as there can be pounding between the structures
(�g. 1.2). It is particularly damaging in dense urban areas
(Polycarpou and Komodromos, 2012; Langlade et al., 2021).
The dynamic properties of one structure are dependent on
the other ones. It comes in the addition of the soil-structure
interaction because the energy emitted by one structure to
the ground will a�ect the second one (Lou et al., 2011).

(d) Equipment and non-structural elements All the
previous damping sources are mainly in the exterior struc-
ture environment. However, the equipment and non-
structural elements inside the structure can also signi�-

cantly dissipate energy. They are considered as external sources because they are not required for
the structure lateral load resistance (Heitz, 2017). It is the case of functional parts like doors, windows
or pipes, and non-structural elements like plasterboards or in�ll masonry (Elmenshawi, Sorour, et al.,
2010). Energy dissipation can be a consequence of element degradation in the case of in�lling masonry,
for example (friction, interaction with the frames). Such elements can thus represent determining fac-
tors for the structure collapse during earthquake excitations (Samouh and Kotronis, 2011).

Figure 1.3: "The tuned mass damper in Taipei 101"
(Dolev, 2008)

(e) Added dampers The last external damp-
ing source is added dampers. For Crouse and
McGuire (2001), energy dissipation is a "means
of reducing the seismic response of structures".
So, when the natural phenomena previously pre-
sented are insu�cient to ensure structural safety
or the required comfort for building users, de-
vices such as friction dampers, �uid dampers or
isolators can be added to the structure. To reduce
seismic and wind e�ects, Kareem, Kijewski, and
Tamura (1999) proposed passive and active de-
vices representing viscous dampers. Indeed, the
structural dampers can be divided into passive
(the most used), active, semi-active and hybrid
dampers (Gutierrez Soto and Adeli, 2013). Gutier-
rez Soto and Adeli (2013) paper aimed at review-
ing the tuned mass dampers (TMD), which were
non-viscous dampers. The conventional TMD is
used in high-rise buildings (�g. 1.3). The problem
with this damper is that it is damped only for one frequency that can change when an earthquake oc-
curs. It is also an expensive technical solution. New devices, like the tuned liquid column dampers,
seem more promising. Finally, hysteretic dampers can also be added to structures to protect them in the
case of earthquakes. Skinner et al. (1980) studied the hysteretic dampers in steel (dissipation through
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plastic deformation), lead or sliding devices (PTFE1 sliding bearings). Kelly, Skinner, and Heine (1972)
also focused on those hysteretic dampers. They studied devices functioning with plastic deformation. In
the case of earthquake excitations, the structure mainly absorbs energy at the connection points. This
absorption is required to ensure structural resistance, but it strongly damages the connections. That is
why Kelly, Skinner, and Heine (1972) proposed to use devices with plastic deformations to absorb the
energy and protect the connections.

1.1.1.2 Internal sources
For internal sources, the dissipations depend on the phenomena activated by the earthquake excitation
and induce modi�cations of material properties. The material behaviour represents the primary source
of internal damping. For RC elements, dissipations occur at concrete, steel and interface levels.

ft

σ1

wm wfm

Gf

GF

Figure 1.4: De�nition of fracture energies

(a) Concrete In concrete, the energy dissipa-
tion is mainly due to cracks. The fracture energies
Gf and GF are material properties characteris-
ing the initiation and propagation of cracks. Gf
mainly controls the maximal load, whileGF con-
trols the post-peak behaviour (�g. 1.4) (Saouma,
2000).2 Therefore, it is assumed that the en-
ergy only dissipates when the cracks open the
�rst time. A small amount of energy is con-
sumed when the cracks are created and propa-
gate. Secondly, friction between the crack sur-
faces is another energy dissipating phenomenon
in concrete.

(b) Reinforcement The energy dissipated through steel rebars in RC elements is the consequence
of steel yielding (hysteresis loops), which occurs in the case of high excitations.

(c) Steel-concrete bond Finally, energy is dissipated at the steel-concrete interface. Figure 1.5b
well describes the phenomena that occur at the steel/concrete interface and dissipate energy (Jehel,
2009). Then, di�erent parameters have shown some in�uence on the interface behaviour: the type of re-
bars, the level of concrete con�nement (Eligehausen, Popov, and Bertero, 1982), the corrosion (Richard,
2010) or the crack level (Torre-Casanova, 2012) demonstrating the coupling between di�erent dissipa-
tive phenomena. These e�ects in�uence the interface roughness or its capacity to be damaged and,
consequently, the amount of energy dissipated at the interface.

1.1.1.3 Synthesis
The di�erent presented dissipative phenomena are summarised in �gure 1.5. They are more or less
activated depending on the structure and its environment. In addition, some damping sources can be
coupled. For example, more energy will be dissipated if cracks are close to the steel/concrete interface.
In the following, approaches to model the most in�uential dissipative phenomena will be studied.

1Polytetra�uoroethylene
2For the de�nition of the two energies, a bilinear model is considered (�g. 1.4). The values de�ned in the �gure are: (i) wm is

the crack width corresponding to the intersection of the �rst linear portion with the horizontal axis, (ii) wfm corresponds to the
critical crack opening, (iii) ft is the tensile strength, and (iv) σ1 is the stress at the limit of the two linear models.
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(a) External sources (b) Internal sources

Figure 1.5: Schemes summarising the damping sources (Jehel, 2009)

The models could be at di�erent scales (local or global) depending on the accuracy required for each
phenomenon. The global scale will be chosen for the more complex damping sources. Finally, coupled
models could be de�ned for linked phenomena.

1.1.2 Formulation of the seismic problem
In the presented thesis work, a reinforced concrete beam is studied. So, no interaction with other struc-
tures or the soil is considered. The dissipations will be partitioned between the local and the global scale
depending on the dissipative phenomena. This section, therefore, focuses on the dynamic equilibrium
of the studied case. The �rst dynamic equations are presented for a single-degree-of-freedom (SDOF)
system (section 1.1.2.1) and then for a multi-degrees-of-freedom (MDOF) system (section 1.1.2.2).

1.1.2.1 A single-degree-of-freedom system
For a system with one degree-of-freedom (DOF), as presented in �gure 1.6, submitted to earthquake ex-
citation, the general time-dependent dynamic equation, in the relative frame, is given in equation (1.1):3

m.ü + fd (u̇,u) + fint (u̇,u) = −m.üs (1.1)

wherem is the system mass, u, u̇ and ü are respectively the system displacement, velocity and acceler-
ation and üs is the seismic acceleration. The global internal force is commonly decomposed between (i)
a viscous damping force fd (u̇,u) = fd (u̇) depending on velocity because no solid damping is consid-
ered with the environment, and (ii) the internal force fint (u̇,u) = fint (u) depending on displacement
because the velocity dependency is negligible (Dubé, 1994). For a linear system, the damping force is
proportional to a damping coe�cient cv , and the internal force is proportional to the sti�ness k, leading
to equation (1.2):

m.ü + cv.u̇ + k.u = −m.üs (1.2)
3A convention is chosen for the equations: the time-dependent variables are written in bold type and the time variable is not

explicitly indicated. For example, the time-dependent displacement variable for a SDOF system is written u and not u(t).
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üs
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Figure 1.6: SDOF system

In equation (1.2), the mass and sti�ness can be
easily determined from the knowledge of the
studied structure. However, the damping value
determination turns out to be more complicated
because it depends on the structure but also
its environment, as discussed in section 1.1.1.
The global dissipations are modelled through the
damping coe�cient cv , while more sophisticated
dissipative phenomena can be modelled through
a nonlinear internal force fint (u). Studying
SDOF systems leads to analytical solutions to the
problem. Notably, for an undamped system (cv =
0), the solution is only depending on the natural eigenfrequency ω0 =

√
k
m , the initial conditions and

the excitation. Then, when the system is damped, a third term in�uences its response: the viscous
damping ratio ξ de�ned as the ratio between the viscous damping coe�cient cv and a critical damping
cc, for which no oscillatory motion is observed in free vibration: ξ = cv

cc
.

1.1.2.2 A multi-degrees-of-freedom system
From the continuous problem, the application of the �nite element method (FEM) leads to the matrix
dynamic equation, in the relative frame, in equation (1.3):

M · Ü + C · U̇ + f int (U, . . .) = −
∑

k

M · Γk · Üs,k (1.3)

with M and C the mass and damping matrices and U, U̇ and Ü the relative displacement, velocity
and acceleration space- and time-dependent vectors. f int (U, . . .) is the internal force depending on
the displacement �eld and numerous internal variable �elds associated with nonlinear phenomena. Γk
with k ∈ {x, y, z} gives the direction of the seismic excitations where Üs,k with k ∈ {x, y, z} are
the seismic accelerations in the three space-direction. This equation can be rewritten in an absolute
formalism (eq. 1.4), where the absolute displacement �eld Ua is de�ned as the sum of relative U and
seismic ground Us,k with k ∈ {x, y, z} displacement �elds (eq. 1.5):

M · Üa + C · U̇ + f int (U, . . .) = 0 (1.4)

Ua = U +
∑

k

Γk ·Us,k (1.5)

In the relative frame, a damped linear MDOF system excited by an earthquake can be described by
equation (1.6):

M · Ü + C · U̇ + K ·U = −
∑

k

M · Γk · Üs,k (1.6)

with K the sti�ness matrix. An e�cient method to determine the response of such a system is to
project the equation on the modal basis B4 established from the system eigenvalues {λi}i∈[[1;N ]] and
eigenvectors

{
φ
i

}
i∈[[1;N ]]

whereN is the chosen number of modes to reduce the basis (P is the transfer
matrix build from the eigenmodes). Indeed, such a basis is orthogonal as regards the mass and sti�ness
matrices given equation (1.7):

φT
i
·M · φ

j
= mi × δij and φT

i
·K · φ

j
= ki × δij ∀{i, j}[[1;N ]]2 (1.7)

4In the case of a damped system, the basis is complex.
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with δij the Kronecker’s symbol associated with modes i and j. In addition, if the basis is orthonormal
with respect to the mass matrix, mi = 1 and ki = λi = ω2

i . The problem eigencharacteristics are
obtained by solving the undamped eigenvalue problem in equation (1.8):

(K− λi.M) · φ
i

= 0 (1.8)

The displacement can hence be decomposed on the modal basis by equation (1.9):

U =
N∑

i=1
αi.φi (1.9)

where {αi}i∈[[1;N ]] represent the generalised coordinates depending on time. Projecting the undamped
system equations on the modal basis leads to decoupled equations.

The orthogonality in basis B is no more veri�ed for a damped system. Except that, in the case of
low damping, it can be demonstrated that the imaginary parts of complex eigenmodes and eigenfre-
quencies are negligible (see proof below). Thus, the same basis can be considered for the low damped
and undamped systems. The damping matrix is therefore built to be orthogonal on the modal basis:
φT
i
· C · φ

j
= ci × δij . That strategy is called "proportional damping matrix". Viscous damping ratios

associated to each mode are determined with the equivalence ξi = cv,i
2.ωi.mi

and a decoupled system of
equations is solved.

Proof. "C is diagonal in the modal basis" ∼ "if C is low, PT .C.P is diagonal":

Let us consider ωi, and φ
i

respectively the eigenfrequencies and eigenmodes of the undamped sys-
tem. For low but non-null damping, λi and zi are solutions of the equation (1.10):

(
λ2
iM + λiC + K

)
· zi = 0 (1.10)

with:
X λi = ±i.ωi + ∆λ
X zi = φ

i
+ ∆z

De�ning the eigenfrequencies and eigenmodes from small variations (respectively ∆λ and ∆z) of the
undamped system ones leads to equation (1.11):

[(
−ω2

i + 2i.∆λ.ωi + ∆λ2)M + (i.ωi + ∆λ)C + K
]
·
(
φ
i
+ ∆z

)
= 0 (1.11)

By neglecting the second order terms, equation (1.12) is deduced:
(
−ω2

iM + ∆λ · C + K
)
φ
i
+
(
−ω2

iM + K
)

∆z + i (2.∆λ.ωiM + ωiC)φ
i
+ i (ωiC) ∆z = 0 (1.12)

Then, because C <<M,K and
(
−ω2

iM + K
)
φ
i

= 0, equation (1.13) is obtained:
(
−ω2

iM + K
)

∆z + iωi (2.∆λ ·M + C)φ
i

= 0 (1.13)

Let us project the imaginary part on mode j (eq. 1.14):

2.∆λ
(
φT
j
·M · φ

i

)
+ φT

j
· C · φ

i
= 0 (1.14)

With φT
j
·M · φ

i
= δij it can be deduced that:
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X cmodij = 0 ∀ j 6= i

X ∆λ = − cmodi

2.mmod
i

∀ j = i with cmodi = φT
i
· C · φ

i
and mmod

i = φT
i
·M · φ

i

Finally, the damping matrix is well diagonal in the modal basis in low damping because the non-diagonal
terms of the damping matrix are of second order. �

1.1.3 Description of energies
From the seismic equations presented in the previous section, energies at the structural level can be
de�ned. Uang and Bertero (1990) proposed an approach for quantifying the energies associated with a
SDOF system. Energies are de�ned from the derivation of the dynamic absolute or relative equations.
Then, their quanti�cation is applied for MDOF structures by Uang and Bertero (1990), Léger and Dus-
sault (1992), and Ghavamian (1998). The proposed approaches quantify the energies developing in a
structure from the works associated with the structure forces.

Let us de�ne dt as an in�nitesimal time interval and dU the structural relative displacement vari-
ation over this time interval. Thus, the energies developing in the structure are deduced from equa-
tion (1.4) and can be written as in equation (1.15):

(
M · Üa

)
· dU +

(
C · U̇

)
· dU + f int (U) · dU = 0 (1.15)

1.1.3.1 Absolute energy de�nition

By replacing dU = dUa − dUs with dUs =
∑

k

Γk · dUs,k , Uang and Bertero (1990) decomposed the

energy associated with the inertial force given equation (1.16):
(
M · Üa

)
· dUa +

(
C · U̇

)
· dU + f int (U) · dU =

(
M · Üa

)
· dUs (1.16)

So, equation (1.17) de�nes the energy balance during the time interval dt.

dEk,a + dEd + dEa = dEi,a (1.17)

where dEk,a, dEd, dEa and dEi,a are respectively the absolute kinematic, viscous damping, absorbed
(or internal) and absolute imparted energy variations. Then, to obtain the energy at time t from the be-
ginning of the excitation, energy variations are integrated on the interval of interest. Thus, the involved
energies are given in equation (1.18):

∫ (
M · Üa

)
· dUa +

∫ (
C · U̇

)
· dU +

∫
f int (U) · dU =

∫ (
M · Üa

)
· dUs (1.18)

Some terms can be simpli�ed, giving equation (1.19):
1
2
(
M · U̇a

)
· U̇a +

∫ (
C · U̇

)
· U̇ dt+

∫
f int (U) · dU =

∫ (
M · Üa

)
· dUs (1.19)

Finally, the energy balance is summarised in equation (1.20):

Ek,a + Ed + Ea = Ei,a (1.20)

where Ek,a, Ed, Ea and Ei,a are respectively the absolute kinematic energy, the viscous damping en-
ergy, the absorbed (or internal) energy and the absolute imparted energy.

This �rst energy analysis is performed using the decomposition of the displacement increment dU
(= dUa − dUs). It leads to a �rst de�nition of the imparted and kinematic energies. This approach is
de�ned as the "absolute" energy balance.
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1.1.3.2 Relative energy de�nition
In Uang and Bertero (1990) works, a second approach was proposed, where the decomposition (absolute
and relative) was considered at the inertial force level.

Equation (1.21) de�nes the energies obtained by the dynamic equilibrium in the relative coordinate
system, from equation (1.3):

(
M · Ü

)
· dU +

(
C · U̇

)
· dU + f int (U) · dU = −

(
M · Γ · Üs

)
· dU (1.21)

By integration, equation (1.22) gives the "relative" energy equation:

1
2
(
M · U̇

)
· U̇ +

∫ (
C · U̇

)
· U̇ dt+

∫
f int (U) · dU = −

∫ (
M · Γ · Üs

)
· dU (1.22)

Finally, the energy balance is summarised in equation (1.23):

Ek,r + Ed + Ea = Ei,r (1.23)

where Ek,r , Ed, Ea and Ei,r are respectively the relative kinematic, viscous damping, absorbed (or
internal) and relative imparted energies.

1.2 Damping models in dynamic structural compu-
tations
When a structure is subjected to an earthquake, it dissipates energy by hysteretic actions and other
phenomena. Those dissipative phenomena have to be modelled to get relevant results from dynamic
computations. The choice of the mathematical damping model plays a major role in the accurate rep-
resentation of the amplitude evolution of dissipated energies. Many papers in the literature focus on
damping matrix formulations for MDOF numerical analyses. Viscous, hysteretic or numerical damp-
ing can be considered in computations (section 1.2.1). At the structural level, two major strategies are
mainly considered to keep a diagonal damping matrix on the modal basis: Rayleigh-type damping and
modal damping (section 1.2.2). To go further in consideration of physical phenomena, local models are
also investigated (section 1.2.3). Then, comparisons of the proposed damping models are performed on
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Figure 1.7: Input force (superposition of 1 Hz,
10 Hz, 100 Hz and 1000 Hz sine functions) for the

study of the damping types

di�erent structural examples (section 1.2.4). Ap-
pendix A presents a nomenclature of damping
matrices explored in literature and exposed in
this section.

1.2.1 Various damping types
Let us consider three SDOF systems submitted to
a seismic acceleration as presented in �gure 1.6
with m = 29440 kg and k = 1.32 × 107 N/m.
A multi-frequency sinusoidal acceleration is cho-
sen, and the associated input force is plotted in
�gure 1.7 with Finput = −m.üs. Di�erent damp-
ing models can be considered depending on the
forms of the internal fint and damping fd forces.
Table 1.1 indicates the studied damping types and
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Table 1.1: Damping types

Damping type Name Formulation

Viscous − fd = cvu̇

Linearity fint = k.u

Elastoplasticity(1) fint = k. (u− up)Hysteretic

Damage(2) fint = k(1− d).u

Numerical − −
(1) up is the plastic displacement (2) d is the damage variable

ε [−]
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Pa
]

(a) Linear

ε [−]

σ
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Pa
]

(b) Elastoplastic
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(c) Damage

Figure 1.8: Studied constitutive models

�gure 1.8 shows the constitutive laws of the hysteretic models in table 1.1. The three models are de�ned
with Young’s modulus of E = 22 GPa. The tensile strength for the elastoplastic and damaged models is
fy = 1 MPa. Then, the elastoplastic models considers a hardening modulus of H = 5 GPa. The value d
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Figure 1.9: Di�erent types of damping - one DOF
system - dissipative energies

is de�ned by an exponential function, for the
damage model. The Newmark’s algorithm is used
to solve equation (1.1) for the di�erent proposed
models. Then, energies are evaluated based on
the formulations presented in section 1.1.3. All
plotted energies are normalised with respect to
their �nal values. For dissipative energies, it cor-
responds to their maximal values with respect to
time.

The �rst analysis is performed with New-
mark’s algorithm parameters equal to γ = 1/4
and β = 1/2 to eliminate the numerical damping.
Thus, a focus is made on hysteretic and viscous
damping models. In �gure 1.9, viscous damping
is considered with the three constitutive models.
For each model, the hysteretic (Ehyst) and vis-
cous damping (Edamp) energies are plotted. No
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dissipation occurs at the material level for the linear model, so the hysteretic energy is always null. Be-
tween the damage and elastoplastic models, the evolution of the hysteretic energy is di�erent. For the
damage model, dissipation is only observed with an increase of the damage variable. On the contrary,
a more continuous evolution is observed with the elastoplastic model. Then, for the viscous damping
energy, even if the same parameter cv is used with the three models, the energy evolution depends on
the constitutive model. However, it also increases during the computation because it represents energy
lost by the system.
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Figure 1.10: Di�erent types of damping - one DOF
system - dissipative energies - in�uence of viscous

damping

In �gure 1.10, only the hysteretic energy is
plotted with the elastoplastic and damage mod-
els but in the cases of a null or non-null viscous
damping coe�cient. It appears that the in�uence
of viscous damping is reversed for the two mate-
rial models. Indeed, for the damage model, with
viscous damping, the energy is dissipated more
rapidly compared with the one without damp-
ing. For the elastoplastic model, the dissipation
evolves more rapidly without damping. In any
case, the introduction of viscous damping leads
to a decrease in the total dissipation by the hys-
teretic model.

Figure 1.11 presents the in�uence of the input
signal frequency content on the dissipated ener-
gies5. Both damage and elastoplastic models are
studied here. It appears that the signal frequencies in�uence the hysteretic and viscous damping en-
ergies. For the elastoplastic model (�g. 1.11a), the lowest is the frequency, the fewer oscillations are
obtained on energy evolutions. So, the energies are in�uenced by the �rst signal frequency. On the
contrary, �gure 1.11b exhibits a di�erent behaviour for the damage model: energy increases by small
steps are observed with f = 0.2 Hz demonstrating the in�uence of the second signal frequency (10 Hz).
However, the lowest is the �rst signal frequency, and the fastest are reached the �nal dissipated energies.
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Figure 1.11: Di�erent types of damping - one DOF system - in�uence of the input signal frequency

5It should be noticed that the results are also in�uenced by the problem properties like m or k.
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Then, �gure 1.12 shows the numerical damping. γ parameter of Newmark’s algorithm varies be-
tween 1/10, 1/2 and∼ 1/1.11. Figures 1.12a and 1.12c present the responses with viscous damping, and
�gures 1.12b and 1.12d present the responses when no viscous damping is considered. The case γ = 1/2
and β = 1/4 does not induce numerical energy dissipations, while positive numerical damping appears
with γ > 1/2 and negative one appears with γ < 1/2 (Alarcon, 2015). It is demonstrated here particu-
larly with the displacement responses because with γ = 0.1 the highest displacements are reached. On
the contrary, with γ = 0.9, the smallest ones are reached because of the numerical damping. However,
all �gures show that the numerical damping induces few di�erences with the signal considered. All
analyses presented in this thesis will be performed with γ = 1/2 and β = 1/4 precisely to avoid the
numerical damping.
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Figure 1.12: Di�erent types of damping - one DOF system - numerical damping - elasto-plastic model

1.2.2 Damping models at the structural level - global descrip-
tion
For the study of MDOF structures, damping models at the global level are characterised by a viscous
damping matrix C or by a hysteretic model. In the case of linear systems, the dynamic equation of the



1.2 Damping models in dynamic structural computations 19

viscously damped system is written in equation (1.24):

M · Ü + C · U̇ + K ·U = F(t) (1.24)

where the viscous damping matrix C can be built with the model properties like the sti�ness and mass
matrices ("classical" damping), or it can be described using the eigenmodes (modal damping). In addition
to viscously damped systems, hysteretically, with a complex sti�ness matrix, can also be de�ned as
presented in equation (1.25):

M · Ü + K (1 + j.ηk) ·U = F(Ω) (1.25)
for a harmonic loading of frequency Ω and where j is the complex variable given j2 = −1, and ηk is a pa-
rameter given the level of complexity in the sti�ness matrix. The complex formulation in equation (1.25)
is particularly representative of visco-elastic material. Because no visco-elastic e�ects are obtained in
the analyses performed in this thesis, that damping type will not be studied in the following.

Due to the lack of knowledge about the di�erent damping phenomena (1.1.1), the aim of models
presented in this section is generally to represent the global capacity of the structure to dissipate energy.
So, proportional to the velocity, viscous damping is a non-physical but convenient way to describe the
dissipation at the structural level.

By de�nition, a classical damping matrix is a diagonal matrix in the modal basis of the undamped
system. Unless it lacks a physical basis, a classical damping formulation is often used to directly inte-
grate the dynamic equation when the damping matrix must be completely de�ned. It is an easy-to-use
mathematical tool. Therefore many of the upcoming damping formulations are classical matrices (F. A.
Charney, 2008). In addition, damping ratios are associated with each eigenmode for modal damping.
The global matrix must only be assembled if the problem is solved in the entire space.

1.2.2.1 Rayleigh damping (RD) and derivatives
(a) Generalities on Rayleigh damping Rayleigh was the �rst to introduce the idea of viscous
proportional damping (Rayleigh, 1877; Rayleigh, 1896). Even if he was not using matrix algebra, its
results were close to those described here. What is commonly called the "Rayleigh damping matrix"
(eq. 1.26) is composed of two terms: the �rst one is proportional to the mass matrix M and mainly
represents the external dampers linked with the degrees-of-freedom (DOFs), and the second one is
proportional to the initial sti�ness matrixK0 and mainly represents the viscous damping between DOFs.

C = a0 ·M + a1 ·K0 (1.26)

with constant parameters a0 and a1. Only two damping ratios for two selected frequencies are required
to determine the Rayleigh damping matrix (�g. 1.13): ξi for ωi and ξj for ωj associated to modes i and
j. According to equation (1.26), the equivalent damping associated with mode n is written as ξn =
a0

2.ωn
+ a1.ωn

2 . So, the solution of the following system (eq. 1.27) is enough to determine the two
parameters.





ξi = a0
2.ωi

+ a1.ωi
2

ξj = a0
2.ωj

+ a1.ωj
2

⇐⇒





a0 = 2ωiωj
ω2
i − ω2

j

(ξjωi − ξiωj)

a1 = 2
ω2
i − ω2

j

(ξiωi − ξjωj)
(1.27)

The Rayleigh damping matrix is still the most employed in engineering due to its simplicity. Indeed,
for a FE model, the mass and sti�ness matrices description can simply be done with the studied system
knowledge.

The choice of modes i and j has to be carefully done. Most of the approaches proposed in the
literature to determine the most appropriate modes are based on the least square method. The problem
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Figure 1.13: Rayleigh equivalent damping for ξ1 = ξ2

is that the methods are often based on
the �rst mode and the last one with a
non-negligible contribution. However,
the second mode chosen can be very
high, particularly for large structures.
So, signi�cant errors on damping ra-
tios for lower modes, playing a signif-
icant role, can appear. Song and C. Su
(2017) discussed those di�culties and
proposed another method based on the
modal participating mass.

However, following Rayleigh (1896),
many studies have been developed in
the literature to show the problems en-
countered with this matrix and �nd so-
lutions to improve it. Notably, Hall (2006) enumerated some di�culties produced with the Rayleigh
damping matrix. First, spurious damping forces develop, leading to overestimating the dissipated en-
ergy in structure and underestimating structural failure risk. Second, for nonlinear analyses, it is not
easy to control damping. Mainly because with the initial sti�ness K0, it is impossible to represent the
cracking or any other energy dissipating phenomena. Nevertheless, in terms of deformations, the results
are pretty accurate for low levels of nonlinearities.

(b) Mass-proportional damping (MPD) With the mass-proportional damping formulation C =
a0 ·M, some spurious damping forces are eliminated (Zareian and Medina, 2010). However, Zareian
and Medina (2010) also indicated that the MPD matrix does not allow to characterise the experimental
responses because the high-frequency content is not damped (�g. 1.13). Finally, because the mass-
proportional part corresponds mainly to the environment of the structure, Zareian and Medina (2010)
explained that its in�uence would be much more critical for underwater structures, which are not the
case in the structures studied in this thesis.

(c) Sti�ness-proportional damping (KPD) The mass-proportional part is one of the di�culties
often discussed in the literature with the Rayleigh damping matrix. Hall (2006) explained that very high
damping can develop in the case of rigid body movements (what happens during seismic analyses in the
relative frame) or when a structural element reaches a high velocity (for example, when a dam slides
on its base). It can be observed in �gure 1.13 with the strong increase of ξn for low values of ωn. So,
lots of papers recommend eliminating the mass-proportional part in the Rayleigh damping matrix, like
F. Charney et al. (2017) and Hall (2006), and considering the sti�ness-proportional damping formulation
C = a1 ·K.

However, Petrini et al. (2008) demonstrated that using the initial sti�ness matrix in the KPD formu-
lation appeared inappropriate because a large amount of energy was dissipated, resulting in too small
displacements. It was problematic primarily because this model was often used and is still used in in-
elastic dynamic analyses. In the same idea, Hall (2006) discussed the lack of modal damping ratio control
with the KPD formulation. So, to reduce the damping forces and obtain the most accurate results, Hall
(2006) proposed to bound and control the damping force. While Petrini et al. (2008) focused on using
a tangent sti�ness-proportional damping formulation (TKPD) because it allowed to reduce and contain
the damping forces. The counterpart of the result improvements with the TKPD formulation was the
substantial increase in computational time because the sti�ness matrix had to be evaluated for each
time step. If the structure exhibited signi�cant sti�ness variations, numerical instabilities were able to
develop, for example, with numerical schemes such as Newton-Raphson (F. A. Charney, 2008).
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(d) Rayleigh damping updating The papers presented herein aim to update the RD matrix, with
the tangent sti�ness matrix, for example, to keep its advantages and enhance numerical responses.
Zareian and Medina (2010) interested in a new damping model based on RD formulation with the tangent
sti�ness matrix but keeping sti�ness-proportional damping only in elements remaining in the elastic
regime. The method showed good performances in estimating the seismic collapse capacity and was
viable for cyclic deterioration cases. Then, F. Charney et al. (2017) proposed to update: (i) RD with the
full tangent sti�ness matrix, and (ii) RD with the partial initial sti�ness matrix. In the partial formulation,
the idea was to keep only the elastic terms in the sti�ness-proportional part. It avoided the apparition
of spurious damping forces when the system became inelastic. However, spurious energy could still
develop due to hysteresis inside the element. Jehel, Léger, and Ibrahimbegovic (2014) also based their
work on RD with the tangent sti�ness matrix by developing analytical formulas to control damping
ratios in inelastic time history analyses. Another idea was then proposed by Nakamura (2017) and
Nakamura (2019) to improve the RD formulation with the complex sti�ness in equation (1.28) built with
a causal unit imaginary function, a signi�cant component of the hysteretic damping:

K̃(ω) = K0(1 + 2ξ · i · sg(ω)) (1.28)

where i is the imaginary variable, K̃ the complex sti�ness matrix and sg(ω) the sigh of ω. This method
improves the frequency range of a constant damping ratio. Finally, Salehi and Sideris (2018) developed
a strategy of continuous evolution, at �rst order, of the tangent-sti�ness matrix to improve the RD
formulation.

In addition to mass and sti�ness matrices, two parameters are considered for computing the RD
matrix (a0 and a1) and can thus be updated during computations. First, Léger and Dussault (1992) pro-
posed to update the parameters by computing the eigenfrequencies of the damaged structure at each
time step. With the new eigenfrequencies, the system (1.27) was able to be solved with constant damp-
ing ratios ξ1 and ξ2. The use of the tangent-sti�ness matrix accompanied the parameter updates. The
proposed formulation better controlled the energy dissipated by viscous damping in nonlinear analyses.
However, the computation of parameters for each time step was very time-consuming. In addition, if
the structure exhibited high sti�ness degradation level, the methodology became challenging to per-
form. Crambuer (2013) also discussed the advantages and disadvantages of this method: (i) no arti�cial
damping occurred, (ii) the frequency dropped due to the structural sti�ness degradation, and (iii) dam-
age was not overestimated for low frequencies. However, (i) the damping was again overestimated for
high frequencies, (ii) the computational time increased a lot, and (iii) the updating was still not based on
particular dissipative phenomena. Then, based on the advantages and di�culties encountered with the
classical RD formulation as well as the updates already discussed, F. A. Charney (2008) recommended
making a mix of formulations (eq. 1.29), with a1(t) the coe�cient updated during computation.

C = a0 ·M + a1 ·K0 + a1(t) ·KT (1.29)

Finally, instead of updating eigenfrequencies, the idea could have been to update damping ratios
during the computation. By considering the fact that the concrete cracks in�uence the damping ratio,
Crambuer (2013) proposed damping updating methodologies where the damping ratio depends on dam-
age, loading level, and crack surface erosion (more detailed in section 1.3.3.2). Thus, Crambuer (2013)
explained that by accurately updating damping, simpli�ed models could be able to model the global
damping evolution of structural elements.

1.2.2.2 Caughey damping matrix
Rayleigh damping-type matrices are not the only classical damping formulations. T. K. Caughey (1960)
and T. K. Caughey and O’Kelly (1965b) proposed a "generalised Rayleigh damping formulation". The
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idea came from the remark that undamped linear systems possess normal modes. T. K. Caughey (1960)
and T. K. Caughey and O’Kelly (1965b) determined a su�cient and necessary condition for damped dy-
namic systems, continuous or discrete, to also possess normal classical modes. The developed "Caughey
damping (CD) matrix" is expressed in equation (1.30):

C = M ·
∑

i

ai
[
M−1 ·K

]i (1.30)

Because the damping matrix is decoupled in the modal basis, this matrix is also a "classical" one. How-
ever, F. Charney et al. (2017) explained that this kind of behaviour did not exist in real structures except
for elastic systems under ambient vibrations. The proportional character of the model enabled a resolu-
tion on a modal basis. In addition, the sum in equation (1.30) expanded the number of modes for which
damping ratios can be imposed. Several drawbacks are listed by Smyrou, Priestley, and Carr (2011) and
F. Charney et al. (2017): (i) the increasing number of damping parameters to identify as regards the
range of i in equation (1.30), (ii) speci�c numerical strategies to handle negative power of matrix M and
(iii) the spurious damping values for high frequency.

Updates of this matrix were proposed: (i) Bernal (1994) who considered only the negative exponents
of the matrix to limit the development of spurious forces. (ii) Luco (2008) focused on the Caughey series
coe�cient determinations based on experimental damping data to restore the system well-conditioning.

1.2.2.3 Modal damping formulations
"Modal damping" (MD) formulations consist in computing a damping matrix from eigenmodes. First,
Wilson and Penzien (1972) proposed an adaptation of T. K. Caughey (1960) and T. K. Caughey and
O’Kelly (1965b) works on the modal basis. Their purpose was to determine an orthogonal damping
matrix based on modal damping ratios that could be evaluated from the structural physical properties.
Two methods were developed: (i) a Caughey damping matrix using a numerical procedure for its con-
struction, and (ii) a direct evaluation of a modal damping matrix, that is to say, a matrix composed by
the sum of modal terms. The proposed matrix is expressed in equation (1.31):

C = M ·
[
N−1∑

i=1

2ξiωi
mi

φ
i
φT
i

]
·M (1.31)

where mi is the modal mass associated with mode i (mi = φT
i
· M · φ

i
) and N is the total number

of nodes. This formulation is more e�cient in terms of computation time than the Caughey matrix
because no power of the mass matrix has to be computed. Wilson and Penzien (1972) recommended
determining the damping ratios required to build the matrix in equation (1.31), with structural physical
properties.

Following the idea of Wilson and Penzien (1972) to use modal damping to form an orthogonal damp-
ing matrix, Chrisp (1980) developed two modal dampings: (i) a linear model (eq. 1.32) and (ii) a trilinear
one (eq. 1.33). The viscous damping ratios are so evolving with the frequencies.

ξi = A× fi (1.32)

ξi =





ξa ∀ f < fa
ξb − ξa
fb − fa

× (f − fa) + ξa ∀ fa < f < fb

ξb ∀ fb < f

(1.33)

where fa and fb (associated with the damping ratios fa and fb) are two limited frequencies characteris-
ing the linear part of the model. The advantages of these models are: (i) the damping localisation, (ii) the
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spurious damping force limitation and (iii) the distinction between damping dissipation and hysteretic
one (Ni et al., 2019).

Chopra and McKenna (2016) and Chopra and McKenna (2017) rewrote the modal damping matrix
in equation (1.34) to eliminate the spurious damping forces:

C =
N∑

i=1

4π
Ti
ξi

(
Mφ

i

)(
Mφ

i

)T

φT
i
Mφ

i

(1.34)

where Ti = 1
fi

= 2π
ωi

is the eigenperiod associated with mode i.
As we discussed the possible updates of the Rayleigh damping matrix, nonlinear damping formu-

lations could be de�ned for modal damping. It is the case when the damping matrix is actualised for
each time-step using an eigenvalue analysis based on the tangent-sti�ness matrix KT . The advantage is
to increase the accuracy of the dynamic response, but this is �rmly time-consuming. In addition, Smy-
rou, Priestley, and Carr (2011) proposed to use modal damping with 5% as damping ratio for all modes,
except for the �rst mode where a reduced damping ratio was considered. Equation (1.35) presents the
reduced damping ratio ξ∗ depending on the ductility µ and the post-yield sti�ness coe�cient rk:

ξ∗ = ξ
(1− 0.1(µ− 1)(1− rk))√

µ/(1 + rkµ− rk)
(1.35)

It allows eliminating the excessive damping in the post-yield phase for inelastic analyses.

1.2.2.4 Other damping models
To avoid limitations of classical proportional damping formulations, C.-L. Lee (2019) and C.-L. Lee (2020)
papers proposed the damping matrix in equation (1.36):

C =
N∑

i=1

[
MCi −

(
MCi · (MCi + KCi)

−1 ·MCi

)]
(1.36)

where MCi = 4ξiωi ·M and KCi = 4ξi
ωi
· K for i ∈ [[1;N ]]. This smooth function was developed to

match the desired damping ratios ξi for as many frequencies ωi as requested. The construction of this
matrix is based on the basis function (eq. 1.37):

ξ(ω) =
N∑

i=1

2ωiω
ω2
i + ω2 ξi (1.37)

The advantages of this model are its capacity to �t easily damping curves, especially for constant damp-
ing in a broad frequency range, the spurious damping force elimination and the computation time e�-
ciency. In C.-L. Lee (2022), they went even further by de�ning a four bell-shaped proportional damping
model to improve the performances of their models.

Then, the idea proposed by Luco and Lanzi (2017) was to reduce the loss of energy in nonlinear
components because it was already taken into account in hysteretic energy dissipation. It presented
two advantages: (i) the decrease in damping forces and (ii) the separation between the hysteretic and
viscous damping. In Lanzi and Luco (2018), the formulation of the damping matrix C̃ in equation (1.38)
was considered to keep the dissipations proportional to elastic components of velocity and applied the
idea previously discussed in Luco and Lanzi (2017):

C̃ = KT ·K−1 · C ·K−1 ·KT (1.38)
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where C could be the Rayleigh, Caughey or modal damping.
Another idea was developed in Adhikari (2000), Adhikari and Woodhouse (2000), Adhikari and

Woodhouse (2001a), and Adhikari and Woodhouse (2001b) works corresponding to the identi�cation
of viscous and non-viscous damping models using complex modes. The considered dynamic equation
of motion is presented in equation (1.39)

M · Ü +
∫ t

−∞
G (t− τ) · U̇ dt+ K ·U = 0 (1.39)

where G (τ) is the kernel function to identify. The method can reasonably predict the spatial damping
location. However, accurate G (τ) models are required to describe the physical phenomena associated
with damping adequately. Adhikari (2006) went further by proposing a new generalised proportional
damping still based on smooth continuous functions of the mass and sti�ness matrices.

1.2.3 Damping models at the local level
Energy dissipations are due to physical phenomena at the material level. In section 1.2.2, they have been
described at the global scale through the de�nition of a damping matrix C. Some models describing the
dissipations at the local level are considered in this section.

1.2.3.1 Material models
(a) Hysteretic damping Hysteretic damping (also called structural damping) di�ers from viscous
damping because it is related to displacements and not to velocities. For nonlinear behaviour materials,
the hysteretic damping is determined experimentally using harmonic cyclic loadings. It is related to
the positive work of external forces, representing the energy dissipated through the structure (Boyere,
2011).

First analytical studies of hysteretic damping were performed by T. Caughey and Vijayaraghavan
(1970), following the Kimball and Lovell (1927) works on aircraft �elds. T. Caughey and Vijayaraghavan
(1970) focused on a "linear hysteretic" damping and demonstrated that the energy loss associated with
Reid model Reid (1956) was proportional to the square of the displacement amplitude. Then, S. H.
Crandall (1991) explained that "structures exhibit a variety of damping mechanisms with energy losses
that vary in many ways with amplitude and frequency". That is why he compared analytic responses
of an ideal damper and a band-limited hysteretic one.

Analytical studies were also performed on SDOF systems based on vibrations theory. Muravskii
(2004) proposed an analysis of three frequency-independent damping models, representing an alterna-
tive for equivalent viscous damping and complex sti�ness model. First, the hysteretic model in equa-
tion (1.40) was based on the formulation of (Reid, 1956):

Fel−d = k

(
u+ cd.|u|

u̇

|u̇|

)
(1.40)

where Fel−d is the force corresponding to the sum of the elastic and damping forces and k and cd
respectively the sti�ness and damping coe�cients. The damping ratio associated, and determined from
the hysteretic cycles, is given in equation (1.41) and appears to be linear with the damping coe�cient.

ξhyst = cd
π

(1.41)

Then, for the modi�ed hysteretic model (�g. 1.14), an elastic spring was added to the previous model,
and the damping ratio became (eq. 1.42):

ξhyst = cd
π

rs − 1− cd
rs − 1 + cd

(1.42)
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ks

kcd

F

Figure 1.14: Modi�ed
hysteretic model (Muravskii,

2004)

where rs = ks
k and ks is the sti�ness of the SDOF spring. Finally, the

quasi-hysteretic nonlinear model was based on the displacement mean
value, and the associated damping ratio was given in equation (1.43):

ξhyst = cd
2 (1.43)

The quasi-hysteretic model was recommended to arbitrary input sig-
nals.

Finally, Val and Segal (2005) works also focused on SDOF sys-
tems submitted to earthquake ground motions. They used a hys-
teretic damping model (elasto-slip model of Masing type (Segal and
Val, 2006)) to avoid the development of an unrealistic damage level for
structures submitted to earthquakes.

(b) Damage, smeared crack, plasticity Studying energy dissi-
pations occurring at the concrete level is a means to develop cracks
prediction models. First, Hillerborg, Modéer, and Petersson (1976)
proposed an approach based on the fact that when cracks occurred,
a certain amount of energy GC was absorbed, and when the cracks
propagated, stored energy was released. The de�ned GC value was,
so, equivalent to the fracture energy Gf in �gure 1.4.

Then, to limit the amount of required viscous damping energy,
research focused on models describing the physical phenomena. For
example, Dubé, Pijaudier-Cabot, and Borderie (1996) proposed a rate
dependent damage model well characterising the loading rate e�ect
on concrete responses. Another example developed by Ragueneau,
La Borderie, and Mazars (2000) aimed at coupling damage and hys-
teretic dissipations. They developed a constitutive equation model that dissipated the energy due to
two dissipative phenomena: (i) the cracking and (ii) the frictional sliding between crack surfaces. The
thermodynamic state potential (1D) is presented in equation (1.44):

ρ.Ψ = 1
2 (1− d) .ε.E.ε+ 1

2 (ε− εs) .d.E. (ε− εs) (1.44)

where ρ is the material density, Ψ the state potential, E the material Young’s modulus, d the damage
index, ε the total strain and εs the sliding strain. It is more physical to model internal dissipations at the
elementary level than global ones. It is recognised that a link exists between the state of failure and the
global damping in RC structures. However, the lack of knowledge appears in the residual hysteresis loop,
corresponding to the energy dissipation at a stabilised damage level. That is why a new constitutive
concrete model was developed, including the residual hysteretic loop. The model did not require more
global damping for seismic calculations because everything was dissipated at the elemental level in the
coupling between cracking and sliding. The idea would be taken up by Richard, Ragueneau, et al. (2010)
to improve the hysteretic representation of concrete behaviour. The thermodynamic framework of such
models will be discussed in chapter 2.

1.2.3.2 Structural element models
The concept of absorbed energy, discussed in section b for concrete, is also considered to predict con-
crete resistance in structural elements. Ohno and Nishioka (1984) performed experiments on �ve RC
columns to evaluate their energy absorption capacity. Indeed, they considered that value being a "well-
suited index for seismic safety". Then, Amara (1996) started from the Gri�th energy balance model to
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predict the crack growth in RC. Remarkably, the thermodynamic potential was de�ned by integrating
the strain energy. The proposed local model showed a good ability to predict the formation and prop-
agation of the cracks. Then, by comparing the strain energy absorbed by RC columns with their strain
energy absorption capacity, Watson, Zahn, and Park (1994) proposed an index for the column rupture
de�nition. Mander, Priestley, and Park (1988) developed, for their part, a stress-strain model to predict
the longitudinal compressive strain in concrete. For this aim, equality between the strain energy ca-
pacity of the transverse reinforcement and the strain energy stored in the concrete due to con�nement
was estimated. Tanaka (1990) used the Mander, Priestley, and Park (1988) model to determine concrete
ultimate longitudinal compressive strain at the beginning of cracking. Finally, those kinds of analyses
were developed at the structural level as proposed by S. S. Bhattacharjee and Léger (1993). They were
interested in a FEM for seismic fracture analyses of concrete gravity dams, assuming a nonlinear frac-
ture behaviour for concrete. The smeared fracture model aimed to predict dams seismic cracking and
energy response. The dissipated energy de�nition Ediss due to fracture is given in the equation (1.45):

Ediss = ER − (Eel − Eel,0) (1.45)

where ER is the internal work done by nonlinear restoring forces, Eel the stored elastic energy and
Eel,0 the pre-seismic elastic strain energy. The model led to an evaluation of the earthquake capacity
of dams without performing experimental tests and showed that the fracture energy parameterGf was
necessary for such analyses.

More recently, Grammatikou, Fardis, and Biskinis (2019) discussed the assumption that hysteretic
energy dissipation was linked with post-yield inelastic behaviour in damping models. By quantifying
this hysteretic energy dissipation in RC elements, Grammatikou, Fardis, and Biskinis (2019) showed that
some dissipations also appeared in pre-yield cycles. Those dissipations were a function of the features
(ductility, shear-span-to-depth ratio, transverse reinforcement ratio, . . . ) and deformation histories. That
is why a new hysteretic model was proposed based on modi�ed Takeda and modi�ed Clough models
by adding dissipations in pre-yield cycles. Thus, energy dissipations before and after yielding could be
decomposed. The new model presented the advantage of not requiring viscous damping except if some
non-modelled elements were dissipating energy.

Finally, dissipative phenomena have also been coupled in material models to represent the behaviour
of RC elements, such as Heitz, Giry, et al. (2019) in the case of damage, friction and plasticity couplings,
following the same objective as Ragueneau, La Borderie, and Mazars (2000) in equation (1.44). The
thermodynamic framework of such models will be developed in chapter 3.

1.2.3.3 Local viscous damping
Another strategy to model damping at the elemental level is to adapt structural viscous or hysteretic
damping models at the local level. First, Puthanpurayil, Lavan, et al. (2016) adapted the Rayleigh and
Wilson-Penzien damping at the elemental level, respectively presented in equations (1.46) and (1.47):

Ce = a0,e ·Me + a1,e ·Ke (1.46)

Ce = ΘeΨeΘT
e (1.47)

where Ce, Me and Ke are the elemental dampings, mass and sti�ness matrices associated with the ele-
ment e. For the Rayleigh damping adaptation, a0,e = 2.ξRD,e,1.

ωe,iωe,j
ωe,i + ωe,j

and a1,e = 2.ξRD,e,2.
1

ωe,i + ωe,j
are elemental damping proportional parameters and could be constant or varying with tangent sti�ness
elemental matrix. Parameters ωe,i and ωe,j are the ith and jth elemental undamped frequencies. ξRD,e,1
and ξRD,e,2 are the viscous damping ratios associated with the elementary Rayleigh damping model for
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the mass and sti�ness proportional parts. For Wilson-Penzien adaptation, Ψe is a diagonal matrix com-
posed ofψe,i = 2.ξWPD,e,i.ωe,i

φTe,i ·Me · φe,i
and Θe is the mass normalised elemental mode shape matrix. ξWPD,e,i

is the ith viscous damping ratio associated with the elementary Wilson-Penzien model. The elemental
formulations appeared to be more reliable than global ones, but the elemental frequencies were not rep-
resentative of structural properties. The computational time was comparable to an updating of Rayleigh
damping with the tangent sti�ness. Then, Carr et al. (2017) upgraded Puthanpurayil, Lavan, et al. (2016)
elemental Wilson-Penzien formulation by considering the nonlinearities with a tangent matrix. Indeed,
considering elemental nonlinearities in elemental damping was a way to consider the global system
nonlinearities. Structural analyses showed the model conservative e�ect, which was interesting from
an engineering point of view. Later, Puthanpurayil, Carr, and Dhakal (2018) repeated the same idea
but to adapt two nonlocal continuum elasticity based damping models for nonlinear dynamic analy-
ses: (i) the Russel spatial hysteresis model and (ii) the extended Sorrentino model. Again, local models
appeared to better behave than global ones. The advantages were: (i) eliminating spurious forces and
the representativeness of dissipations. However, there is no explicit experimental evidence about the
supposed better representation of elemental models (Puthanpurayil, Carr, and Dhakal, 2018).

E

ξ1

ξ2

F

Figure 1.15: Generalised
Maxwell model

All damping models at the elemental level aimed to be more repre-
sentative of physical dissipative phenomena than the viscous damping
model at the structural level. Mainly, the RD matrix is strongly used,
but no physics is associated with it. That is why Semblat (1997) pro-
posed a rheological interpretation of RD. The rheological model aimed
to involve the same attenuation-frequency dependence as RD, based
on the link between internal friction and frequency. The chosen model
was the generalised Maxwell model (�g. 1.15), given the viscous damp-
ing ratio in equation (1.48):

ξ ≈ 1

2×
[
E. (ξ1 + ξ2)

ξ2
1

.
1
ω

+ ξ2
E
.ω

] (1.48)

It consisted of three parameters (ξ1 and ξ2 were viscous parameters,
andE was an elastic parameter). It was analytically demonstrated that
if ξ < 25%, the proposed model perfectly coincided with the RD of a
SDOF system.

Then, Voldoire (2019) also developed an idea to include damping in
the material behaviour model. A nonlinear behaviour was established
with viscous dissipations linked to damage states. Indeed, the dam-
age variable described the memory of material sti�ness and strength
degradations. It allowed modelling "residual" damping, giving a result
close to the global RD model but with a spatial and temporal descrip-
tion of energy dissipations. The evaluation of the proposed model was
done on a one-dimensional rheological study. The dissipation occurred when damage increased and dur-
ing transitory phases due to a0(d) and a1(d) parameters. Experimentally, those parameters appeared to
increase. But because the damage was not an observable state variable, parameter evolutions through
the elastic sti�ness degradation was preferred: a0 (k(d)) and a1 (k(d)). For example, in the case of
constant damage, the residual damping ratio ξr(d) evolution at fundamental frequency f0 was given by
equation (1.49):

ξr(d) = ξf0 .

[
1 + 2.5

(
1− k(d)

k

)]
(1.49)
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1.2.4 Synthesis - comparison of damping models
There is no consensus about the best formulation to use in seismic analyses in literature. In addition,
a large number of models are proposed. That is why numerous papers are interested in comparing
di�erent damping formulations on particular examples. Table 1.2 synthesises the damping formula-
tions compared in all papers presented in the preceding paragraphs (alphabetical classi�cation). The
nomenclature of the damping formulations is presented in Appendix A. Rayleigh, mass-proportional,
sti�ness-proportional and modal dampings are the most used formulations in the literature because
of their implementation simplicity. Generally, the comparisons allow authors to study each damping
formulation behaviour and propose damping model recommendations for studied structures. For ex-
ample, Hall (2006) demonstrated that the TKPD advantage was its capacity to reduce and contain the
damping forces compared to IKPD and MPD. In addition, CSI (2011) presented the characteristics of the
Perform3D program for nonlinear structural analyses of building structures and recommended adding
a small amount of RD when a MD was used to damp a little the higher modes. Indeed, the number of
modes used in MD was always inferior to the number of structural DOFs.

1.2.4.1 Reinforced concrete (RC) structures
(a) Structural elements Experimental campaigns were performed on RC elements given data to
study performances of numerical models. For example, Correia, Almeida, and Pinho (2013) focused
on cantilevered RC columns with masses on their tops. By comparing experimental and numerical
responses, they showed the following conclusions: (i) with a KPD, excessive damping appeared for
higher modes, and numerical problems occurred with softening models. Especially, using the IKPD
gave the worst results. (ii) The di�culty with MPD appeared when a strong inelastic behaviour occurred
because of the lack of rational energy dissipation reduction. (iii) With RD, the same problems as MPD
developed if the �rst mode controlled the response. Otherwise, the di�culties of KPD appeared but to
a lesser extent. Finally, the recommendation was to use the MPD or even the TKPD or RD with the
tangent sti�ness. Nevertheless, chosen viscous damping ratios must stay under 3%, and if phenomena
dissipate a large amount of energy, they must be explicitly modelled.

Then, H. Q. Luu et al. (2011) and Karaton, Osmanlı, and Gülşan (2021a) and Karaton, Osmanlı, and
Gülşan (2021b) were interested in shear walls tested experimentally. H. Luu et al. (2013) studied di�er-
ent modelling assumptions, including damping based on large-scale table tests of slender eight-story RC
shear wall specimens. Two models were considered: (i) a multi-�bre model with nonlinear constitutive
models for concrete and steel, and (ii) a �nite element model with 2D plane stress elements with slightly
di�erent hysteretic models. In comparison with experimental data, it appeared that both models gave
similar results. RD with the tangent or commit matrices gave close results. However, using the tangent
sti�ness matrix was more time consuming because updates were made at each iteration and not only
at the end of each time step. As for recommendations, RD with a damping ratio of 2% for modes 1 and
2 should be chosen with the multi-�bre model. For the second model, it should be preferable to use
RD with 1.5% of damping ratio for modes 1 and 3. More hysteretic energy was dissipated with that
model explaining the smaller damping ratio. Mode 1 should always be considered because it dominates
the dynamic response, but the second or third mode choice does not a�ect the conclusions. In Kara-
ton, Osmanlı, and Gülşan (2021a), two experimentally tested RC shear wall structures were studied with
displacement-based �bre elements considering di�erent damping formulations and damping ratios. Nu-
merous dynamical responses were observed, and the best damping formulation evolved depending on
the responses. However, in global, as H. Luu et al. (2013), RD gave an error inferior to 11% with experi-
mental data. It was shown that the damping ratio choice for one damping formulation depended on the
structure. In Karaton, Osmanlı, and Gülşan (2021b), the more signi�cant conclusions are that KPD and
RD are the best damping formulations with viscous damping ratios between 2% and 3%.
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(b) Buildings For the study of complete RC buildings, Sousa et al. (2020) performed their analyses
based on the experimentation of three distinct RC structures and the conclusions of an international
benchmark. Indeed, the large dispersion of results in the benchmark, even for teams using the same
simulation software, showed that the modelling principles are not generalised. So, Sousa et al. (2020)
realised sensitivity analyses of modelling options that were critical in the structure response, including
equivalent viscous damping (EVD). A structural �bre model was considered. First, it was recommended
to use a low damping ratio, between 0.5% to 2%. Then, for a mass distributed system, TKPD was
better because of the lack of damping of the higher modes with MPD. Nevertheless, MPD was better to
characterise the acceleration amplitudes. So, the choice of the formulation is dependent on the response
of interest.

The conclusions of Baba-Hamed and Davenne (2020) were di�erent. A low-rise RC three-story
building was studied with seven earthquake ground motions. It was thus observed that neither the
mass nor sti�ness proportional damping was appropriate for nonlinear time history analyses of RC
buildings. Indeed, the ratio of the damping force over the based shear force increase could not be
adequately represented with both formulations. So, it was recommended to prefer the reduced TRD
formulation F. A. Charney (2005) with 0.707× ω1 and 0.707× ω2 to reduce the studied ratio.

(c) Bridges Buildings were not the only RC structures studied in the literature. Abbasi and Moustafa
(2019) mainly focused on the damping model in�uence on the nonlinear response of RC bridges sub-
jected to an earthquake. In addition, uncertainties were applied on excitation, geometry and material
properties. It was observed that, depending on the damping model, the structure fragility curve was
more or less in�uenced by the uncertainties applied to a particular parameter. Then, the sensitivity on
damping parameters varied from a bridge element to another. However, what appeared, was that the
damping ratio played a signi�cant role compared to the choice of the used sti�ness matrix (initial or
tangent). If high degradations are reached, more hysteretic damping develop, so less viscous damping
is required, and the choice of damping formulation becomes less decisive. It was recommended to pre-
fer the TKPD with 5% of damping ratio and consider ten modes in linear analyses because the higher
modes had a non-negligible in�uence on bridge responses under seismic excitations. No recommen-
dations are proposed for inelastic analyses. For such analyses, Martinez and Kowalsky (2020) show,
indeed, the considerable in�uence of the damping model thanks to sensitivity analyses on modelling
parameters for performance-based design of bridges. Only the damping formulation was evolving for
the damping parameters, resulting in up to 100% di�erences in displacement ductility. Here, TKPD and
Zero damping led to the largest displacements. In contrast, MD led to the minimum seismic demands.

1.2.4.2 Other types of structures

(a) Analytical structures More analytical studies are performed to evaluate the in�uence of damp-
ing models in dynamic structural analyses. For example, Luco and Lanzi (2019) focused on the analyti-
cal and numerical analyses of a simple elastic frame to debate the common literature conclusions about
damping models. They showed that TRD presented no spurious damping forces but that some numerical
artefacts existed, contradicting the Chopra and McKenna (2016) conclusions. In addition, MD eliminated
the spurious forces, but it introduced signi�cant oscillations in the velocity response, which was also a
numerical artefact due to time discretization.

(b) Gravity dams Damping analyses were associated with fracture propagation models for gravity
dams to evaluate the dam ability under seismic excitations. For example, Léger and S. Bhattacharjee
(1994) studied cracking pro�les and energy dissipated in gravity dams. Fracture dissipations appeared
negligible compared to damping energy, so a careful choice of damping formulation had to be done.
Mainly, the elasto-brittle damping model (only the elements staying elastic are considered for computing
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the damping matrix) was the most conservative and was recommended here, in contrast to IKPD that
restrained the crack propagations. By studying a continuum fracture propagation model with di�erent
damping formulations, S. S. Bhattacharjee and Ghrib (1995) even went so far as to recommend using no
viscous damping at all to improve the representability of crack opening.

1.2.4.3 The particularity of base-isolated structures
Before 2008, damping model recommendations in the literature for base-isolated buildings were to com-
bine the superstructure damping with the isolation system one, which were completely independent.
Generally, RD with a damping ratio inferior to 5% for the superstructure and a combination of viscous
and hysteretic damping for the isolation system were used. Nevertheless, there is still no consensus
about the choice of damping models, and numerous papers are dealing with this di�culty. Ryan and
Polanco (2008) focused on di�erent buildings of various story numbers and demonstrated that even
when the hereafter recommendations on base-isolated buildings were correctly followed, RD appeared
not to be relevant because of the undesirable suppression of the �rst mode response. So, it was recom-
mended to prefer a KPD based on the �rst mode of the superstructure because it negligibly a�ected the
�rst mode. A correct amount of energy was also dissipated for higher modes.

Then, Pant, Wijeyewickrema, and ElGawady (2013) studied the behaviour of three-story reduced
scale buildings tested on a shake table. Again, it was observed that the choice of damping formulation
and damping ratio played a signi�cant role in dynamic responses. In the case of direct nonlinear inte-
gration time-history analyses with RD-type formulations, it was recommended to compute coe�cients
with a modal analysis of the entire base-isolated building with the post elastic sti�ness of the isolated
system. For nonlinear time-history analyses with MD, choosing the damping ratio was strongly de-
pendent on the formulation. So, a �xed value could not be de�ned for all cases. For Dao and Ryan
(2014), based on experimental data on �xed-base and isolated systems, RD was adequate in the case of
�xed-base structures. However, more modes had to be considered for isolated systems, so MD should
be preferred to increase the frequency range participating in the structural response.

More recently, Anaja�, Medina, and Santini-Bell (2019) suggested using KPD only based on the
superstructure with a coe�cient based on the second mode of the isolated building. Conclusions were
based on the analyses of base-isolated buildings with linear and nonlinear isolation systems. It was
shown that RD induced unrealistic high damping in the �rst mode and that this "damping leakage"
(arti�cial viscous damping to the isolated �rst mode) was able to induce a signi�cant underestimation
of modal responses. In the same idea, M. Kumar and Whittaker (2019) and S. Kumar and M. Kumar
(2021) recommended using damping formulations that did not induce damping leakage. Studies focused
on base-isolated nuclear power plants. Three models using two di�erent software (OpenSees and LS-
DYNA) were compared. MPD led to damping leakage. TRD and updated parameters did not improve
the results compared to a simple RD, while the computational time enormously increased. MD had to be
used with caution because it could induce damping leakage. Finally, the conclusion was that damping
formulations should be chosen depending on the quantities of interest and model types.

1.3 Damping identi�cation and related damage in-
dices
Damping models presented in section 1.2 are strategies to represent damping e�ects in structural com-
putations. The proposed model di�culties are their calibration and the choice of required parameters.
That is why that section focuses on damping identi�cation methods (1.3.1) applied to experimental data
(1.3.2) to propose damping models (1.3.3).
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A second objective of identifying dynamic structural properties (i.e. eigenfrequencies, mode shapes,
damping) is to perform damage detection. Indeed, these properties evolve with respect to the damage
state of the structure. In contrast with many studies regarding eigenfrequency and mode shape iden-
ti�cation, the evaluation of damping is still a matter of debate. This section proposes a synthesis of
methodologies used in the literature to evaluate damping.

1.3.1 Synthesis of methodologies to evaluate the damping
1.3.1.1 Methodologies
(a) Method descriptions M. S. Cao et al. (2017) presented a state-of-the-art of diverse methods to
extract damping ratios from experimental data. Evaluating a damping ratio for the structure is a part of
global investigation methods. Damping is obtained thanks to quantities associated with the structure
global response (e.g. discrete displacement �eld). Methods are separated into three families: (i) the time
domain, (ii) the frequency domain, and (iii) the time-frequency domain.

For the time domain, (i) the Ibrahim time method, (ii) the random decrement method and (iii) the
Hilbert transform method were cited, but the most often used is the logarithmic decrement method. The
idea of the logarithmic decrement method is to use the peaks of the structure free vibration response.
So, in the assumption of viscous damping as the only source of dissipation, the logarithmic decrement
δ is de�ned in equation (1.50):

δ = ln
(

xi
xi+1

)
= 2πξ√

1− ξ2
(1.50)

where xi and xi+1 are two successive peaks of the temporal response. The damping ratio is thus given
in equation (1.51):

ξ ≈ 1
2π ln

(
xi
xi+1

)
(1.51)

In order to improve accuracy, more cycles (mc) can be taken into account, as proposed in equation (1.52):

ξ ≈ 1
2π.mc

ln
(

xi
xi+mc

)
(1.52)

Using more cycles to improve accuracy must be carefully considered because Daneshjoo and Gharigho-
ran (2006) explained that the chosen number of cycles signi�cantly in�uenced on the damping ratio
evaluation. If too few cycles are considered, the damping ratio evaluated is higher than the reality,
which is not safe in structural design. In RC structures, especially when cracks occur, the damping is
not only viscous (that is to say, proportional to velocity) but also proportional to displacement. So, the
exponential decrease considered is not accurately characterising the natural behaviour.
Another idea was proposed by Demarie and Sabia (2011): it consisted of a nonlinear and non-parametric
method to identify nonlinear damping and frequencies of damaged RC elements. The method is based
on a time-varying polynomial approximation of the system dynamics. The advantage of such a non-
parametric identi�cation is that no assumption is required about the nonlinearity types or localisations.
However, the identi�ed quantities could not be correlated to the system equations of motion. The �rst
step is to determine the optimal polynomial time-varying system from decomposition on time windows.
It is based on the assumption that equations can approximate the system response for each time window
with two polynomials depending on the velocity and the displacement. These polynomials represent the
unknown nonlinear viscous force and the elastoplastic internal force. Then, a minimisation is performed
to obtain the best polynomial parameters representing the functions to identify. The second step consists
of the damping identi�cation performed with the analysis of the dissipated energies associated with the
system identi�ed in the �rst step.



1.3 Damping identi�cation and related damage indices 33

For the frequency domain, (i) the frequency-curve-�tting method, (ii) the peak picking method or
(iii) the half-power bandwidth method (HPBM) are e�cient ones. The last one is the most used for
damping identi�cation because of its easy-to-use. It is an acceptable method for MDOF structures if the
modes are decoupled. Let fr be the resonant frequency of the system and fr1 and fr2 the frequencies
for which the amplitude at resonance is divided by

√
2. The damping ratio is de�ned in equation (1.53):

ξ = fr2 − fr1
2.fr

(1.53)

The HPBM will be used in the following chapters of the manuscript. That is why paragraph 1.3.1.1(b)
proposes a more in-depth analysis of the method. Other frequency-domain methods are proposed in
the literature like, for example, Adhikari and Woodhouse (2000), Adhikari and Woodhouse (2001a), and
Adhikari and Woodhouse (2001b) works already discussed in section 1.2.2.4. Also, Papagiannopoulos
and Beskos (2009) proposed a simple identi�cation model based on classical damped linear building
frames and extended to non-classical damped structures. The roof-to-basement transfer function was
used in the frequency domain. The model assumption was the equivalence, discretely, between the
modulus of the frequency response transfer function on the non-classical damped system and the one
of the classically damped system. The damping ratio for a mode n was de�ned in equation (1.54):

ξn = −<(ω̃n)
|ω̃n|

(1.54)

where ω̃n is the structure complex eigenfrequency associated to mode n coming from the quadratic
eigenproblem of equation (1.55):

(
−ω̃2.M + iω̃.C + K

)
· φ = 0 (1.55)

The model gives high accurate damping for regular frames with uniform damping distribution.
Finally, for the time-frequency domain, M. S. Cao et al. (2017) discussed the following methods: (i)

the Wigner-Ville distribution, (ii) the short-time Fourier transform, (iii) the Choi-Williams distribution,
and (iv) the continuous wavelet transforms, which is the most used.

The study developed in M. S. Cao et al. (2017) paper led to a few recommendations and remarks.
Remarkably, the damping is much more sensitive, in some damage cases, than the structure frequencies
or mode shapes. However, to improve the results, the mechanisms related to damping needs to be better
understood, and reliable damping models are required.

(b) Focus on the half-power bandwidth method a
Bias error evaluation Seybert (1981) based his investigation on a paradox: the resonant response of
a structure is dependent on damping, and the structure peak response determines damping. That is
why he focused on bias error for the HPBM compared to the peak response method. The damping ratio
was estimated from the density ratio of the output response spectra over the input one. A second-order
model with the transfer functionH(r) in equation (1.56) was characterised with a white noise input:

H(r) = 1
1− r2

f + 2.i.ξ.rf
(1.56)

where rf = f/fn is the frequency ratio. Numerical analyses were performed to validate the normalised
bias error formulation, and a random error was also presented. In conclusion, it was observed that the
bias obtained in the response spectra determination led to errors in the damping estimation with the
HPBM. Indeed, the bias error with that method was three times higher than with the peak response
method. However, better results could be obtained if the 80% of peak response was used because zero
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bias was developed at that response value. Finally, the random error could decrease if the coherence
was large, but con�icts could appear between random and bias errors.

Method accuracy and recommendations Olmos and Roesset (2009) assessed the accuracy of this
method to estimate the damping in various modes. Three damping formulations were compared: (i)
equal damping in all modes, (ii) MPD, and (iii) KPD. In addition, two structures were studied: (i) a sim-
ply supported �exural beam under free vibrations and (ii) a column undergoing axial vibrations. The
damping type mostly in�uenced damping estimation with the HPBM. MPD gave better damping esti-
mations for a large number of modes. In contrast, KPD led to wildly inaccurate results for the higher
modes.

Then, the HPBM uses the structural frequency response from forced vibrations, ambient vibrations
or earthquake excitations. J.-T. Wang, Jin, and Zhang (2012) focused on the method accuracy to estimate
the damping ratio of MDOF systems. A two-DOFs linear system was studied from its displacement
response. A parametric analysis was performed by varying many parameters in�uencing the response
curve. The �rst conclusion was that the HPBM could signi�cantly overestimate system damping ratios,
which was unsafe. Then, parameters in�uencing the damping estimation error were (i) the ratio ω2/ω1,
(ii) the amplitude ratio of the two modes, and (iii) the damping ratios themselves (if they were higher,
the error in the estimation would be higher).

Finally, both papers demonstrate that the HPBM should be carefully used depending on the damping
model used in the numerical analyses.

ImprovementsAgain, HPBM validity is studied here but with some improvements. First, Papagiannopou-
los and Hatzigeorgiou (2011) assessed the HPBM accuracy to estimate damping ratios in SDOF and
MDOF structures with linear viscous damping, even if non-classical modes were considered. Numerical
analyses were performed with di�erent damping formulations in equations (1.57), (1.58) and (1.59):

fn2 − fn1
fn

≈ 2ξ (1.57)

where fn is the natural structure frequency,

fr2 − fr1
fr

≈ 2ξ (1.58)

where fr is the structure resonant frequency (if ξ � 1, fr ≈ fn),

fra2 − fra1
fra

≈ 2ξ + 8ξ3 (1.59)

where fra is the acceleration resonant frequency, (fn1, fn2, fr1, fr2, fra1, fra2) frequencies for which
the amplitudes were divided by

√
2 compared with the associated peak amplitude. The HPBM classical

form led to signi�cant errors, so it had to be abandoned. On the contrary, the third-order correction
provided conservative and more reliable results for SDOF and MDOF structures. Finally, it was rec-
ommended to apply the HPBM on the acceleration frequency response transfer function and consider
damping ratios estimated for higher modes with caution.

In the same idea, I. Wang (2011) compared (i) the use of displacement response and acceleration one,
and (ii) the third-order approximation with the �rst-order one and the exact solution. Because the HPBM
is often applied on the displacement response and with a simpli�cation to the �rst order considering
a small damping ratio. Acceleration FRF derivation was equal to equation (1.59). A similar equation
was used with the displacement resonant frequency and a coe�cient equal to 4 in front of the third
damping ratio order. It was shown that the �rst order gave accurate results if ξ < 10%. However, the
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third-order approximation should be considered for higher damping ratios to decrease the truncation
error. Furthermore, again higher approximations should be used to improve results.

Finally, as I. Wang (2011) paper explained, the third-order was still not su�cient to accurately de-
crease errors for high damping ratios. So, Wu (2015) proposed new approximate formulas with displace-
ment and acceleration frequency response functions. The new formulas were brief and led to excellent
accuracy for low and high damping ratios. The maximal error obtained was 1.6% with proposed models,
against 45% for the third-order approximation.

1.3.1.2 Evaluated damping reliability
A question could be asked on all identi�cation methods: what is the reliability of the damping value
obtained? To answer this question, an evaluation example strategy was proposed by Cruz and Miranda
(2019). They proposed di�erent metrics to evaluate the reliability of damping values obtained using the
modal minimisation parametric system identi�cation technique, a time-domain method. Their study
assumed that modal damping with linear viscous damping was the most often applied in dynamic struc-
tural applications. However, with the same data, di�erent people �nd di�erent damping values. It is
problematic if damping choices are required for numerical analyses based on experimental data.

The three metrics were (i) the dynamic ampli�cation factors, (ii) the Arias modal contribution and
(iii) the enhanced reliability intervals. The role of the dynamic ampli�cation factor was to determine, for
one mode, if the excitation provided by the earthquake was signi�cant enough to give reliable damping
associated with this mode. If one were not enough ampli�ed by the excitation, its response would
be too small to be relevant. Thus, the damping ratio associated would have to be excluded from the
reliable ones. Then, the Arias modal contribution gave information on the relative contribution of each
mode. Finally, enhanced reliability intervals informed the objective function sensitivity (function to
minimise in the identi�cation technique) to the damping ratio variations. Those metrics performances
were studied on a 32-story building. Using them allowed them to identify the determined damping
ratios which were reliable or not.

1.3.2 Experimental identi�cation
This section illustrates the use of damping identi�cation methods on RC elements (1.3.2.1) or entire
structures (1.3.2.2). Furthermore, the link between damping values and structural damage is illustrated.

1.3.2.1 Experiments on structural elements
Equivalent viscous damping (EVD) models are associated with SDOF systems or modal values associated
with MDOF. Damping ratios identi�ed in this section are deduced from experimental campaigns on RC
structural elements. Di�erent identi�cation methods give damping ratio values for various element
types. The results are synthesised in table 1.3 for viscous damping and table 1.4 for hysteretic damping.

(a) Identi�cation methods Franchetti, Modena, and M. Feng (2009) performed experimental and
theoretical studies to propose a damping detection method with a quadratic damping model (eq. 1.60).

Fd = −cq.u̇|u̇| (1.60)

where Fd is the damping force and cq a coe�cient. The experimental campaign applied impulsive load-
ing on three precast prestressed RC beams with di�erent prestressed levels and used free vibrations to
determine the coe�cient cq . The choice of a quadratic damping model appeared to represent the dissi-
pated energies well and to be more sensitive to the damage level than viscous damping. The proposed
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Table 1.3: Experimental viscous damping determination on structural elements

Author Method Experiment Damping
value

Carneiro et al.
(2006) Logarithmic decrement

Pseudo-dynamic tests on RC
beams (free and forced harmonic

vibrations)
2.5%→ 5.5%

Casas and
Aparicio (1994) Logarithmic decrement Hammer-tests on RC beams (free

vibrations) 0.8%→ 3.7%

Chowdhury,
Loo, and

Fragomeni
(2000)

Logarithmic decrement
26 reinforced or partially
prestressed beams under

free-vibration tests

0.04 < δ <
0.16*

Daneshjoo and
Gharighoran

(2006)
Logarithmic decrement Free-vibration response of cracked

and uncracked beams
0.08 < δ <

0.18*

Daneshjoo and
Gharighoran

(2008)
Logarithmic decrement

Steady-state vibrations on RC
beams and static loading at

mid-span
1.0%→ 3.0%

Franchetti,
Modena, and

M. Feng (2009)

Multi-input
multi-output curve

�tting + Hilbert
transform technique

3 precast prestressed RC beams
under free vibrations 0.1%→ 1.6%

Heitz, Richard,
et al. (2017)

Identi�cation of an
updated SDOF model

for each mode

Quasi-static and dynamic tests
(shake table) on RC beams 0.0%→ 5.0%

Sakamoto et al.
(2006) Logarithmic decrement

Pillar-shaped unreinforced
low-strength concrete specimens

tested on a shake table
2.0%→ 5.5%

L. Su et al. (2019) Identi�cation of an
exponential damping

Three groups (depending on
reinforcement) of RC cantilever
beams under dynamic loadings

0.5%→ 8.0%

* The logarithmic decrement is related to the damping ratio by δ = 2πξ√
1− ξ2

. So, Chowdhury, Loo,

and Fragomeni (2000) identi�cation is equivalent to a damping ratio between 0.02% and 0.4%. For
Daneshjoo and Gharighoran (2006) identi�cation, the equivalence gives a damping ratio between 0.01%
and 0.52%.

method could be used for quality control of precast beams by performing free vibration tests. However,
it is still required to apply the method to existing structures by considering ambient vibrations because
it is impossible to produce free vibrations on such structures.



1.3 Damping identi�cation and related damage indices 37

Table 1.4: Experimental hysteretic damping determination on structural elements

Author Method Example Damping
value

Carneiro et al.
(2006) Ratio of energies

Pseudo-dynamic tests on RC
beams (free and forced harmonic

vibrations)
2.5%→ 5.5%

Crambuer,
Richard, et al.

(2012)

Ratio of energies
(half-cycle)

Quasi-static three-point bending
tests on RC uncracked or

pre-cracked beams

1.0%→ 3.0%
for F < 40kN

and > 7%
otherwise

Elmenshawi and
Brown (2010) Ratio of energies RC beams with high concrete

strength 2.0%→ 20%

Heitz, Giry,
et al. (2017) Jacobsen’s area Quasi-static and dynamic tests

(shake table) on RC beams 0.0%→ 5.0%

Vintzileou,
T. Tassios, and
Chronopoulos

(2007)

Ratio of energies
37 full-scale con�ned columns
submitted to cyclic shear and

bending under constant axial load
∼ 20%

Another idea was developed by L. Su et al. (2019), based on Biot works about convolution damping
models. They studied a particular case of such models: the exponential one, characterised by the kernel
matrix function G(t) in equation (1.61):

G(t) =
nm∑

i=1
Ci · τi exp (− τit) (1.61)

where Ci is the damping coe�cient matrix and τi a relaxation factor, associated with dissipative mech-
anism i, and nm the number of di�erent damping mechanisms. Dynamic tests on RC cantilever beams
with various reinforcement ratios were realised to obtain frequency response functions. The beams
were grouped according to steel bar diameters and reinforcement ratios. Obtained damping ratios with
hammer tests were close to theoretical values, whatever reinforcement ratios. So, an important conclu-
sion was that the reinforcement ratio had no impact on the damping properties of undamaged struc-
tures. Then, numerical analyses were performed with the proposed exponential damping model and RD.
Despite some errors compared to experimental data, the proposed damping model appeared to better
represent the energy dissipation capacity of RC structures than RD, especially for high order modes. So
this model better characterises the damping property of RC structures.

Earthquake engineering requires to characterise properly dynamic structural properties. In par-
ticular, the damping, which characterises the dissipated energy during earthquakes. Carneiro et al.
(2006) carried out an experimental campaign on RC beams under mechanical vibrations, using a pseudo-
dynamic method. One of these test advantages was the lower cost compared with dynamic tests. Also,
all intermediate structure states could be controlled. The dynamic model considered was a SDOF system.
Two di�erent excitations were applied: free and forced harmonic vibrations (more damageable if the har-
monic frequency was close to the beam resonance). Thus, the damping e�ect on steady-state was evalu-
ated. Measured results led to the drawing of hysteresis loops, which were considered the consequence of
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Figure 1.16: Determination of the equivalent
viscous damping for a half-cycle (Jacobsen, 1960)

dynamic hysteresis. Even if pseudo-dynamic
tests do not give a dynamic response, translat-
ing cyclic dissipation into viscous damping is a
classical approach. So, the damping ratio is evalu-
ated by equation (1.62) �rst proposed by Jacobsen
(1960):

ξeq = 1
4π

Ediss
Es

= 1
4π

Ediss
1/2.k0.u2

cm

(1.62)

as presented in �gure 1.16, whereEdiss is the dis-
sipated energy,Es the strain energy, k0 the initial
sti�ness and Fm and ucm respectively the maxi-
mal force and displacement of the studied cycle.
As a conclusion, Carneiro et al. (2006) observed
that the damping ratio decreased when the con-
crete strength increased and when the reinforce-
ment ratio increased.

(b) Link between damping and damage
To further study dynamic structural properties,
some papers focus on the link between damage
and damping because damage in�uences those dynamic properties. The �rst parameter, linked to damp-
ing, studied was the dissipated energy. The energy dissipation capacity is an essential property in the
seismic performances of structures. The dissipation of input energy is required to avoid structural fail-
ure under earthquakes. Spencer (1969) focused on prestressed structures: nine prestressed concrete
members were tested under cyclic loadings by applying end rotations to the beams. The two parame-
ters evaluated from the experimental data were the sti�ness and the energy dissipated during one cycle
of steady-state loading. In conclusion, both studied properties depended on the loading but not on the
frequency or number of cycles applied. For the damping energy, values between 0 and 1.25 kip.in were
obtained, corresponding approximately to 0 to 140 J. In addition, the damping was low for uncracked
members. So, the �rst earthquake that would occur to a prestressed structure would signi�cantly impact
its properties.
Nmai and Darwin (1984) studied the performances of RC beams using an energy dissipation index.
Structural parameters considered were (i) the reinforcement ratio, (ii) the nominal stirrup capacity, (iii)
the stirrup spacing and (iv) the bottom over top reinforcement ratio. The analyses of experimental
results and a comparison with four other studies led to the following conclusions. The dissipated energy
could be increased by (i) reducing the stirrup spacing, (ii) increasing the bottom over top reinforcement
ratio, or (iii) decreasing the displacement-ductility. Similarly, Dhakal and Maekawa (2001) explained
that the seismic response of RC columns varied a lot with the reinforcement scheme and the axial load.
That is why it was not easy to de�ne and predict the post-peak response of such columns.

Then, experiments were performed on RC elements to discuss structure safety. For example, Casas
and Aparicio (1994) paper focused on methods allowing the inspection and monitoring of RC struc-
tures as bridges by using damping properties. The proposed methodology was based on acceleration
measurements because they were easier to record than displacements. Experiments on beams were per-
formed with di�erent cracking patterns. Impact hammers were applied on beams, and free vibrations
were recorded. The method is well-performed in identifying beam damage state in terms of extension,
number of cracks, and damage localisation. Damping varied from 0.8% to 3.7%. However, most im-
portantly, it was shown that damping was not dependent on initial sti�ness, and no direct relation was
found between damping ratio and damage.



1.3 Damping identi�cation and related damage indices 39

Following the same objective, Sakamoto et al. (2006) focused on evaluating dam safety after strong
earthquakes. Tests on a shake table were performed on pillar-shaped unreinforced low-strength con-
crete specimens. E�ects of cracks on the dynamic behaviour of concrete structure elements were de-
termined. In conclusion, the �rst resonant frequency and damping ratio were well in�uenced by the
tensile cracks. The damping ratio varied from 2% for a tensile fracture under 10% to 5.5% for 90%
of tensile fracture. On the contrary to Casas and Aparicio (1994) analysis, Sakamoto et al. (2006) work
observed that the damping ratio could be used as a damage index.

More recently, other papers focused on the correction between damage and damping. Daneshjoo
and Gharighoran (2008) worked on beams experimentally submitted to dynamic cyclic loadings with
a vibrating motor and eccentric masses. A concentrated load was added at mid-span, increasing the
severity of cracks. The damping ratio was determined using the logarithmic decrement method applied
to free vibration responses. In terms of damping, it was observed that the damping was viscous and
frictional in the cracked zone and that the frictional part increased with damage. The linear decrease of
the dynamic response, corresponding to frictional damping, implied that damping due to micro-cracks
was more important than the viscous one. Finally, the damping ratio appeared to increase with the
degree of cracks and the dynamic load, which was also demonstrated by Franchetti, Modena, and M.
Feng (2009). Damping ratio and damage state were so well correlated.
In the same idea, Crambuer, Richard, et al. (2012) work consisted in studying three-point bending tests
on eight beams with di�erent longitudinal reinforcement ratios. To consider loading history, some
beams were tested without any damaged loading ("uncracked" characteristics), and the other ones were
pre-loaded to study the characteristics of "precracked" beams. Particular attention was given to crack
evolution and prior damage e�ects on damping ratio evolution. The image correlation technique was
used to observe beam deformations. Then, for each loading cycle, an equivalent damping ratio and
damage indices were computed to propose a correlation between the energy dissipation and the nonlin-
ear material behaviour. The selected method to de�ne the damping ratio was presented in �gure 1.16.
For a load under 40 kN corresponding to 60% of the beam capacity, damping ratio values were mostly
located between 1% and 3%. They also highlighted the in�uence of loading history and damage state
on damping.
The same conclusion was obtained by Vintzileou, T. Tassios, and Chronopoulos (2007), whose aim was
to validate Eurocode 8 (NF EN 1998-1, 2005) recommendations for con�ning reinforcement of columns.
Thirty-seven full-scale columns subjected to large cyclic displacements under constant axial loads were
studied and showed the link between hysteretic damping and the force response degradation. For a
force response degradation under 20%, damping ratios deduced stayed around 20%.

(c) Remarks on other concrete materials Analyses are performed on plain concrete to under-
stand the damping behaviour of RC material. Jones and Welch (1967) focused on the evolution of the
damping ratio concerning the plain concrete formulation. The damping ratio appeared to be higher in
sand-cement mortars than in concrete and lean concrete than concrete with more signi�cant cement
content. It was also observed that the damping ratio depended on the quantity of liquid water in the
concrete and on the boundaries between paste and aggregate. The paper aim was also to evaluate the
dynamic Young’s modulus of the elements, but no unique relationship between that value and the damp-
ing ratio was found. Non-structural materials have also been studied like the polymer concrete in Orak
(2000) paper. With free vibration experiments, it was shown that the same damping ratios were obtained
for di�erent �ller ratios.

1.3.2.2 Experiments on entire structure models
Studying damping in structural elements is a way to understand phenomena and propose recommen-
dations. However, focusing on the entire structure damping behaviour is also a way to evaluate the
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accuracy of design models and improve those models. Table 1.5 synthesises analyses presented in this
section about the evaluation of damping ratios on global RC structures.

Table 1.5: Experimental damping determination on structure models

Author Method Example Damping
value

Z. Cao et al.
(2020) Logarithmic decrement

Concrete gravity dam with 15
earthquake records (free

vibrations)
2.0%→ 6.0%

Celebi et al.
(2020)

Subspace state-space
system identi�cation

73-story Wilshire Grand in
downtown Los Angeles under
Mw7.1 July 5, 2019, earthquake

0.49%→ 3.55%
(3 modes and 3

directions)

M. Q. Feng
(2007)

Random decrement
signature technique

Bridge model under white-noise
signal (shake table) 0.5%→ 6.5%

Frizzarin et al.
(2008)

Random decrement
signature technique

Large-scale concrete bridge
model under seismic excitations

(shake table)
1.0%→ 8.0%

Miranda and
Cruz (2020)

Veletsos and Meek
(MDOF system)

150 instrumented buildings in
California 1.0%→ 20%

Petrini et al.
(2008) Ratio of energies Cyclic and dynamic tests on

scaled bridge piers 3.0%→ 30%

Salane and
Baldwin (1990)

Modal damping ratio
based on mode shapes

Single-span laboratory bridge
model and full-scale three-span

highway bridge
0.8%→ 3.0%

Tinawi et al.
(2000) Logarithmic decrement 4 3.4m-high plain concrete

gravity dam models (shake table)

1% (uncracked)
→ 23%

(cracked)

(a) Damping identi�cationmethods M. Q. Feng (2007) studied a time-domain method using non-
linear damping as a structural damage index. The signi�cant advantage of the proposed method was
that it did not require knowledge about the undamaged structure. The idea was to decouple damping
between a viscous part and a friction one. In particular, free vibration tests were well suited to evaluate
the friction damping because the linear decay obtained was linked with structural damage. However,
free vibrations were not easy to apply on in-situ structures. So, the proposed methodology was in-
stead based on the random decrement technique because it gave a free vibration signal from ambient
vibrations.

Then, Z. Cao et al. (2020) proposed a method to assess damping ratios with earthquake records. The
idea was to consider data at the structure top and decompose them between a free vibration part and
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a forced vibration one. Then the damping ratio was computed with the logarithmic decrement method
on identi�ed free vibrations.

Finally, damping ratios could be identi�ed from instrumented buildings what was studied by Celebi
et al. (2020) and Miranda and Cruz (2020). Celebi et al. (2020) proposed to use an input-output system
identi�cation method to identify the modal properties of the 73-story Wilshire Grand in downtown Los
Angeles during the July 5, 2019, earthquake. The building was not damaged, and damping ratios for
three modes and three directions were computed. The analysis di�culty was that the damping ratios
obtained with the proposed methods di�ered from those obtained from ambient vibrations. So, it was
not easy to evaluate the performances from one or another method. Then, Miranda and Cruz (2020)
studied the dependence of damping ratio on fundamental periods because, in design codes, that e�ect
was not considered. Damping ratios of 150 instrumented buildings were evaluated with the Veletsos
and Meek method.

(b) Identi�ed damping M. Q. Feng (2007) experimentally tested a bridge model on a shake table.
Computed damping ratios ranged between 0.5% and 6.5%. It was observed that, when damage grew,
friction damping also increased to the detriment of viscous one. Petrini et al. (2008) also studied scaled
bridge piers under (i) a cyclic test allowing the hysteretic damping model calibration and (ii) a dynamic
test to compare with the numerical analyses. The aim of Petrini et al. (2008) was to determine the most
appropriate damping model for inelastic time history analyses (ITHA). Larger damping ratios were
obtained (between 3% and 30%). Then, Z. Cao et al. (2020) studied a concrete gravity dam with �fteen
earthquake records. Similar damping ratios than M. Q. Feng (2007) were obtained (between 2% and 6%).
The reservoir water in�uence was also evaluated. When the water level increased from 60 m to 100 m,
the damping ratio increased 1% more. In Miranda and Cruz (2020), damping ratios varying between 1%
and 20% were again obtained. An interesting conclusion deduced was that the soil-structure interaction
induced the dependency of damping ratios on fundamental periods and, so, on building height. An
empirical relationship in equation (1.63) was thus obtained between the e�ective damping ratio and the
building height H :

ξ = 0.21×H−0.47 (1.63)

Table 1.5 shows that for the undamaged structure under dynamic vibrations, damping ratios ap-
proximately between 0.5% and 8% are globally obtained. So the value of 5% generally used in dynamic
analyses seems to be a mean of identi�ed damping ratios. However, when nonlinearities occur, the
damping ratio can increase. Also, for higher modes, larger damping ratios can be reached. Moreover,
cyclic tests seem to overestimate damping ratios.

(c) Link between damage and dissipations in structures As studied for structural elements, the
link between damage and dissipations is of interest in studying structures. However, damage identi�ca-
tion often requires the knowledge of undamaged structure properties, what is a constraining condition
for existing structures (Franchetti, Modena, and M. Feng, 2009) and strategies to overcome this are re-
quired.

Turner and Pretlove (1988), Salane and Baldwin (1990) and Frizzarin et al. (2008) studied bridges.
First, Turner and Pretlove (1988) performed an experimental campaign to evaluate the capacity of the
random tra�c loading to su�ciently excite natural structural frequencies. It was shown that the natural
frequencies were, in this case, better than mode shapes to estimate bridge degradations. The experi-
mental study was performed on a beam model with moving loads representing the random tra�c. The
e�ect of damping was mainly investigated. Natural frequencies were more identi�able when damping
decreased, and higher-order natural frequencies could be determined.
Then, Salane and Baldwin (1990) also carried out an experimental study on two structures: (i) a single-
span laboratory bridge model and (ii) a full-scale three-span highway bridge. They were submitted to (i)



42 Chapter 1. Energy dissipation mechanisms and damping models

transient excitations, (ii) steady-state vibrations, and (iii) acoustic emission. Remarkably, they focused
on steady-state vibrations to evaluate modal sti�ness and damping. A correlation was found between
the evolution of modal sti�ness, mode shapes and damping with the deterioration of the structure.
However, contrary to Turner and Pretlove (1988), the mode shapes were, here, the best deterioration
indicators. Because when changes in modal damping or resonant frequencies occurred, it indicated that
structure characteristics were submitted to modi�cations. However, it was impossible to di�erentiate
which part of the structure evolved with these last two modal properties.
Finally, sensor-based structural health monitoring can be performed to detect the damage state of in-
situ structures quickly. Frizzarin et al. (2008) proposed a time-domain damage detection method with
nonlinear damping. Damping was used as a damage index and was determined with dynamic vibration
responses. The method did not require knowledge of undamaged structural properties. Seismic damage
was applied on a large-scale concrete bridge model with a shake table. Then, the random decrement
signature technique on ambient vibrations evaluated damping. In conclusion, a strong correlation was
found between the damage state of the beam, equivalent to the structural sti�ness evolution, and the
nonlinear damping. So, damping appeared to be a suitable damage index.

Then, dams are also structures of interest. Because few dams around the world were already sub-
mitted to strong earthquakes, little data exists about dams resistance under strong seismic excitations.
Therefore, Tinawi et al. (2000) aim was to evaluate dam dynamic characteristics from the perspective
of dam safety improvement. Four 3.4m-high plain concrete gravity dam models were tested on a shake
table. The free vibration decay technique led to viscous damping values ranging from 1% for uncracked
structures to 23% for cracked ones. The high values obtained for cracked dams were not an intrinsic
property of the material but were mainly a result of crack evolution. That is why a parametric study
should be performed to evaluate the viscous damping in�uence on crack propagation.

Finally, these papers show that the damping can be linked with the damage state. However, they
disagree on the best modal properties to identify damage depending on the loading or the type of struc-
ture.

1.3.3 Identi�ed damping models
Finally, in addition to identifying damping ratios, several works further identify damping models as
functions of di�erent structural parameters. Identi�cations are based either on experimental data (1.3.3.1)
or on numerical strategies (1.3.3.2).

1.3.3.1 Identi�cation based on experimental data
Because damping mechanisms are challenging to de�ne and are not well understood, no generalised
mathematical formulae of damping can be developed (Daneshjoo and Gharighoran, 2006). So, exper-
imental analyses lead to identifying damping models. The identi�ed damping ratio results of studied
papers are synthesised in tables 1.3 and 1.4.

(a) Damping as a function of ductility An introduction of equivalent viscous damping (EVD)
was discussed in section 1.2.1. It is a concept �rst proposed by Jacobsen (1960) that can be synthesised
in equation (1.64) and related to �gure 1.16:

ξeq = ξel + Ediss
4π.Es

= ξel + 1
π

Ahalf−loop
Fm.ucm

(1.64)

where ξeq is the equivalent viscous damping ratio (EVDR), ξel the elastic damping ratio and Ahalf−loop
the dissipated energy for one half-cycle. Numerous empirical models have been proposed in the lit-
erature. Table 1.6 summarises those models performed in Rodrigues et al. (2012) paper. Rodrigues et
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al. (2012) studied uniaxial and biaxial loading on columns and evaluated damping ratios with equa-
tion (1.64). Then, a comparison was performed with the di�erent models in table 1.6 depending on the
ductility µ, de�ned in equation (1.65):

µ = κ

κy
(1.65)

where κy is the displacement in tension rebar �rst yield, and sometimes on the post-yield sti�ness co-
e�cient rk . Results should be carefully compared because each model appeared to be calibrated for
one particular type of structural element. Rosenblueth and Herrera (1964) focused on purely hysteretic
damping to characterise slightly nonlinear materials and structures. Then, Gulkan and Sozen (1974)
explained that the inelastic response could be interpreted as the elastic response of a �ctitious linear
structure with the sti�ness and the dissipated energy modelled by functions of the maximal displace-
ment. Iwan and Gates (1979) studied six hysteretic systems under twelve earthquakes to deduce an
e�ective linear period and an e�ective damping ratio. Later, Kowalsky, Priestley, and MacRae (1995)
proposed a procedure for displacement-based seismic design for SDOF systems based on the analy-
ses of cantilever bridge columns. Stojadinovic and Thewalt (1996) proposed two hysteretic models to
represent the experimental behaviour of RC structures. They used the least-square method to obtain
the EVD model presented. They assumed that the EVDR stayed around 5% during pre-yield load cy-
cles, and it grew to 25% for the displacement equivalent to the ultimate structure capacity. Priestley
and Grant (2005) compared di�erent damping formulations and deduced a relationship between the
elastic viscous damping value to use in time-history analyses and the constant value applied in direct
displacement-based design. Then, Priestley, Calvi, and Kowalsky (2007) focused on di�erent research
projects to propose a viscous damping formulation as presented in equation (1.66):

ξeq = 0.05 +D

[
µ− 1
µ.π

]
(1.66)

where D ∈ [0.1, 0.7] depending on hysteresis rules and that Rodrigues et al. (2012) considered equal to
0.565 in their paper. The same form of the model was proposed by Dwairi, Kowalsky, and Nau (2007)
without elastic viscous damping. They demonstrated that the proposed model led to lower displacement
prediction error based on multi-span bridges. Finally, H. Q. Luu et al. (2011) and H. Luu et al. (2013) works
had been discussed in paragraph 1.3.2.1(a).

Similar studies were performed to evaluate the characteristics of particular concrete, like high strength
concrete in Elmenshawi and Brown (2010). An experimental campaign was carried out on beams with
concrete strengths of 30, 70 and 150 MPa. The in�uence on damping characteristics of (i) the bottom
over top reinforcement ratio, (ii) the transverse reinforcement ratio, and (iii) the shear span to depth
ratio was also studied. Manufactured specimens represented an exterior beam-column connection in a
ductile moment-resisting frame. Cyclic displacements leading to signi�cant elastic damage were applied
to the specimens. Dissipated energy and equivalent viscous damping ratios (eq. 1.62) were connected
with displacement ductility. Three cycles of the same amplitude were always performed to stabilise
the damage state, but the damping ratio through the �rst cycle appeared higher than the other ones
because more cracks opened during the �rst cycle. From experimental data, formulae were proposed to
de�ne the link between dissipated energy (eq. 1.67) and the equivalent viscous damping ratio (eq. 1.68
for longitudinal reinforcement symmetric beams and eq. 1.69 for asymmetric beams) with the ductility:

Ediss,f
Ediss,y

= µ (3.43 . µ− 4.1) (1.67)

where Ediss,y and Ediss,f are the energies dissipated respectively at �rst yield and nominal failure.

ξeq = 7.23 + 6.1 ln (µ) (1.68)
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ξeq = 1.38 + µ (3.33− 0.43 . µ) (1.69)

It was thus demonstrated that (i) if the concrete strength increased, the hysteretic energy capacity of the
beam could be improved. However, that conclusion had to be carefully considered because of all other
parameters that had a non-negligible in�uence. (ii) The hysteretic energy capacity was improved by
reducing shear demand and increasing the bottom over top reinforcement ratio. (iii) The bottom rein-
forcements managed the crack opening, strongly impacting them. (iv) The dissipated energy decreased
when the damage level increased. (v) The EVDR appeared to be constant before reinforcement yielding,
and the identi�ed values were 7.23% for symmetric beams and 4.27% for asymmetric beams. Finally,
(vi) damping ratio values obtained ranged from 2% to 20%, a broad variation compared to other papers.

(b) Damping as a function of residual de�ection Based on the lack of methods and codes given
an evaluation of the damping capacity for concrete members at the design stage, Salzmann (2003) used
an experimental campaign to propose a damping capacity formula for reinforced and prestressed con-
crete beams. Previously, Penzien (1964) had already demonstrated that the damping ratio was dependent
on (i) the loading history, (ii) the displacement demand and (iii) the cracking state. It was correlated with
the prestressed properties. Salzmann (2003) focused on forty-one full- and half-scale beams divided into
two groups to study the loading history in�uence on structural damping properties. Static load tests
were performed along with hammer tests to evaluate damping properties. The logarithmic decrement
was chosen to evaluate damping ratios. However, the classical method presented bias due to its as-
sumptions: the viscous damping and the exponentially decreased amplitude response. So, an enhanced
logarithmic decrement method was proposed to ensure consistency and accuracy: the "decay curve
method". Using the experimental data, the logarithmic decrement proposed for "untested" reinforced
beams δundamaged,RC is presented in equation (1.70):

δundamaged,RC = 0.223×
(
ρt
st

+ ρc
sc

)0.19
(1.70)

δundamaged,pres = 1.4× 10−10 × P.e2
P − 9.4× 10−6 × P.eP + 0.2 (1.71)

where P is the amount of prestressed force and eP its eccentricity. Finally, the total logarithmic decre-
ment δ is given by equation (1.72):

δ = βfl.∆r + δundamaged (1.72)

where ∆r is the residual de�ection and βfl = 0.0007× e0.018.fcm . Equations for the residual de�ection
were also proposed. All those formulae were validated with the experimental database but also with
Chowdhury, Loo, and Fragomeni (2000) tests.

Furthermore, Daneshjoo and Gharighoran (2006) interested in damping parameters for bridge beam-
slabs. The in�uence of residual de�ection and damage state on damping was investigated. The beam
crack development led to higher damping ratios, which meant more energy was dissipated when more
cracks were present. Damping equations were �nally proposed. The cracked logarithmic decrement δcr
is given in equation (1.73):

δcr = 12.193× (α∆r
)0.1496 (1.73)

where α∆r
is the ratio of the residual de�ection, for the unloaded beam at any stage of the experiment,

over the elastic de�ection. A comparison of damping ratios obtained with the above formulae was made
with the formulae of Salzmann (2003) in equations (1.70) and (1.72). The conclusion deduced was that
the two formulae gave close results for uncracked beams. However, the di�erence exceeded 15% for
cracked beams, which was not negligible.
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(c) Damping as a function of crack opening The dynamic response of a structure is particularly
a function of damping. So, the aim of Chowdhury, Loo, and Fragomeni (2000) was to evaluate the link
between cracking behaviour and damping characteristics of reinforced and partially prestressed beams
from full-size tests on 26 beams. Free vibration tests were performed, and the logarithmic decrement
method was used to compute damping ratios. Empirical formulae to predict the damping logarithmic
decrement δ were proposed for reinforced (eq. 1.74) and partially prestressed (eq. 1.75) beams, based on
the residual crack width wr , a function of the instantaneous average crack width:

δ = 0.075× 100.205.wr (1.74)

δ = 0.070× 100.220.wr (1.75)
Logarithmic decrement values obtained experimentally and from the above formulae ranged from 0.04
to 0.16. The di�erences between experimental data and numerical prediction were inferior to 30%.

(d) Damping as a function of damage indices Energy dissipations should be accurately quan-
ti�ed to predict the response of RC structures under earthquake excitation. Following this objective,
Heitz, Richard, et al. (2017) proposed a damping modelling strategy using physical-motivated evolution
laws of damping ratios. Quasi-static and dynamic tests were performed on RC beams (more details
in section 1.4). A constitutive model was �rst calibrated on experimental data. In addition, dynamic
structural properties were evolving with damage state d, in the idea of equation (1.76) for the damping
ratio:

ξeq(d) = ξel + ξhyst.d (1.76)
Then, Heitz, Giry, et al. (2017) work focused on uncoupling viscous and hysteretic damping ξhyst. The
same experimental campaign was used to develop a numerical model whose parameters, representing
physical phenomena, were identi�ed from experimental data. This model was then used to perform a
numerical study, whose goal was to evaluate the in�uence of parameters on damping ratios and energy
dissipations. It appeared that quasi-static and dynamic tests gave close damping ratios, whose values
were comprised between 0% and 5%. To go further, a damping ratio model depending on a damage index
and the displacement demand was proposed in Heitz, Giry, et al. (2019) and calibrated with a numerical
parametric study. The aim was to propose a model that dissipated the right amount of energy. The
evolution of two parameters was characterised: (i) a degradation index de�ned as Γ = γm

γy
with γm the

maximal historic curvature measured at mid-span and γy the theoretical �rst steel yielding curvature,
and (ii) the displacement demand de�ned as the mid-span curvature γ. A correlation was deduced
between the damping ratio and the two parameters in equation (1.77):

ξeq = C̄ × f(Γ)g(γ) (1.77)

where C̄ is a normalised coe�cient. The main conclusion was that the obtained damping ratio surface
could be used as a chart for a predictive choice of damping ratio. Thus, considering damping ratio
evolution in nonlinear time-history analyses could be possible.

1.3.3.2 Identi�cation with numerical strategies
The last paper discussed in the previous section Heitz, Giry, et al. (2019) linked with this �nal section
where damping models are identi�ed with numerical strategies. Indeed, Heitz, Giry, et al. (2019) realised
a numerical parametric study to obtain the relation in equation (1.77). Nevertheless, numerical analyses
were associated with an experimental-based calibration of a complex RC constitutive model.

Crambuer (2013) strategy was reversed. The aim was to propose an updated damping model to dissi-
pate the right amount of energy without requiring a complex constitutive model. The initial hypothesis
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was the damping ratio decomposition between an elastic part and a hysteretic one. It was demon-
strated that the damping ratio due to concrete cracking depended on damage index, loading intensity
and crack surface erosion. That is why three damping models were studied: (i) ξhyst = ξd depending
only on the damage, (ii) ξhyst = ξd.ΓU depending on the damage and crack surface erosion, and (iii)
ξhyst = ξD.ΓI depending on the damage and loading intensity. A simple constitutive model (only dam-
age phenomenon) was considered. The damping evolutions were identi�ed by comparing dissipated
energy with a more complex constitutive model considering di�erent dissipative phenomena (damage,
friction, unilateral e�ect). For the �rst model, an evaluation of dissipated energy was performed for
each cycle, and the damping ratio was identi�ed with equation (1.78):

ξd = arg min
(∣∣∣ERichard 2

diss − 2π
√
kd.m× ξ.ωd.

√
1− ξ2 × u2

c

∣∣∣
)

(1.78)

where ERichard 2
diss is the dissipated energy with the complex constitutive model, kd the damaged sti�ness,

ωd the eigenfrequency at considered damage level and uc the cycle amplitude. Then, for the second
damping model, an erosion criterion was de�ned in equation (1.79) because the more cracks opened,
the less they were dissipating energy. ΓU evolved from 1 for a new crack to 0 for a crack completely
eroded.

ΓU = 1− mc,d

mc,m
(1.79)

wheremc,d is the number of cycles since the last damageable one andmc,m a maximal number of cycles
depending on the structure. As a remark, it was indicated that the notion of "cycle" was challenging to
de�ne for seismic loading. So, it was considered that a cycle was beginning when displacements went
from positive to negative values. Finally, for the third model, an identi�cation similar to the �rst one was
used given a parameter ΓI varying from 0 for a cycle of null intensity to 1 for a cycle with an intensity
equal to the cracking cycle. The RC columns and error computations study showed that the third model
was the best. In conclusion, if the damping ratio could be accurately updated, it was possible to develop
simpli�ed models. Those models represented the global behaviour of structural elements subjected to
bending without considering intrinsically local dissipative phenomena.



48 Chapter 1. Energy dissipation mechanisms and damping models

1.4 Experimental campaign and data
Damping identi�cation (section 1.3) is generally based on experimental data (tables 1.3, 1.4 1.5 and 1.6).
However, damping models proposed in section 1.2 are more often studied numerically. Most compar-
isons in table 1.2 evaluate damping matrix formulations without relying on experimental data. Works
developed in the following chapters will focus on those two research topics. The experimental campaign
presented here will be a guideline: numerical models will be validated through the experimental data,
and a higher understanding of physical phenomena will be possible.

In his work Heitz (2017), Heitz, Richard, et al. (2017), and Heitz, Giry, et al. (2019), T. Heitz performed
an experimental campaign on RC beams at the French Alternative Energies and Atomic Energy Com-
mission (CEA) on the AZALÉE shaking table. The campaign aimed to perform dynamic and quasi-static
tests to propose data for evaluating seismic energy dissipations depending on structural, material and
input excitation characteristics. In the literature, papers studying dissipation assessment in RC elements
with quasi-static or dynamic tests exist. Nevertheless, comparisons of both tests on the same elements
and setup facilities are lacking. It was what motivated the experimental campaign. The other study ob-
jective was the coupling between modes to characterise the fundamental mode damage e�ect on other
modes and the combination of modes excited at the same time for dissipation analyses.6

1.4.1 Reinforced concrete specimens and setup
1.4.1.1 Geometry
Studied elements were RC beams of length 6 m and section 0.2 × 0.4 m2. The length was chosen to
match the shaking table dimensions. To avoid the beam cracking under its weight and to be able to
excite the beam �rst modes with the facilities, the beam was tested horizontally to its weak axis.

Four di�erent geometries were studied for the rebars: (i) 4 high-adherence (HA) rebars of diameter
20 mm given a reinforcement ratio of 1.57% and a bond surface of 25.1 cm2/m, (ii) 8 HA rebars of diam-
eter 16 mm given a reinforcement ratio of 2.01% and a bond surface of 40.2 cm2/m, (iii) 4 HA rebars of
diameter 12 mm given a reinforcement ratio of 1.41% and a bond surface of 37.7 cm2/m and (iv) 4 round
bars of diameter 12 mm given a reinforcement ratio of 1.41% and a bond surface of 37.7 cm2/m. The
di�erent types of reinforcement allowed the investigation of three parameters: the reinforcement ratio,
the steel-concrete bond surface and the in�uence of friction between steel and concrete on dissipated
energy.

1.4.1.2 Materials

(a) Concrete Two concrete formulations, classi�ed in Eurocode 2 (NF EN 1992-1-1, 2005), were
considered: C25/30 for twenty-one beams and C45/55 for two beams. Because of the large number
of beams with the �rst formulation, concrete production was divided into A and B groups. Di�erent
normalised tests were performed to characterise concrete: (i) compressive tests on cylinders of diameter
16 cm and height 32 cm at 28 days of drying and six months of cure, (ii) cyclic compressive tests on
the same specimen types after six months of cure to evaluate dissipated energy and (iii) monotonic
three-point bending tests on 84 × 10 × 10 cm3 prisms to measure the concrete fracture energy Gf
(corresponding to the energy dissipated through initiation and propagation of cracks) and the tensile
strength. Values were over-estimated for the last property because the breaking zone was imposed
during the test (weakest link theory). The synthesis of mechanical properties for the di�erent concrete
sets is presented in table 1.7.

6All data presented in section 1.4 are extracted from (Heitz, 2017).
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Table 1.7: Concretes mechanical properties (Heitz, 2017)

Mechanical properties Concrete
Name Unit C1A* C1B* C2**

fc,28d
(1) [MPa] 35.0 29.7 45.4

fc,6m
(2) [MPa] 36.9 33.0 47.4

Ec,28d
(1) [GPa] 26.4 28.7 29.2

Ec,6m
(2) [GPa] 26.2 28.1 28.2

Ediss,6m
(2) [J] 4192 3467 4322

Gf,6m
(2) [J/m2] 84.9 80.0 81.0

ft,Gf ,6m
(2) [GPa] 2.09 2.22 2.47

* C25/30 ** C45/55
(1) At 28 days, fc,28d is the concrete strength and Ec,28d the Young’s modulus.
(2) At 6 months, fc,6m is the concrete strength, Ec,6m the Young’s modulus, Ediss,6m the en-
ergy dissipated for the loading/unloading cycle at maximal stress, Gf,6m the concrete frac-
ture energy and ft,Gf ,6m the concrete tensile strength deduced after Gf,6m measurement
tests.

(b) Steel The steel rebars were classically characterised with traction tests. The material properties
determined are presented in table 1.8.

Table 1.8: Steel mechanical properties (Heitz, 2017)

Mechanical properties Reinforcement type
Name Unit HA12 HA16 HA20 RL12

Elastic limit [MPa] 528 568 > 560(1) 468
Young’s modulus [GPa] 206 217 210(1) 218

(1) Clamping claws are not available, so values are chosen from manufacturer data.

(c) Steel-concrete bound Pull-out tests were �nally performed to characterise the steel-concrete
interface strength. Various failure modes were observed due to the di�erent concrete strengths and the
rebar diameters. Maximal adherence stress with a round rebar was around 0.2×104 MPa for a bond-slip
of 1 mm, while maximal adherence stresses between 1.5 × 104 MPa and 2.3 × 104 MPa were obtained
for ribbed rebars with bond slips at maximal stresses between 2.2 mm and 4.5 mm. Result variations
were signi�cant, and no general conclusions were deduced regarding concrete or steel characteristic
in�uences.

1.4.2 Experimental setup
Figure 1.17 presents a 3D view of the experimental setup in the case of dynamic tests.
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1.4.2.1 Beam supports

Figure 1.17: 3D view of the dynamic experimental
setup (Heitz, 2017) - beam length L = 6 m and

beam section S = 0.2× 0.4 m2

(a) End supports For the boundary condi-
tions, the objective was to resist only horizontal
loading, to avoid the appearance of resisting mo-
ments at beams ends, and stay elastic. The sup-
port was inspired by La Borderie (1991) and was
composed of two clamping frames and two steel
blades. The two blades were designed with a nu-
merical study to resist a design force of 45 kN and
a design rotation around the z-axis of 6◦. The
supports (�g. 1.17) were clamped on the beam and
�xed on the black components positioned next
to the beam because of shaking table dimensions
(6 m × 6 m for a beam length of 6 m). So, the ef-
fective beam length became 5.90 m.

(b) Additional masses Additional masses
of 310 kg were added at beam quarter-spans to adapt the beam modal properties to available facilities.
In addition, to avoid cracks to opening due to self-weight loading, intermediate supports were placed
under the additional masses. Those supports were resting on air cushion devices, which cancelled fric-
tion with the table. The additional masses were clamped on the beam and relied on the intermediate
supports (orange pieces in �gure 1.17).

1.4.2.2 Sensors
Numerous sensors were positioned all along the beam, as presented in �gure 1.18 with their references
displayed next to each sensor.

AXP1 AXP2 AXP3 AXP4 AXP5 AXP6 AXP7 AXP8 AXP9

AXP3B AXP5B AXP7B

RZ1 RZ3 RZ5 RZ7 RZ9

DX3 DX4 DX5 DX6 DX7FX1 FX9

5 cm
78.8 cm

152.5 cm
226.3 cm

300 cm

z

y

Blade system
rotation axis

Blade system
rotation axisAir cushions Air cushions

Gyrometers

6-axis load cells

Displacement wire-sensors
Accelerometers

Figure 1.18: Sensor positions (Heitz, 2017)

Displacement For the displacement measurements, three systems were used. Only in the case of
quasi-static tests, LVDT (Linear Variable Di�erential Transformer) sensors were associated with
both actuators (DXV3 and DXV7 but not represented in �gure 1.18). Then, �ve wire’s sensors
(DX3 to DX7) were used for dynamic tests. For all tests, a Videometric® system allowed image
correlation and to deduce the beam �bre mean displacements.

Acceleration Accelerometers (AXP1 to AXP9) were �xed above the beam for the acceleration mea-
surements. Some of them were mounted alone, given accelerations in one direction only. The
other ones were mounted by a group of three to measure accelerations in the three directions.
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Rotational velocity Gyrometers (RZ1 to RZ9) were used to measure the vertical rotational velocities
around the bending direction.

Force Two 6-axis load cells (FX1 to FX9) were positioned at beam ends. They were �xed between the
beam and support columns. They allowed the measurement of x-axis loads and the experimental
setup validation (no vertical load had to be developed). Finally, they could be used to quantify
unintended forces through supports, if required. Then, only for quasi-static tests, two one-axial
load cells (not represented in �gure 1.18) were added to actuators to evaluate the loading forces.

Strain Strain gauges were used to validate the elastic behaviour of steel blades.

1.4.3 Tests and experimental results
Three types of tests were performed on the beams: hammer shock tests (section 1.4.3.1), quasi-static tests
(section 1.4.3.2) and dynamic tests (section 1.4.3.3). Beams under quasi-static tests reached damage level
that is why they were not used again for dynamic experiments. Two identical beams were constructed
to compare quasi-static and dynamic tests.

1.4.3.1 Hammer shock tests
(a) Test description Hammer shock tests were performed on all beams to evaluate the eigenfre-
quency evolutions according to di�erent damage states. The �rst three modes were characterised. Four
shocks were applied at mid-span for the �rst and third modes, symmetrical ones. For the second mode,
anti-symmetric, four shocks were applied at quarter-span. By plotting the acceleration response Fast
Fourier Transform (FFT) with the nine accelerometers and taking the four-shock average, eigenfrequen-
cies and mode shapes of the three modes were deduced. The average led to a reduction of noise in�uence
on the FFT.

(b) Results The imaginary parts of acceleration FFT responses are plotted in �gure 1.19 for the
beam HA16-C1A-1 in the initial stage. Figure 1.19a shows the response when shocks are applied at
mid-span, and the shapes of modes 1 and 3 are observable. In �gure 1.19b, shock responses at quarter-
span are plotted. Mode 1 is again excited in addition to mode 2. The three �rst eigenfrequencies can
be evaluated for each beam by studying all shock test recordings, as presented in table 1.9, still in the
initial state. The undamaged frequencies will be used to calibrate the numerical model in the following.
Then, after the �rst damageable test, a frequency decrease is particularly notable by studying shock test
responses after quasi-static tests of increasing amplitudes.

(a) Shocks at mid-span (b) Shocks at quarter-span

Figure 1.19: Imaginary part of acceleration FFT response - beam HA16-C1A-1
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Table 1.9: Eigen-frequencies obtained with hammer shock tests for undamaged beams (extracted from
Heitz (2017))

Beam type Mode 1 Mode 2 Mode 3

RL12-C1B 7.13 Hz 22.5 Hz 58.9 Hz
HA12-C1B 6.81 Hz 21.5 Hz 57.2 Hz
RL12-C2 6.84 Hz 22.0 Hz 57.7 Hz

HA12-C1A 7.14 Hz 22.5 Hz 57.8 Hz
HA16-C1A 7.11 Hz 23.1 Hz 58.2 Hz
HA20-C1A 7.16 Hz 22.6 Hz 57.6 Hz

1.4.3.2 Quasi-static tests

(a) Test description Quasi-static tests were performed on a strong �oor with two actuators (�g. 1.20).
The aim was to assess hysteretic energy for the �rst two bending vibration modes. When actuators were
acting in phase, a four-point bending test exciting the �rst beam mode was done (QSC1). The second
mode was activated when they were in opposition (QSC2). Both tests were reverse cyclic quasi-static

Figure 1.20: Quasi-static experimental setup (Heitz,
2017)

tests. Cycle amplitudes were increasing dur-
ing loading, and for each amplitude, three cy-
cles were performed to stabilise energy dissipa-
tions. The tests were carried out with a con-
stant velocity of 0.4 mm/s and displacement con-
trol (�g. 1.21a). Thanks to additional tests, the
strain rate in�uence was �nally explored (SPS1
and SPS2).

(b) Results Figure 1.21b presents the load-
displace- ment curve obtained with the beam
HA16-C1A-1. Displacements were measured at
beam mid-span and loads at supports with load
cells. The beam capacity curves were deduced
from the load-displacement responses. Then, the
concrete strength and rebar pattern in�uences
could be studied by comparing those capacity
curves (�g. 1.22 (Heitz, 2017)). The study conclu-
sions were: (i) the concrete strength did not sig-
ni�cantly impact the capacity curve, maybe be-
cause both materials were not distinct enough,
(ii) the increase of rebar speci�c surface increased
the post-yield sti�ness, and (iii) using round re-
bars or HA steel reinforcements gave similar responses because of the lack of con�nement. Then, the
beams submitted to QSC2 tests exhibited an apparent sti�ness eight times larger than with QSC1 tests.

Energetic analyses were also performed on load-displacement curves. First, three phenomena were
observed (�g. 1.21b): (i) the sti�ness loss characterising essentially the crack openings, (ii) the hysteresis
cycles due especially to crack surface friction and bond-slip, and (iii) the pinching e�ect, which has been
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Figure 1.21: QSC1 test on the beam HA16-C1A-1

Figure 1.22: Capacity curves for di�erent beams (Heitz, 2017)

a phenomenon still poorly understood. An updated Jacobsen’s area method was applied to evaluate
dissipated and stored energies in addition to the damping ratio for each cycle amplitude. The evolution
of those three properties was thus obtained as functions of the cyclic amplitude uc. Equation (1.80), for
example, give the equivalent viscous damping ratio ξeq evolution:

ξeq = 9.43× 10−3 + 0.136× u−1
c (1.80)

Hence, it was demonstrated that the EVDR was dependent not only on ductility but also on cyclic
amplitude. In the SPS1 and SPS2 tests, the EVDR evolution through actuator velocity va was assessed.
A linear trend was obtained: ξeq = A × va where A is a constant. The slope A appeared to increase
when the displacement amplitude u decreased, following equation A = 28.2× u−1.20.

1.4.3.3 Dynamic tests

(a) Test description The dynamic tests were performed on a shaking table. Four di�erent types of
signals were applied on the beams: (i) a white-noise signal (WN), (ii) a band-passed white noise (SC),
(iii) a decreasing sinus sweep (DSS), and (iv) a natural seismic signal (SS1). First, white-noise signals
could be applied with low amplitudes (example in �gure 1.23a) to study beam modal properties or with
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(b) DSS85 test

Figure 1.23: Input signals of the two �rst dynamic tests carried out on HA16-C1A-2 beam

higher-level to excite mode shapes for various damage levels. The modes one and two could be studied
independently or together using the shake table six DOFs. Then, the band-passed white noise signals
were characterised by the sum of mono-harmonic accelerations with increasing frequencies. The mode
shapes associated with modes 1 and/or 2 could again be activated depending on the acceleration direc-
tion. The decreasing sinus sweeps signals (example in �gure 1.23b) corresponded to successive mono-
harmonic acceleration signals with decreasing frequencies. Between two successive mono-harmonic ac-
celerations, white noise was added. A denomination DSS85 signi�ed that the frequencies were evolving
from 8 Hz to 5 Hz. Finally, the studied natural seismic signal was characterised by a peak ground accel-
eration of 0.47 g recorded on the third �oor of the Kashiwazaki-Kariwa nuclear power plant (Japan). For
the beams submitted to dynamic loadings, various input signals were successfully applied to consider
the beam damage state.

(b) Results Di�erent analyses could be performed with all dynamic experimental data deduced
from the tests. The acceleration and displacement responses could be studied in the time and frequency
domain (�g. 1.24). For example, the frequency-domain response enabled beam eigenfrequencies with the
white-noise signals. In addition, by applying the HPBM (half-power bandwidth method) on frequency-
domain responses, EVDR could be de�ned. Then, Heitz (2017) proposed a non-parametric identi�cation
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Figure 1.24: Mid-span acceleration response of the beam HA16-C1A-2 submitted to the WN1 input
signal in �gure 1.23a
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method on sliding windows to propose EVDR and eigenfrequency evolutions during white-noise or
decreasing sinus sweep signals. The method implies errors (bias), so the results should be carefully
questioned. Conclusions were: (i) high variations could be obtained for the EVDR, and (ii) identi�ed
parameters were strongly dependent on chosen windows (the more extensive the maximal displacement
in the window was, the lower was the damping ratio).

1.4.3.4 Identi�ed damping ratios
In conclusion, table 1.10 was proposed in Heitz (2017) to synthesise the EVDR identi�ed on the experi-
mental data using di�erent analyses. Similar values were obtained with the QSC1 test and the numerical
studies under free vibrations. With the non-parametric method, the ductility and displacement ampli-
tudes considered varied from the �rst analyses (QSC1 test and numerical analysis under free vibrations),
but closer values were considered. With this method, fast damping ratio variations were observed, so
it was not easy to give a unique value. The presented interval was still consistent with the two �rst
values. Finally, it was impossible to evaluate EVDR for large displacement amplitudes with the hammer
shock tests. The consequence was that the hammer shock tests were inadequate to evaluate damping
values for computations leading to large displacements.

Table 1.10: EVDR values identi�ed with di�erent methods (Heitz, 2017)

Test Method Equivalent viscous damping
ratio

QSC11 Jacobsen’s area 2.7%
Virtual free vibrations2 Numerical analysis 3.1%

Hammer shocks3 =(FFT) analysis 9− 12%
DSS524 Non-parametric identi�cation 1− 3%

1 At ν = 14.6 and displacement amplitude of 35 mm (beam HA20-C1A-1)
2 At ν = 14.6 and displacement amplitude of 35 mm (beam HA20-C1A-1)
3 On a damaged beam (HA12-C1B for 9% and HA20-C1A for 12%)
4 At ν = 18.6 and displacement amplitude of 35 mm (beam HA16-C1A-2)
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1.5 Synthesis and scienti�c gap
Evaluating reinforced concrete structure safety under earthquake excitations requires proper modelling
of energy dissipations. Because of RC material nonlinear and complex behaviour, the seismic equation
derivation leads to di�erent damping types: viscous, hysteretic and numerical (1.1). In earthquake engi-
neering, viscous damping is intensely studied because it conveniently represents unknown dissipative
phenomena. Indeed, the challenging link with the notion of damping is the large number of phenom-
ena to consider. To overcome this challenge, numerous research studies focus either on damping model
propositions (1.2) or damping identi�cation methods (1.3).

1.5.1 Damping models at the structural level
The damping models presented in section 1.2.2 are classi�ed between classical and modal damping mod-
els. Classical ones are based on the sti�ness and mass characteristics of the studied system. On the con-
trary, modal damping models are developed from eigenmodes. Damping characteristics with both model
categories are linked with the structural velocity response given the "viscous damping". In earthquake
engineering, those strategies are generally used because of their simplicity. Simple elastic constitutive
models are generally considered by modelling energy dissipations through viscous damping. Notably,
the Rayleigh damping (RD) formulation, a classical one, remains the most used. Mathematically, it is
an e�cient tool because the damping matrix is diagonal in the modal basis, allowing to decouple equa-
tions in MDOF system analyses. However, a linear combination of mass and sti�ness matrices exhibits
unexpected phenomena in the initial RD model when used for nonlinear analyses. That is why many
papers focus on this model to improve structural numerical responses. Adaptations are: (i) removing the
mass proportional part to eliminate spurious forces, (ii) updating the sti�ness matrix part to consider
the structure degradation or (iii) updating the two proportionality parameters, . . .

Instead of proposing damping models, many papers evaluate various existing models based on par-
ticular examples. Table 1.2 synthesises the damping formulations compared in those papers. It appears
that the RD-type formulations are the most studied and modal damping (MD) models to a slightly lesser
extent. Using the tangent-sti�ness proportional damping (TKPD) model is the most recommended,
mainly because it is a way to reduce and contain the damping forces. Classical RD should be avoided
because it leads to the strongest damping most of the time. So, it is not a conservative model for earth-
quake engineering. However, conclusions have to be carefully considered. Indeed, various papers agree
that the choice of damping formulation should be made depending on the response quantities of in-
terest and the numerical model (FE, �bre, . . . ). In addition, parameters to compute damping matrices,
like viscous damping ratios, choice of modes, . . . are also dependent on the structure and the damping
formulation considered. However, it is shown that the initial viscous damping ratio choice, in particular,
plays a signi�cant role in the structural dynamic responses. It exhibits the impossibility of proposing
one damping model universally accepted for dynamic structural analyses. Lots of choices stay at the dis-
cretion of the users. Engineers, for example, must seek a compromise between the computational time,
which can enormously increase when updates are performed during computations, and result accuracy.
It is, �nally, the reason explaining the still extensive use of RD.

More complex damping models are also proposed in the literature. However, they are rarely used
because they do not enhance the physical representation of energy dissipations despite their implemen-
tation complexity, unavailability in commercial FE programs, and high time-consuming.



1.5 Synthesis and scienti�c gap 57

Scienti�c gap
Few papers in the literature are performing damping formulation comparisons based on experimental
campaigns. They instead concentrate on damping model in�uences on numerical responses. In addition,
dissipation energies are bare of interest in damping model studies. That is why a numerical investiga-
tion will be performed in chapter 2 to compare frequently used damping formulations based on the data
obtained with the experimental campaign presented in section 1.4. Experimental data will be used to
evaluate the damping model potentials to represent dynamic responses. Energy studies at the struc-
tural and material levels will lead to a better understanding of physical dissipative phenomena. Indeed,
most models are not based on physical phenomena and are only mathematical tools. So, at the end of
chapter 3, a new damping matrix formulation updated at the element level will be proposed considering
some of the main concrete dissipative phenomena.

1.5.2 Damping models at the local level
Research studies aim to characterise hysteretic damping to better represent physical phenomena at
the local level. For RC material, complex constitutive models are proposed. However, modelling all
dissipative phenomena is impossible because of their couplings and large numbers. So, a small amount
of viscous damping is generally required with dissipative constitutive models.

In addition, some papers propose to adapt structural viscous damping models at the elementary
level. Indeed, it allows considering nonlinear local behaviours, representative of nonlinear structural
phenomena. Advantages advocated for those methodologies, discussed by the scientists, are their higher
reliability than the global formulations and the better representation of dissipations. However, it still
lacks experimental evidence of those conclusions.

Scienti�c gap
Hysteretic behaviour models are little used in engineering due to the lack of knowledge about their dis-
sipative phenomena. Studying two di�erent hysteretic models for concrete, in the numerical analysis of
chapter 2, will enable us to characterise some dissipative phenomena at the concrete level and to better
understand what physically occurs during dynamic excitations on RC elements. Then, the damping
matrix formulation proposed in chapter 3 will be updated at the element level, and comparisons will
still be performed with experimental data, in addition to energetic analyses. Hence, it will be the �rst
step in experimental and energetic evaluations of elemental damping models.

1.5.3 Damping identi�cation
Finally, section 1.3 reviews damping identi�cation methods in the literature. Several objectives are
followed in the papers: (i) identifying damping values to be applied in numerical models, (ii) identifying
damping evolution models as functions of di�erent variables to allow damping updates in numerical
analyses, or (iii) using damping as a damage index for the safety evaluation of existing structures.

The equivalent viscous damping ratio generally considered in engineering is 5% for all earthquake
excitations, when performing linear analyses, and based on code guidelines. However, it is demon-
strated that when the structural damage increases, hysteretic damping also grows, decreasing viscous
damping. Therefore, using a unique EVDR all along computation represents a strong hypothesis. Ex-
perimental EVDR identi�cations are performed either on structural elements or entire structures. A
synthesis of identi�ed values for di�erent structures is presented in tables 1.3, 1.4 and 1.5. Many analy-
ses lead to EVDR between 1% and 6%, consistent with the 5% commonly used. However, all identi�ed
values must be carefully analysed because of the identi�cation methodology bias. Moreover, signi�cant
variations are observed, mainly when history loadings are considered. For cracked structural RC ele-
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ments, EVDR determined can reach 20%. So, considering a constant EVDR for damaged structures is
not representative of the behaviour of real RC structures under damageable loadings.

Then, as modal properties are linked to structural damage states, they are often used to perform
damage identi�cation on existing structures. Eigenfrequencies and mode shapes were �rst intensely
studied, but damping is also of interest today. However, there is no consensus about its capacity to per-
mit damage detection. Mainly, if the damping is an adequate tool to characterise structural damage, it
does not localise it. In in-situ experiments, free vibrations are not applied to the structure, so the simple
logarithmic decrement method can not be used to identify damping. So, other methodologies are con-
sidered, but they must be carefully used. That is why some papers propose improved methodologies to
evaluate damping characteristics with ambient vibrations, or at least without requiring free vibrations.

Finally, the last research subject is the damping model identi�cations as functions of various param-
eters. Most of them are based on ductility. Nevertheless, proposed model variations in table 1.6 show
the di�culty to propose a global model, succeeding for all types of elements. Though, it is shown that
using adequately updated damping models during computation could be a way to improve dynamic
responses without requiring complex constitutive models.

Scienti�c gap
Performative identi�cation methods are still required to improve con�dence in the identi�ed damping
values and to be able to develop models. In chapter 3, an identi�cation method will be of interest to
evaluate the evolution of EVDR and eigenfrequencies during dynamic damageable signals. The identi�-
cation method will be applied to experimental and numerical data with various dynamic signals. Thus,
it will be possible to characterise the numerical model ability to represent experimental damping char-
acteristics. EVDR evolutions as functions of damage indices could, then, be proposed and compared
with the ones in the literature.



Chapter 2

Modelling of dissipations in
reinforced concrete beams

Contents
2.1 Description of the multi-�bre model . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.1.1 Multi-�bre model relevancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.1.2 Beam geometry and boundary conditions . . . . . . . . . . . . . . . . . . . . 64
2.1.3 Material models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.1.4 Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2 Model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2.1 Sti�ness support calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.2.2 Model parameters identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2.3 Global sti�ness correction - dynamic loading . . . . . . . . . . . . . . . . . . 73

2.3 Viscous damping formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.1 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.4 Dynamic simulations and comparison with experimental data . . . . . . . . . 78
2.4.1 Dynamic data analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.4.2 Calibration on an elastic test . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.4.3 Numerical simulation of a damageable test (DSS2) . . . . . . . . . . . . . . . 83
2.4.4 Numerical responses of complementary tests . . . . . . . . . . . . . . . . . . 90

2.5 Energy balance analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.5.1 Description and implementation of energies . . . . . . . . . . . . . . . . . . 92
2.5.2 Dissipative energies of constitutive models . . . . . . . . . . . . . . . . . . . 95
2.5.3 Energy balances at the structural level . . . . . . . . . . . . . . . . . . . . . . 98
2.5.4 Dissipative phenomena at the concrete level . . . . . . . . . . . . . . . . . . 108

2.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.6.1 Performed analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.6.2 Important conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.6.3 Scienti�c problems highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . 117

59



60 Chapter 2. Modelling of dissipations in reinforced concrete beams

2.1 Description of the multi-�bre model
Based on the experimental campaign performed by Heitz (2017) and presented in section 1.4, a multi-
�bre model of experimentally tested beams is built on a �nite element (FE) software: Cast3M, which
is developed by the French Alternative Energies and Atomic Energy Commission (CEA). A theoretical
presentation of multi-�bre models is proposed in section 2.1.1. Then, the geometry and boundary con-
ditions (2.1.2), constitutive material models (2.1.3) and input signals (2.1.4) are detailed to characterise
experiments best.

2.1.1 Multi-�bre model relevancy
Studying reinforced concrete (RC) elements under earthquake excitations requires dynamic analyses
with nonlinear material behaviours. The three-dimensional (3D) �nite elements are e�cient tools, es-
pecially for structure complex parts like joints or assemblies. However, it becomes less practical when
applied to the whole structure because of the computational time and memory required. That is why
other numerical strategies developed as �bre models. Spacone and El-Tawil (2004) presented a state-of-
the-art of nonlinear analysis of steel-concrete composite structures, and the multi-�bre approach was
presented with some of its assumptions taken over later. Microscopic approaches based on solid me-
chanics were used to consider nonlinearities due to material behaviour, and �bre models were part of
it. The idea of such models was to consider a beam problem where sections are divided into �bres. So,
each �bre is independent of the other in terms of constitutive law. For example, in the case of RC, a
few �bres represent reinforcements, and the other ones represent concrete (�g. 2.1). Several materi-
als can be assigned to a single FEM, which is interesting for composite materials (Moulin, 2010). The
principal advantages, developed in the literature, of the �bre models are: (i) their ease of use, (ii) the
consideration of local behaviour, (iii) the reduced computational time, (iv) the low amount of DOFs
required, and (v) the result analysis interpretations made more accessible by the similarity with beam
problems (Moulin, 2010; Capdevielle, 2017; Grange, Mazars, and Kotronis, 2007; Kotronis, 2008; Mazars,
X. H. Nguyen, et al., 2005; Spacone, Filippou, and Taucer, 1996a; Adelaide, Richard, and Cremona, 2011).
Capdevielle (2017) even proposed the approach validity �eld and limits. Mainly, normal stresses should
prevail (slender beams, for example). However, limits appear when shear deformations become large,
so many papers focus on overcoming this di�culty.

2.1.1.1 Multi-�bre models in the literature
Papers dealing with �bre models are divided into two groups in the literature: (i) the ones using �bre
models structural analyses and (ii) the ones proposing �bre element enhancements.

The �bre models were developing in the last �fteenth years. First, Mazars, X. H. Nguyen, et al.
(2005) used multi-�bre beam elements with the Bernoulli kinematic to perform a modal analysis on a
third-scale model of a braced RC structure tested on a shake table in Lisbon. The multi-�bre approach
was chosen for spatial discretisation because of the computation �exibility. It accurately represented
the experimental structure eigenmodes. In the same idea, Grange, Mazars, and Kotronis (2007) focused
on a 7-story RC structure tested for a benchmark. Timoshenko multi-�bre beam elements were used
to perform a nonlinear dynamic analysis. The study conclusions were a good approximation of global
structural responses and a decrease in computational time. Thus, this type of model could be used to
study various structures and parametric analyses, an idea also shared by Kotronis (2008). Then, F. Wang
et al. (2007) developed a multi-�bre model in Cast3M to simulate RC columns, previously tested under
static loading. A bond-slip relationship was considered, and the numerical results match experimental
ones up to failure. It was also suggested that such analyses could be considered in existing building
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evaluations. Finally, Souid et al. (2009) went further by using a multi-�bre model to propose an e�cient
model for pseudo-dynamic tests. The paper aim was to capture the studied structure dynamic failure
using an advanced damage model for concrete.

A few older papers could be found in multi-�bre model improvements. Notably, Taucer, Spacone,
and Filippou (1991), Spacone, Filippou, and Taucer (1996a), and Spacone, Filippou, and Taucer (1996b)
focused on �bre beam-column elements for nonlinear static and dynamic analyses of RC frames. The
proposed beam-column FE was discretised into longitudinal steel and concrete �bres. Each �bre had
a nonlinear constitutive law, leading to the structure hysteretic behaviour. The proposed element was
applied to three di�erent examples for which experimental data existed. It appeared to be reliable,
numerically robust and computationally e�cient. Indeed, good agreements with experimental data
were obtained for pseudo-static tests, mainly when small damage occurred. However, re�nements were
still required for high inelastic deformations.

Initial �bre elements were based on Bernoulli hypotheses: plane sections stayed planes and per-
pendicular to the beam axis. This model �rst enhancement was to develop a �bre element based on
Timoshenko hypotheses to avoid considering the section perpendicularity. By staying in the small
strain hypothesis, Kotronis (2000) and Kotronis, Davenne, and Mazars (2004) proposed a 3D Timoshenko
multi-�bre FE to be free of shear locking. The implemented method was based on high order integra-
tion functions. The shearing energy consideration allowed the use of the elements with any section.
Element validation was performed on a column under cyclic loading with nonlinear behaviour and
demonstrated its performance. In the same idea, Mazars, Kotronis, et al. (2006) focused on an enhanced
multi-�bre beam element, taking into account shear and torsion, also with high order integration func-
tions. Nonlinear behaviour using an advanced constitutive law was applied to the �bre. Its combination
with the warping kinematic gave accurate results for di�erent section forms, as demonstrated on RC
columns. Then, to resume existing multi-�bre elements, Kotronis (2008) compared three models: (i)
an Euler-Bernoulli multi-�bre element, (ii) a Timoshenko element with �rst-order integration func-
tions and (iii) a Timoshenko element with higher-order integration functions. The last model mainly
required fewer DOFs to represent analytical or experimental results. However, considered functions
were dependent on beam elastic properties. Thus, homogenised sections were required, which was the
case for RC structures. Kotronis (2008) �nally proposed a new Timoshenko element where integration
functions were independent of material properties. It was also studied in Le Corvec (2012) paper with
constraint warping and shear-lag e�ect description. It appeared that using multi-�bre beam elements in
addition to damage and plasticity constitutive laws led to a good representation of structural behaviour.
Kotronis (2008) even concluded by explaining that damage and plasticity distributions could be qualita-
tively determined, predicting critical failure areas. Finally, Caillerie, Kotronis, and Cybulski (2015) also
worked on a new Timoshenko element, as well as Capdevielle et al. (2016) where the warping pro�le
was updated based on the damage state.

Not only the shear behaviour has been considered in multi-�bre enhancements. For example, the
corrosion consideration was studied by Adelaide, Richard, and Cremona (2011) (model for steel-concrete
interface) or by Ragueneau, Q. T. Nguyen, and Berthaud (2006).

2.1.1.2 Formulation in Cast3M (Guedes, Pegon, and Pinto, 1994)

In Cast3M, multi-�bre models are proposed with Timoshenko hypotheses. The general principle is to
consider the kinematic hypotheses allowing to pass from global structural displacements (beam scale) to
node-local deformations (section scale) (Adelaide, Richard, and Cremona, 2011). The multi-�bre beam
element is a FE based on beam theory. Each section is divided into �bres (�g.2.1), and each �bre local con-
stitutive law is applied. The element advantage is that the stress-strain relationship for each �bre is uni-
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Steel �ber

Concrete �ber

Figure 2.1: One section of the multi-�bre model
with one �bre of concrete and one of steel

dimensional. For example, both materials are
characterised by a law linking normal and shear-
ing stresses to axial and transverse strains for RC.
For the interface, a perfect condition is consid-
ered.

Let us consider a 3D beam of lengthL and sec-
tion S (�g.2.2). Figure 2.3 presents the multi-�bre
approach developed in Cast3m. It starts with the
beam discretisation into beam elements, with two
nodes of length le. The beam is oriented in the ~x-
axis, and the sections are discretised on the ~y- and
~z-axes. For a time step, with the knowledge of beam nodal displacements, the multi-�bre approach gives
the associated node forces, following the next steps through three di�erent scales:

1. At the beam scale, nodal displacements Ue and rotations θe are known for each beam element.
Each beam element is composed of twelve DOFs (six per node). Then, generalised strains E(e)

G
are computed with nodal displacements (eq. 2.1) at beam element Gauss points.

E(e)
G = B.Ue (2.1)

with B the matrix of derived integration functions.
2. At the section scale, using Timoshenko hypotheses, the strains of all �bres (corresponding to the

section integration points) can be deduced given εe.
3. At the �bre scale, the constitutive material laws applied on strains leads to the stresses σe in

�bres.
4. Back to the section scale, by integrating stresses on section, generalised stresses F(e)

G are deduced
at section centre, given values at beam element Gauss points.

5. At the beam scale, nodal forces are �nally computed by integrating generalised stresses with the
beam element (eq. 2.2).

Fe =
∫ le

0
BT .F(e)

G .dx (2.2)

Steel reinforcementConcrete

L

S

~x

~y

~z

Figure 2.2: Model of a RC beam

Considered integration functions are of �rst-order : N1 = 1 − x/le and N2 = x/le. Selecting such
functions had an in�uence on the element numerical performances. Generalised strain linear terms
should be eliminated to avoid di�culties linked with shear locking. In addition, Kotronis (2008) rec-
ommended a minimum of two Gauss points for each beam element to correctly integrate nodal forces
when a nonlinear material behaviour was considered.
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Beam discretization: beam elements with two nodes
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Figure 2.3: Multi-�bre approach algorithm
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2.1.2 Beam geometry and boundary conditions

The developed multi-�bre model aims to be as representative as possible of the experimental setup to
compare numerical and experimental results. One particular experimentally tested beam is considered
for the numerical analysis: the beam referred to as HA16-C1A since they provide analysable experi-
mental results. Two beams of this kind have been constructed: the beam HA16-C1A-1 for quasi-static
tests and the beam HA16-C1A-2 for dynamic experiments.

2.1.2.1 Geometry

The beam length is 6 m, and its section 0.2 × 0.4 m2, to match the experimental setup. In addition,
eight high-adherence (HA) steel rebars of diameter 16 mm are considered. Figure 2.4 presents the beam
discretisation into sections (�g. 2.4c) and the section discretisation into �bres (�g. 2.4b). In �gure 2.4c,
the sections are positioned at the Gauss points of beam elements. Beam elements are linear segments,
so only one Gauss point is considered for each element. Beam and section discretisations are chosen to
compromise computational time and the accuracy of results. Mainly, an energetic convergence analysis
was performed to validate the section discretisation. Each rebar is modelled with four �bres to take
into account rebar sections. Because, experimentally, rebars stayed linear, their discretisation does not
signi�cantly in�uence numerical results. However, concrete discretisation plays a signi�cant role in
response accuracy. The beam is excited through its weak axis, so more elements have to be consid-
ered along with the section basis, as observed in �gure 2.4b. Two-dimensional (2D) linear quadrangle
elements are used for concrete (�g. 2.4e), as well as steel rebars (�g. 2.4d). So, four Gauss points are con-
sidered in 2D chosen elements. Eight elements on beam width provide an appropriate representation of
the evolution of concrete nonlinearities inside the beam.

KT,1 KT,2KR,1 KR,2

L

~x

~y

330 kg 330 kg

L/4 3L/4

(a) System scheme

20
cm

40 cm

16 mm

~y

~z

(b) Complete section discretisation

6 m

~x~y

~z

(c) Beam discretisation

16 mm

Gauss point

(d) Steel rebar
discretisation

20 cm

2.5
cm

Gauss point

(e) One element of the
concrete section

Figure 2.4: Model scheme and discretisation
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2.1.2.2 Boundary conditions
Experimental supports were designed to obtain an isostatic system. So, the �rst numerical model also
checked this hypothesis. However, the study of numerical modal properties demonstrated an incompat-
ibility with experimental characteristics of the undamaged beam. Considering simple supports did not
allow to match the undamaged beam eigenfrequencies. That is why spring supports are �nally preferred
(�g. 2.4a). Their calibration is presented in section 2.2.1.

Then, additional masses (�g. 2.4a) are positioned at beam quarter-spans, as done experimentally.
Vertical displacements at beam quarter-spans are blocked to model intermediate supports under both
masses. Because of the air-cushions under intermediate supports, the friction on the shake table is
reduced as much as possible, so horizontal displacements are not numerically constrained.

2.1.3 Material models
2.1.3.1 Concrete model
Concrete is a quasi-brittle material. Nonlinear models are so required to characterise it. Di�erent con-
crete constitutive laws are implemented in Cast3M. The numerical study aims to evaluate the in�u-
ence of modelled dissipative phenomena. So, two di�erent models are considered. The simplest model
(2.1.3.1(a)), called "BARFRA", was used, for example, by Dufour (1998) or Crambuer (2013). The second
one (2.1.3.1(b)), more complex and named "RICBET", was developed by Richard and Ragueneau (2013).
The model equations presented in this section will be used to evaluate peculiar dissipative energies.

(a) BARFRA model BARFRA is a simple unilateral damage model with damage decoupling be-
tween traction and compression. Crack opening in traction is considered by a damage variable, as well
as the compressive behaviour. Two di�erent damage variables are considered to consider the concrete
asymmetric behaviour.

Table 2.1 presents the variables associated with the BARFRA model, and equation (2.3) expresses the
state potential associated with this material model.

Table 2.1: BARFRA constitutive model variables

Observable Internal Associated
forces Phenomena

ε σ Elasticity
d+ Y+ Damage (ε > 0) - sti�ness degradation
d− Y− Damage (ε < 0) - sti�ness degradation
z+ Z+ Isotropic hardening (ε > 0)
z− Z− Isotropic hardening (ε < 0)

ρΨ = 1
2(1− d+)〈εij〉+ Cijkl 〈εkl〉+ +H+(z+) + 1

2(1− d−)〈εij〉− Cijkl 〈εkl〉− +H−(z−) (2.3)

with Ψ the state potential, ρ the density, d+ and d− the damage variables respectively associated with
positive and negative strains, 〈εij〉+ and 〈εij〉− respectively the positive and negative strain parts, z+
and z+ the work hardening variables associated with d+ and d−, H+ and H− functions, and Cijkl the
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ijklth term of the elasticity tensor. Then, state laws, expressed in equation (2.4), can be deduced from
equation (2.3):





σij = ∂ρΨ
∂εij

= (1− d+)Cijkl 〈εkl〉+ + (1− d−)Cijkl 〈εkl〉−

Y+ = −∂ρΨ
∂d+

= 1
2Cijkl 〈εkl〉

2
+

Y− = −∂ρΨ
∂d−

= 1
2Cijkl 〈εkl〉

2
−

Z+ = ∂ρΨ
∂z+

= dH+(z+)
dz+

Z− = ∂ρΨ
∂z−

= dH−(z−)
dz−

(2.4)

with Y+ and Y− the restitution rates for damage and Z+ and Z− the thermodynamic forces related to a
kinematic work hardening. Finally, by applying Clausius-Duhem inequality, the dissipation law of the
BARFRA model is given in equation (2.5):

D =




Y+

Y−

−Z+

−Z−




T

·




ḋ+

ḋ−

ż+

ż−



> 0 (2.5)

(b) RICBETmodel RICBET is a more complex model well adapted for cyclic and seismic loadings,
including more complex phenomena. It considers damage in tension, plasticity in compression, the
unilateral concrete e�ect associated with inelastic crack closure, and friction phenomena between crack
surfaces. It is characterised by twelve parameters: two for the elasticity range, two for the damage
modelling, two for friction, one for the unilateral e�ect and �ve for plasticity.

Table 2.2 presents the RICBET model variables. Equation (2.6) expresses the state potential associ-
ated with this material model:

ρΨ = 1
2 (1− d) .

(
εij − εpij

)
Cijkl (εkl − εpkl) + 1

2 d.
(
εij − η.επij − εpij

)
Cijkl

(
εkl − η.επij − εpkl

)

+ 1
2 γ.αij αij +H(z) +G(p) (2.6)

with d the damage variable, εij , εpij and επij respectively the total, plastic and friction strains, η the
unilateral e�ect internal variable, Cijkl the ijklth term of elasticity tensor, γ a coe�cient relative to
friction, αij the friction work hardening internal variable, H and G some functions respectively of
damage work hardening z and of plasticity internal variable p. Then, state laws can be deduced as
expressed in equation (2.7):
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Table 2.2: RICBET constitutive model variables

Observable Internal Associated
forces Phenomena

ε σ Elasticity
επ σπ Friction
εp σ Plasticity
α X Kinematic hardening associated to friction
d Y Damage - sti�ness degradation
z Z Isotropic hardening associated to damage
η ξ Unilateral e�ect
p R Isotropic hardening associated to plasticity





σij = ∂ρΨ
∂εij

= −∂ρΨ
∂εpij

= (1− d) .Cijkl (εkl − εpkl) + d.Cijkl (εkl − η.επkl − εpkl)

σπij = −∂ρΨ
∂επij

= η.d.Cijkl (εkl − ηεπkl − εpkl)

Y = −∂ρΨ
∂d

= 1
2
(
εij − εpij

)
Cijkl (εkl − εpkl)−

1
2 d.

(
εij − η.επij − εpij

)
Cijkl

(
εkl − ηεπij

)

ζ = −∂ρΨ
∂η

= d.επijCijkl(εkl − επkl − εpkl)

R = ∂ρΨ
∂p

= dG(p)
dp

Xij = ∂ρΨ
∂αij

= γ.αij

Z = ∂ρΨ
∂z

= dH(z)
dz

(2.7)

with σij and σπij the total and friction stresses, Y and ζ the restitution rates for damage and unilateral
e�ect, R and Z the thermodynamic forces related to an isotropic work hardening and Xij the thermo-
dynamic force related to a kinematic work hardening. Finally, by applying Clausius-Duhem inequality,
we get the RICBET model dissipation law in equation (2.8):

D =




σij

σπij

Y

ζ

−R
−Xij

−Z




T

·




ε̇pij

ε̇πij

ḋ

η̇

ṗ

α̇ij

ż




> 0 (2.8)
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(c) Comparison of cyclic responses Figure 2.5 presents the constitutive law of both models for
one concrete element submitted to traction and compression excitations. Figures 2.5a and 2.5b show
one cycle of traction and compression. The compressive plasticity behaviour of RICBET leads to lower
maximal compressive stresses, compared to the BARFRA model considering a linear behaviour in the
studied strain range. For RICBET, the development of nonlinearities in compression occurs at 15.8 MPa
corresponding to 45%× fc with fc the concrete compressive strength. Experiments carried out do not
reach nonlinearities in compression. That is why the model traction behaviours are more of interest
and are presented in �gures 2.5c and 2.5d. Six traction cycles are applied on the element with increasing
cycle amplitudes. Both models are linear until the tensile strength of 1 MPa. Then, damage appears for
BARFRA, as soon as the tensile strength is reached. So, the sti�ness is deteriorating, and lower stresses
are obtained. An exponential decrease in strength is considered, converging towards 0.5 MPa, the resid-
ual tensile strength. Figure 2.5a shows a sudden change in sti�ness between traction and compression
behaviours of the BARFRA model, compared to the RICBET one. The behaviour of the RICBET model
is more complex. After reaching the tensile strength, the stress rises slightly, but nonlinearities begin to
occur. Then, as for BARFRA, an exponential decrease of the stress limit is observed. During unloadings,
hysteresis cycles are obtained corresponding to the energy dissipated by friction. When a null strain is
reached, the sti�ness is slightly recovered. This unilateral e�ect gives an intermediate sti�ness between
traction and compression cycles, leading to a smoother transition.

-1.0 -0.5 0 0.5 1.0

·10−3

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

ε [−]

σ
[M

Pa
]

(a) BARFRA - traction/compression

-1.0 -0.5 0 0.5 1.0

·10−3

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

ε [−]

(b) RICBET - traction/compression

0 1 2 3 4 5 6 7
·10−4

-0.5

0

0.5

1

1.5

ε [−]

σ
[M

Pa
]

(c) BARFRA - traction cycles

0 1 2 3 4 5 6 7
·10−4

-0.5

0

0.5

1

1.5

ε [−]

(d) RICBET - traction cycles

Figure 2.5: Constitutive laws for one concrete element
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(d) Concrete dissipative phenomena Desmorat, Ragueneau, and Pham (2007) gave a signi�cation
of dissipative phenomena: (i) damage is characterising crack opening leading to a decrease of Young’s
modulus, (ii) the unilateral e�ect is the opposite because it corresponds to the crack closure and sti�ness
recovery, and (iii) the friction is a consequence of crack surface roughness and aggregate interlock, lead-
ing to inelastic strains and dilatancy. Crack surfaces and aggregate contacts are submitted to friction
sliding due to roughness. The macroscopic consequence is the appearance of hysteresis loops. All these
phenomena have been studied in di�erent papers like (T. P. Tassios and Vintzēleou, 1987; Riggs and
Powell, 1986; Basista and Gross, 1998) for crack evolution, (Halm and Dragon, 1998; Zhu, Kondo, and
Shao, 2008) for damage and friction or (Dragon, Halm, and Désoyer, 1998) considering the unilateral
e�ect. The scheme in �gure 2.6 proposes a synthesise of all presented works to understand the micro-
scopic representation of modelled dissipative phenomena. The traction response of the RICBET model
is considered as a basis. In the elastic part, no damage occurs in concrete. After the tensile strength,
cracks begin to initiate and propagate, leading to a loss of sti�ness. In parallel with crack propagations,
cracks are opening up more and more while loading is still increasing. Then, during unloading, cracks
are closing, and contacts appear and induce locking because of rough lips. Nevertheless, sliding occurs
if the unloading continues, and some energy is dissipated through friction. Finally, a part of the sti�ness
is recovered when the cracks are closed again.
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Figure 2.6: Scheme of concrete dissipative phenomena

2.1.3.2 Steel model

The experimental campaign aim was to keep steel reinforcements in their linear range. That is why the
model choice for steel is not as fundamental as concrete.
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An elastoplastic behaviour law, already implemented in Cast3M, is considered. Its name is "ACIER_UNI",
and an elastoplastic law characterises it with linear hardening and the parameters in table 2.3. The be-
haviour law is expressed in equations (2.9) and (2.10):

σ∗ = (1− b) ε∗
(
1 + ε∗R

)1/R + b.ε∗ (2.9)

R(ξ) = R0 −
a1.ξ

a2 + ξ
(2.10)

with σ∗ = σ
σ0

, ε∗ = ε
ε0

, b = Eh
Es

and R(ξ) representing the Bauschinger e�ect. Classical recommended
values of the parameters are also expressed in table 2.3, while appendix B.2 presents the parameter
signi�cations. No dissipation will occur at the steel level, so the model equations are not developed
herein.

Table 2.3: ACIER_UNI behaviour model parameters (appendix. B.2)

Name Value Unit Name Value Unit

YOUN 208 GPa NU 0.3 −
RHO 7850 kg/m3 STSY 560 MPa
EPSU 0.05 − STSU 656 MPa
EPSH 0.0025715 − FALD 12.5 −
A6FA 620 − CFAC 0.50 −
AFAC 0.006 − R0FA 20 −
BFAC 0.000877 − A1FA 18.5 −
A2FA 0.15 −

2.1.4 Loading
Experimental input signals were presented in section 1.4.3. Numerically, the same input data have been
considered to excite the beams.
Quasi-static experiments were carried out with actuators. Numerically, imposed displacements are

applied at beam quarter-spans corresponding to the actuator positions. The signal in �gure 1.21a
is symmetrically applied at both input points, exciting the �rst mode of the beam. The numerical
response will be used in section 2.2.2 to calibrate the concrete constitutive model parameters.

Dynamic tests were performed with a shake table. So, the acceleration received by the beam is trans-
formed into a load equivalent loading. This load is applied under each node of the model. The
succession of dynamic signals in table 2.4 was tested experimentally. So, the same succession
is considered numerically to study the loading history in�uence. The signals in �gure 1.23 are
mainly the �rst and second studied signals.

2.2 Model calibration
To better represent the observed behaviour, the multi-�bre model must be calibrated. Notably, the
undamaged modal properties (2.2.1) and the concrete model parameters (2.2.2) signi�cantly in�uence
the numerical responses and have to be carefully identi�ed.
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Table 2.4: The succession of dynamic signals

Name Maximal acceleration Name Maximal acceleration

1 WN1 0.65 m/s2 2 DSS85b 1.33 m/s2

3 DSS52b 1.84 m/s2 4 DSS52a 0.93 m/s2

5 DSS52a 1.40 m/s2 6 DSS52a 2.05 m/s2

7 DSS52a 2.91 m/s2 8 WN1 2.09 m/s2

9 WN1 2.66 m/s2 10 WN1 2.88 m/s2

11 DSS138b 0.45 m/s2 12 DSS138b 0.44 m/s2

13 DSS138b 0.48 m/s2 14 DSS138b 0.50 m/s2

Experimentally, the beam three �rst eigenfrequencies are studied because they are in the available
facility range. However, being at the instrumentation and shake table range limits, the third value must
be considered with caution. Numerically, the VIBR operator in Cast3M is a tool to study generalised
masses

(
φT
i
·M · φ

i

)
and so the e�ective modal ones mi,d de�ned in equation (2.11):

mi,d =

(
φT
i
·M · Id

)2

(
φT
i
·M · φ

i

) (2.11)

with mi,d the e�ective modal mass in direction d and associated with mode i and Id a vector composed
of ”1” values for components in the d-direction and ”0” values for other components. In the y-direction,
corresponding to the beam excitation one, the sum of thirty modal masses gives a total mass of 1792.2 kg
for the beam. Then, considering only the three �rst modes leads to 1776.4 kg corresponding to 99.1%
of the total mass. So, using the three �rst modes of the beam for its analysis is representative of the
global beam behaviour.

2.2.1 Sti�ness support calibration
Hammer shock tests on the undamaged beams gave their three �rst eigenfrequencies (tab. 2.5). Nu-
merical modal analyses did not match the experimental eigenfrequencies with the isostatic boundary
conditions. So, spring supports are preferred with translational and rotational sti�nesses. Due to the
setup symmetry, identical sti�nesses of each type are considered for both supports. Their calibrations
were performed with a methodology equivalent to meta-models. Four parameters were examined: (i)
the concrete Young’s modulus, (ii) the steel Young’s modulus, (iii) the translational support sti�ness, and
(iv) the rotational support sti�ness. Numerous computations with evolving values of these parameters
led to a response surface evaluation. Then, the surface extrapolation gave the best four parameters to
characterise the two �rst beam eigenfrequencies. The third one was not considered because the con�-
dence in experimental measurements was low. Finally, few iterations were performed on smaller grids
until the convergence of parameters. Three beams were experimentally studied, and the parameters in
table 2.6 were identi�ed.

Sti�nesses in table 2.6 are identical for the three beams because the same supports were used for
the experimental tests. Higher di�erences are obtained on Young’s modulus values. For concrete, dif-
ferences can be a consequence of material variability. However, steel rebars have been manufactured,
so less variability is usually observed. What can explain the variations between the beams is the rebar
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Table 2.5: Eigenfrequencies of the three tested beams

Beam f1 [Hz] f2 [Hz] f3 [Hz]

HA12 7.05 23.2 59.1
HA16 7.24 23.5 58.8
HA20 7.16 22.6 57.9

Table 2.6: Support calibrations of three beams

Beam Concrete Young’s
modulus

Steel Young’s
modulus

Translational
sti�ness

Rotational
sti�ness

HA12 19 GPa 184 GPa 1.10× 107 N/m 1.00× 104 N.m/rad
HA16 22 GPa 208 GPa 1.10× 107 N/m 1.00× 104 N.m/rad
HA20 22 GPa 196 GPa 1.10× 107 N/m 1.00× 104 N.m/rad

positions. Experimentally, the rebars could be slightly shifted from one beam to another. In addition,
a parametric numerical study demonstrated the signi�cant in�uence of rebar positions on the modal
properties of the undamaged beams. The three numerical models consider perfect rebar positions. So,
the exact experimental placings can be re�ected numerically in steel Young’s modulus.

2.2.2 Model parameters identi�cation
BARFRA and RICBET concrete models presented in section 2.1.3.1 comprise nine and �fteen parame-
ters. To determine the parameter values, a parametric study is performed to match the experimental
responses of the quasi-static test QSC1. Identi�ed parameters are indicated in table 2.7 for the BARFRA
model and in table 2.8 for RICBET, respectively associated with appendices B.1.1 and B.1.2 for parameter
descriptions.

Table 2.7: BARFRA behaviour model values (appendix. B.1.1)

Name Symbol Value Unit Name Symbol Value Unit

YOUN Ec 22 GPa NU ν 0.2 −
RHO ρc 2300 kg/m3 FC fc 25 MPa
FC_R fr,c 0.05 MPa STRC εs,c 1.0× 10−5 −

FT ft 1.0 MPa FT_R fr,t 0.5 MPa
STRT εs,t 1.0× 10−5 −

Figure 2.7 exhibits the numerical responses of both constitutive models for the QSC1 test. Exper-
imental global sti�ness degradation is adequately represented with both concrete models. However,
di�erences are observed following the phenomena described with each model. With RICBET (�g. 2.7b),
hysteretic cycles are developing, and the pinching e�ect is observable due to crack closure. A better
match with experimental data is thus obtained with the more complex model because it better charac-
terises dissipative phenomena.
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Table 2.8: RICBET behaviour model values (appendix. B.1.2)

Name Symbol Value Unit Name Symbol Value Unit

YOUN Ec 22 GPa NU νc 0.2 −
RHO ρc 2300 kg/m3 FT ft 1.0 MPa
ALDI ab,t 9.0× 10−3 − GAM1 γ1 9.0 −

A1 a1 10× 10−6 − SIGF σcc −0.5 MPa
FC fc 35 MPa AF af 7.5 −
AG ag 1.0 − AC ac 4.0× 1010 −
BC bc 600 − SIGU σu −10 MPa

HYST ah 1 −
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Figure 2.7: Responses of the calibrated concrete models in comparison with the experimental
quasi-static data

2.2.3 Global sti�ness correction - dynamic loading
Two HA16-C1A beams were constructed to perform the experimental campaign. The beam HA16-C1A-
1 was tested under quasi-static excitations, and its properties were used in previous analyses to calibrate
the multi-�bre model. Then, the HA16-C1A-2 beam was used to carry out dynamic experiments. Despite
the identical properties desired, few di�erences are obtained between the two beams: particularly on
undamaged beam eigenfrequencies, as indicated in table 2.9.

Theoretical values are deduced from equation (2.12) for the mode i using a homogenised RC section:

fi = ωi
2.π = (i× π)2

2.π

√
Ec.Ih

ρc.Sh.L4 (2.12)

with Ec the concrete Young’s modulus, Ih the homogenised quadratic inertia of the section, ρc the
concrete density, Sh the homogenised area of the section, and L the beam length. Comparing mean
experimental data and numerical ones shows perfect adequacy for the �rst mode and an acceptable one
for the second mode. However, a more signi�cant error is obtained for the third mode, which could
result from instrumentation limits. Less con�dence is associated with the third eigenfrequency, so it is
not calibrated.
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Table 2.9: Eigenfrequencies of the undamaged tested beams HA16-C1A in comparison with theoretical
data

Theory Beam
HA16-C1A-1(1)

Beam
HA16-C1A-2(1)

Mean of both
beams(2)

Mode 1 7.04 Hz 7.24 Hz(0.41%) 6.99 Hz(0.68%) 7.11 Hz(+0.99%)

Mode 2 23.9 Hz 23.5 Hz(0.35%) 22.6 Hz(0.00%) 23.1 Hz(−3.35%)

Mode 3 68.9 Hz 58.8 Hz(0.10%) 57.6 Hz(0.17%) 58.2 Hz(−15.5%)

(1) Indicated frequency corresponds to the mean value of four hammer shock tests, and the exponent is
the standard deviation of the four tests.
(2) The exponent corresponds to the error with the theoretical value in the �rst column.

Then, experimental values for the beams HA16-C1A-1 and HA16-C1A-2 are deduced from hammer
shock tests before any excitation to obtain undamaged properties. For each value determination, a mean
of four test responses is computed and standard deviations, always inferior to 1%, demonstrate good
repeatability of experiments. However, between the beams, non-negligible eigenfrequency di�erences
are deduced. So, the model calibration on the HA16-C1A-1 beam could present di�culties in represent-
ing experimental dynamic test responses. That is why few corrections are applied on the numerical
model and particularly on the concrete Young’s modulus, based on the beam HA16-C1A-2 properties.
Identi�ed Young’s modulus from the quasi-static test is 22 GPa, while experimental characterisation of
this material property was 26.2 GPa. Using the experimental Young’s modulus gives f1 = 6.89 Hz and
f2 = 20.7 Hz corresponding respectively to 3.09% and 10.3% of error compared to the mean values in
table 2.9. Recalibrating Young’s modulus on the �rst mode leads to 28.5 GPa and an error of 8.35% on
the second mode eigenfrequency. While a recalibration on the second mode provides Young’s modulus
of 40.4 GPa and an error of 13.8% on the �rst mode eigenfrequency. In conclusion, increasing Young’s
modulus of 8% to match the �rst mode eigenfrequency is acceptable, mainly because the induced error
on the second mode eigenfrequency is still admissible. However, the second mode’s calibration requires
a 54% increase of Young’s modulus and a too large error on the �rst mode.

Finally, table 2.10 synthesises the numerical eigenfrequencies with the three concrete Young’s mod-
ulus. Numerical dynamic analyses are performed on the undamaged white-noise signal called WN1 to
validate the carried out corrections. With the BARFRA model, the three concrete Young’s modulus val-
ues do not a�ect the numerical response global sti�ness. However, with RICBET constitutive model, few
di�erences are observed. So, a compromise is performed between the di�erent analyses, and a concrete
Young’s modulus of 26.2 GPa (corresponding to the value obtained with the compressive tests) is �nally
chosen for the dynamic computations. It represents a ratio of 1.2 compared to the 22 GPa identi�ed
with the undamaged modal analyses. So, the ratio is close to the 1.25 multiplier generally considered
between quasi-static and dynamic Young’s modulus.

2.3 Viscous damping formulations
Reminder: The nomenclature of the classical damping formulation acronyms used in the following can be
found in appendix A (table A.1).

As discussed in the literature, numerical model parameters signi�cantly in�uence dynamic responses.
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Table 2.10: In�uence of concrete Young’s modulus in undamaged numerical eigenfrequencies

Experimental
Numerical(1)

Ec = 22GPa Ec = 26.2GPa Ec = 28.5GPa

Mode 1 7.11 Hz 6.45 Hz(−9.3%) 6.89 Hz(−3.1%) 7.11 Hz(0.0%)

Mode 2 23.1 Hz 19.7 Hz(−14.7%) 20.7 Hz(−10.5%) 21.2 Hz(−8.4%)

Mode 3 58.2 Hz 44.7 Hz(−23.2%) 46.0 Hz(−21.0%) 46.6 Hz(−20.0%)

(1) Exponents correspond to the error with the experimental value in the �rst column.

By using the experimental data, a numerical parametric study is performed with: (i) two concrete con-
stitutive models to evaluate the required accuracy of dissipation representation, (ii) sixteen classical vis-
cous damping formulations with or without parameter updates, and (iii) various damping ratios varying
from 0.5% to 5% for di�erent modes. Thus, the analysis aims to discuss the ability of di�erent structural
viscous damping models to represent the observed behaviour of the modelled RC beam.

2.3.1 Classi�cation
Table 2.11 synthesises studied viscous damping formulations, which have been implemented based on
the mass and sti�ness matrices or with modal analyses. The �rst column indicates the nomenclature
already used in chapter 1 and links to the names in the second column. Damping ratios (third column)
are imposed for di�erent modes indicated in the fourth column for all damping formulations. Finally,
in the last one, a 7 indicates that the considered parameters are constant during computations, while a
3 implies parameter updates corresponding to the multiplicative parameters in front of the matrices.
More implementation details are presented in section 2.3.2.

2.3.2 Implementation details
2.3.2.1 Damping matrix computations

(a) Rayleigh damping and derivatives Rayleigh damping (RD) type formulations, discussed in
section 1.2.2.1 and derived from equation (1.26), are the �rst ten (RD p% to SKPD p%) in table 2.11. For RD,
MPD and KPD formulations, for which only initial beam properties are required, the mass (MASS oper-
ator) and/or the initial sti�ness (RIGI operator) matrices are computed from the structural properties,
particularly considering the additional masses (MASS operator) for the mass matrix and the boundary
conditions (BLOQ operator) for the sti�ness matrix. Then, to solve the system in equation (1.27) and
determine a0 and/or a1 parameters, modal analysis (VIBR operator) is performed on the undamaged
beam, and two damping ratios are chosen for some modes. When two modes are required (RD, for ex-
ample), modes 1 and 2 are considered because they are used for modal calibration. However, if only one
mode is required, the �rst one is chosen because the beam response depends on it. Finally, the damp-
ing matrix is assembled. Then, when the secant or tangent sti�ness matrix is used (CRD, SRD, CKPD
and SKPD), the sti�ness matrix is re-evaluated at the end of each time step using the tangent or secant
Young’s modulus, whose computation is explained in section 2.3.2.2. In these cases, parameters a0 and
a1 are constant during all computations. On the contrary, the initial sti�ness is kept all along with
computation when the parameters are updated (RD_ACT, MPD_ACT and KPD_ACT).
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Table 2.11: Damping classi�cation

Classi�cation Formulation Damping
ratio Mode Parameter

updating1

RD p% Classical Rayleigh damping p % 1 and 2 7

RD_ACT p% Classical Rayleigh damping p % 1 and 2 3

CRD p% Commit-sti�ness Rayleigh
damping2,3 p % 1 and 2 7

SRD p% Secant-sti�ness Rayleigh
damping2 p % 1 and 2 7

MPD p% Mass proportional damping p % 1 7

MPD_ACT p% Mass proportional damping p % 1 3

KPD p% Initial-sti�ness
proportional damping p % 1 7

KPD_ACT p% Initial-sti�ness
proportional damping p % 1 3

CKPD p% Commit-sti�ness
proportional damping2,3 p % 1 7

SKPD p% Secant-sti�ness
proportional damping2 p % 1 7

MD p% Modal damping p % 1 to 6 7

MD_ACT p% Modal damping p % 1 to 6 3

WPD p% Wilson-Penzien damping p % 1 to 6 7

WPD_ACT p% Wilson-Penzien damping p % 1 to 6 3

CWPD p% Commit-sti�ness
Wilson-Penzien damping2,3 p % 1 to 6 7

SWPD p% Secant-sti�ness
Wilson-Penzien damping2 p % 1 to 6 7

1 7 means that the parameters stay constant during the computation while 3 indicates parameter
updates. For the last case, modal analysis is performed, and the updated eigenfrequencies are used
to compute the new parameters. The damping ratio stays constant.
2 The sti�ness matrix is updated for each time step.
3 The commit-sti�ness is equivalent to the tangent-sti�ness except that the "commit" term is used
when the matrix is updated only after each time step (and not after each iteration).

However, the frequencies used for the parameter computations are determined at each time step with a
modal analysis. Viscous damping ratios ξ1 and ξ2 are, for their part, constants.
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(b) Modal damping Modal damping formulations (MD and MD_ACT) are expressed in equation (1.34).
To compute the damping matrix, a modal analysis on the undamaged beam is required (VIBR opera-
tor) to determine the eigenfrequencies or eigenperiods and the eigenmodes. The number of considered
modes is at the user appreciation. A compromise between time computation and accuracy must be
judged. The signi�cant in�uence of the three �rst modes has already been discussed using e�ective
modal mass determination. In addition, slightly increasing the number of modes does not in�uence
the computational time. Choosing an even number of modes avoids reaching negative damping ratios
for higher modes. So, a choice of six modes is made for modal damping formulations. With Cast3M,

XXT and XTMX operators are used to compute the numerator
((

Mφ
i

)(
Mφ

i

)T)
and denominator

(
φT
i
Mφ

i

)
for each term of the sum. For MD, the damping matrix computation is performed only at

the beginning. However, for MD_ACT, an updated modal analysis is performed at each time step given
new eigenperiods and eigenmodes, and the matrix is re-composed with the updated modal properties.

(c) Wilson-Penzien damping Wilson-Penzien damping (WPD) formulation and derivatives (WPD,
WPD_ACT, CWPD and SWPD) correspond to equation (1.31). The damping matrix computation is
strongly similar to MD formulations. A modal analysis is performed to determine the eigenmodes and
eigenfrequencies. Then, XXT

(
φ
i
φT
i

)
and XTMX

(
M ·

[∑N−1
i=1

2ξiωi
mi

φ
i
φT
i

]
·M
)

operators are applied
for each mode to evaluate the terms of the sum associated with the considered modes. Finally, consid-
ering six modes, for the same reasons as MD, leads to the computation of equation (1.31) second part. A
proportional sti�ness term is, then, added. So, for WPD, the initial sti�ness matrix is considered, and no
updating is performed during computation. For WPD_ACT, the initial sti�ness matrix is still considered
during all computation, but the a1 parameter and eigenproperties are updated using modal analyses for
each time step. For CWPD and SWPD, respectively, the tangent and secant matrices are computed at
each time step to update the proportional sti�ness part of the matrix, in the same way as for RD-type
formulations presented in section 2.3.2.2.

2.3.2.2 Evaluation of the secant and tangent Young’s modulus
RIGI operator (evaluation of a sti�ness matrix) is applied on an updated concrete constitutive model
for each beam element to compute the tangent or secant sti�ness matrix. Depending on the constitutive
model choice, all parameters in tables 2.7 or 2.8 are identical to the initial values except for the concrete
Young’s modulus.

To determine the tangent E(ti)
T (eq. 2.13) or secant E(ti)

S (eq. 2.14) Young’s modulus at time step ti,
additional internal variables are de�ned in the model �les.

E
(ti)
T = σ(ti) − σ(ti−1)

ε(ti) − ε(ti−1) (2.13)

E
(ti)
S = σ(ti)

ε(ti)
(2.14)

with σ(ti) and ε(ti) respectively the stress and strain in the �bre direction at time step ti. A strain limit
is considered to avoid numerical modulus divergences with low strains: for ε(ti) < εlimit the modulus
is not updated. For both models, a parametric study was performed to determine the limit value, given
equation (2.15):

εlimit = ft
Ec

= 3.5 · 10−5 (2.15)

with ft the concrete tensile strength and Ec the initial concrete Young’s modulus. Another di�culty
was observed with the BARFRA model corresponding to the considerable modulus variation between
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traction and compression behaviours. So, a hyperbolic tangent function has been de�ned to smooth the
transition for strain absolute values inferior to εlimit. The function calibration led to the equation (2.16):

E
(ti)
T

(
ε(ti)

)
= E

(ti)
S

(
ε(ti)

)
= 1

2 ·
[
1 + tanh

(
−5.0 · 105 × ε(ti)

)]
(2.16)

For each beam element, the tangent or secant Young’s modulus of concrete �bres is integrated on
the section to obtain one value for the element. This value is then considered for the determination of
the element constitutive model. Thus, combining all elemental models leads to a constitutive model for
the entire beam. Finally, the RIGI operator determines the updated tangent or secant sti�ness matrix.

2.4 Dynamic simulations and comparison with ex-
perimental data
A sizeable numerical campaign is performed with variable model parameters, as presented in section 2.3.
Analyses discussed herein aim at comparing the numerical responses with experimental data. The
used sensors were de�ned in the experimental campaign description (section 1.4). So, acceleration-,
displacement- and force-history responses are available. In section 2.4.1, analysis methods are intro-
duced to understand the developed results in sections 2.4.2 and 2.4.3. All dynamic computations are
performed using a Newmark-beta algorithm (implicit Newmark with γ = 1/2 and β = 1/4), and no
numerical damping is developed because the experimental time increments are small enough.

2.4.1 Dynamic data analyses
Error computations are performed between experimental and numerical data (2.4.1.2) to evaluate the
damping model ability to characterise RC beam behaviours. Comparisons are performed in the time do-
main and in frequency one (2.4.1.1) to characterise the evolution of modal properties due to the increase
in damage level.

2.4.1.1 Signal processing

(a) Experimental data Because experimental dynamic signals are considered input ones for nu-
merical computations, they are processed to smooth data using convolution methods. If v = {vi}i∈[[1;nT ]]
is the vector of experimental data, then the vector vs = {vs,i}i∈[[1;nT+nsmooth−1]] with smooth values is
composed of elements vs,k in equation (2.17):

vs,k =
nsmooth∑

i=1

1
nsmooth

× vk−i+1 (2.17)

with nsmooth a number to calibrate. The aim is to limit the noise in�uence while keeping the global
variations of experimental data. So, a parametric study on this number gave nsmooth = 10 for all studied
experimental data: input signals and beam responses.

(b) From time domain to frequency domain The Fast Fourier Transform (FFT) is applied on
computed or measured data from the time to the frequency domain. In the case of white-noise signals,
an extensive frequency range is obtained. So, �lters can be considered to focus on values around the �rst
eigenfrequencies of the beam. The dynamic beam response is mostly characterised by its �rst and second
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modes. So, frequencies above 30 Hz can be eliminated. At the end of the dynamic experiments, the beam
was not completely damaged. Thus, we can consider that the beam frequency will not converge towards
zero. A small frequency range around zero can also be �ltered to avoid strong peak amplitudes to develop
around zero. However, due to the initial smoothing of experimental data, �ltering low frequencies does
not signi�cantly in�uence the frequency responses.
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Figure 2.8: Eigenfrequency and peak amplitude
determination on a white-noise response

(c) Eigenfrequency evaluation A focus on
the �rst beam eigenfrequency is conducted to
compare experimental and numerical data. For
white-noise signals, frequency responses of dis-
placements or accelerations lead to a principal
peak characterising the beam response. The ma-
jor peak frequency is, so, considered as the beam
eigenfrequency at the studied damage state. It
is convenient to compare two computations or
one computation with experimental data. The
peak amplitude is also interesting, particularly in
damping ratio in�uences. Indeed, the stronger is
the damping ratio, the lower is the peak ampli-
tude. So, by comparing numerical peak ampli-
tudes with the experimental ones, it is possible
to de�ne the most appropriate damping ratio. An
example of eigenfrequency fid and peak amplitude ap,id identi�cation is presented in �gure 2.8 for the
white-noise WN1 test.
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Figure 2.9: Frequency response between 4 Hz and
10 Hz of a complete DSS2 test

(d) White-noise and harmonic signal de-
composition for DSS tests A zoom between
4 Hz and 10 Hz of the frequency response to the
DSS2 entire test is shown in �gure 2.9. Seven
peaks are observable, with the corresponding fre-
quencies varying from 5 Hz to 8 Hz with an in-
crement of 0.5 Hz. Alternatively, these values are
precisely the imposed frequencies of harmonic
signal blocks (�g. 1.23b). Practically, these val-
ues are precisely the imposed frequencies of har-
monic signal blocks (�g. 1.23b). So, beam prop-
erties are not deductible from this plot. A de-
composition of responses is performed between
harmonic and white-noise blocks. Then, study-
ing each white-noise signal part response, inde-
pendently from harmonic parts, allows evaluat-

ing the beam modal properties at di�erent damage states. For signals DSS2 and DSS3, corresponding
respectively to numbers 2 and 3 in table 2.4, the signal decomposition is plotted in �gure 2.10.

2.4.1.2 Errors between experimental and numerical data
Errors are computed to evaluate di�erences between experimental data and numerical results. In the
case of a simple value, the Euclidean norm is considered given the error ∆L2 in percentage, in equa-
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Figure 2.10: Decomposed input signals between harmonic and white-noise parts

tion (2.18):

∆L2 = 100×
√

(vcomp − vref )2

v2
ref

(2.18)

with vcomp the value to be compared to the reference one vref .
A time-dependent error can be computed to characterise the signal parts more or less well rep-

resented numerically for time-dependent responses. For each element of a vector, equation (2.18) is
applied. However, the error can strongly increase when the reference value is close to zero. So, a limit is
chosen under which the error is not considered: a �rst criterion is thus de�ned from a given percentage
of the maximal amplitude of the experimental response. From a parametric study, a criterion of 3%
was determined. Finally, if a global error is required, the mean value of the error vector is considered.
In addition to the �rst criterion, a second one is chosen to eliminate the highest and lowest errors of
the mean value. Because the error computation aim is mainly to compare one damping formulation
to another, it is not only the exact error value that is of interest, but mainly the variation from one to
another. Such comparisons are, indeed, possible with the proposed error computation method.

2.4.2 Calibration on an elastic test
The �rst dynamic test applied on the HA16-C1A-2 RC beam is a white-noise signal with low amplitude
(tab. 2.4). The input signal is presented in �gure 1.23a. Experimentally, no damage was observed on the
beam after this test: the beam stayed in its linear behaviour. According to this assumption, only �ve
damping formulations are compared: RD, MPD, KPD, MD and WPD (table 2.11), because if nonlinearities
do not develop, updated matrices are equal to the initial one. In addition, damping ratios from 0.5% to
5% have been tested and compared with experimental data. In the following, the presented results
focus on damping ratios of 0.5% and 1%. Beyond 1%, the dynamic response is too damped to match
the experimental behaviour.

2.4.2.1 Concrete constitutive model comparisons
Figure 2.11 presents the numerical acceleration responses for RD formulation with BARFRA and RICBET
constitutive models and with damping ratios of 0.5% and 1%. Displacements could also be plotted, but
the excessively noisy experimental data do not allow pertinent comparisons with numerical data. In
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Figure 2.11: WN1 test - Acceleration responses

any case, the numerical acceleration �ts appropriately. As expected, increasing the damping ratio leads
to lower accelerations. In addition, in �gure 2.12, a zoom between 12 s and 20 s leads to a more detailed
comparison: BARFRA and RICBET responses are exactly superposed, as expected due to the linearity of
the test, demonstrating the good performances of both constitutive models. When higher acceleration
amplitudes are reached experimentally, 0.5% of damping ratio is better representative, while 1% damps
the response too much. However, when smaller accelerations are observed, even 1% of damping ratio
is insu�cient to match the experimental data. It highlights a limitation of considering the constant
viscous damping model in dynamic analyses.

2.4.2.2 Damping model comparisons

Applying the beam eigenfrequency identi�cation method detailed in paragraph 2.4.1.1(c) on experimen-
tal data leads to an eigenfrequency of 6.74 Hz, corresponding to 3.5% under the value determined with
hammer shock tests (6.99 Hz) for the HA16-C1A-2 beam. The gap could be due to experimental mea-
surement uncertainties and identi�cation method biases. Numerically, identi�ed eigenfrequencies are
around 6.9 Hz (tab. 2.12) closer from shock hammer test values and always with an error lower than 3%
with the experimental dynamic response. So, the errors between experimental and numerical responses
remain in the uncertainty range. Table 2.12 shows no di�erence between BARFRA and RICBET
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Figure 2.12: WN1 test - Damping formulation comparisons

Table 2.12: Frequency analyses of WN1 test - linear elastic response

BARFRA RICBET
Damping

formulation Damping
ratio Frequency Error Damping

ratio Frequency Error

0.5% 6.9 Hz +2.3% 0.5% 6.9 Hz +2.3%
RD

1% 6.9 Hz +2.3% 1% 6.9 Hz +2.3%
0.5% 6.9 Hz +2.3% 0.5% 6.9 Hz +2.3%

KPD
1% 6.9 Hz +2.3% 1% 6.9 Hz +2.3%
0.5% 6.9 Hz +2.3% 0.5% 6.9 Hz +2.3%

MPD
1% 6.9 Hz +2.3% 1% 6.9 Hz +2.3%
0.5% - - 0.5% 6.9 Hz +2.3%

MD
1% - - 1% 6.9 Hz +2.3%
0.5% 6.6 Hz -2.1% 0.5% 6.7 Hz -0.6%

WPD
1% 6.6 Hz -2.1% 1% 6.5 Hz -3.6%

models for RD, KPD and MPD formulations. It demonstrates the linear behaviour of the studied RC
beam submitted to the WN1 test. The same eigenfrequencies are also obtained with 0.5% and 1% of
damping ratios. So, this modal property does not seem to be in�uenced by the viscous damping ratio,
at least for linear computations.

For MD and WPD formulations, conclusions are slightly di�erent. No eigenfrequency is identi�ed
with the MD formulation and BARFRA model because of the incompatibility observed between these
two models. With RICBET, however, the MD gives the same response as other damping formulations,
validating the matrix implementation. Then, with WPD formulation, the identi�ed eigenfrequencies
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are lower and closer to the experimental dynamic response. Also, values are dependent on constitutive
models and damping ratios.

In addition to eigenfrequencies, the same analysis can be performed to compare peak amplitudes.
It is, particularly, a way to outline the damping ratio in�uence. Mainly, it can be deduced that the 1%
damping ratio is too high, while 0.5% is a little too small. So, the appropriate damping ratio for this test
would be around 0.6% for RD, MPD and KPD formulations. In contrast, WPD formulation has a more
substantial damping e�ect. So even with 0.1% of damping ratio, it still appears to be too large.

In conclusion, the two constitutive models also characterise, numerically, the linear behaviour ob-
served experimentally. Then, it appears that other model parameters, other than RD-type formulations,
more in�uence the linear dynamic responses obtained with modal damping matrices.

2.4.3 Numerical simulation of a damageable test (DSS2)
The numerical analyses on the WN1 test validated the implemented damping matrices and the consti-
tutive model abilities to perform dynamic computations. Now, the DSS2 test (second test in table 2.4),
whose input signal is plotted in �gure 1.23b, is of interest because it is the �rst damageable test. The six-
teen damping formulations of table 2.11 are tested again with BARFRA and RICBET constitutive models
and with damping ratios varying from 0.5% to 5%. The �rst computations, performed with a damping
ratio of 0.5%, showed a lack of viscous damping to match the experimental responses. That is why
larger values have been studied, and results obtained with 1%, 2%, 3% and 5% are mainly studied.

For the WN1 test, the time computations were similar from one formulation to another because no
update was performed. Now, huge variations are observable. In the case of the RD-type formulations
with RICBET model and a damping ratio of 2%, updating the sti�ness matrix increases the computa-
tional time by 17% (CRD and SRD), and updating a0 and a1 parameters raises the required time by 33%
due to the modal analysis to perform at each time step. In addition, the di�erence between RICBET
and BARFRA is higher than for the WN1 test due to the more complexity of the RICBET model when
nonlinearities develop.

Table 2.13 presents converged computations with both constitutive models, the four damping ra-
tios of interest and the sixteen studied damping formulations. The DSS2 input signal comprises seven
harmonic blocks with white-noise signals between blocks. So, the numerical computations are decom-
posed in seven increments equivalent to the harmonic blocks. When dynamic response divergences
are observed, symbol 7 is indicated in table 2.13 with a number corresponding to the increment during
which the divergence occurred. The experimental time step was 0.005 s, and the equal value is gener-
ally used for the numerical computations. However, this value was too high for some of them to allow
the material model convergence, and a time step two times smaller was considered. However, even by
decreasing even more the time step, some damping models still led to instabilities in material responses.

Before comparing the modelling parameters, some beam deformations are presented in �gure 2.13.
One modelling is chosen herein, but more comparisons are proposed in appendix D.1 (�g. D.1 and D.2).
The time steps chosen correspond to the most signi�cant displacement amplitudes of the dynamic re-
sponse. It appears that, in all cases, the beam movement is completely de�ned by its �rst mode.

2.4.3.1 Concrete constitutive model comparisons

First, the constitutive models (BARFRA and RICBET) are compared for some results. Table 2.13 shows
divergences for the same damping formulations between RICBET and BARFRA, but, in general, BARFRA
diverges for lower increments than RICBET. That is to say, that with BARFRA, instabilities occur at
higher signal frequencies than with the RICBET model.
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Table 2.13: Completed computations of the DSS2 test

aaaaaaaBARFRA aaaaaaaRICBETDamping
formulation 1% 2% 3% 5% 1% 2% 3% 5%

RD 3 3 3 3 3 3 3 3

RD_ACT 3 3 3 3 3 3 3 3

CRD 3 3 3 3 3 3 3 3

SRD 3 3 3 3 3 3 3 3

KPD 3 3 3 3 3 3 3 3

KPD_ACT 3 3 3 3 3 3 3 3

CKPD 3 3 3 3 3 3 3 3

SKPD 3 3 3 3 3 3 3 3

MPD 3 3 3 3 3 3 3 7(7)
MPD_ACT 3 3 3 3 3 3 3 3

MD 7(2) 7(2) 7(2) 7(2) 7(6) 7(6) 7(6) 7(6)
MD_ACT 7(2) 7(2) 7(2) 7(2) 7(6) 3 7(5) 7(7)
WPD 7(7) 7(7) 7(7) 7(7) 3 3 3 3

WPD_ACT 3 3 3 3 3 3 3 3

CWPD 7(1) 7(1) 7(1) 7(1) 7(7) 7(7) 7(7) 7(7)
SWPD 7(1) 7(1) 7(1) 7(1) 7(7) 7(7) 7(7) 7(7)

* 3aasigni�es that the computation went until the end.
* 7(i) signi�es that the computation diverged during the increment i with i 6 7.

(a) Time step t(i−1) (b) Time step t(i) (c) Time step t(i+1)

Figure 2.13: DSS2 test - Beam displacement [m] - damping formulation comparisons
RICBET - RD 2%

Figure 2.14 presents the numerical responses of BARFRA and RICBET models with KPD_ACT damp-
ing formulation and a damping ratio of 2%. The time acceleration response is similar for both consti-
tutive models (�g. 2.14a and 2.14d), except at the �fth block. With BARFRA, a lower acceleration than
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(c) BARFRA - behaviour law aaaaaa
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(d) RICBET - acceleration - time
domain
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Figure 2.14: DSS2 test - Dynamic responses - KPD_ACT 2%

the experimental response is observed, meaning that, numerically, the beam is no more in resonance
for a frequency signal of 6 Hz. With RICBET, the beam appears to be still damaged during this block,
while the beam acceleration is only reduced in the following block. With BARFRA, the damaged beam
eigenfrequency reaches around 6.5 Hz, while it instead reaches 6.0 Hz with RICBET. So, the �nal dam-
age level is lower with BARFRA constitutive model. By comparing with the experimental response, it
appears that both models do not damage the beam enough. This conclusion is also observable in the
constitutive relation laws (�g. 2.14c and 2.14f) because the global numerical sti�ness is higher than the
experimental one. The di�erences between the model behaviours can be discussed from these two �g-
ures. The pinching e�ect observed on quasi-static tests also appears here with RICBET. With BARFRA,
on the contrary, no null forces are obtained for zero displacements, which is more representative of
experimental data. However, experimental displacements around zero values are very noisy, so that no
conclusion can be deduced about a better representation of the BARFRA model. Then, in terms of max-
imal forces, it appears that RICBET induces too large values, making it conservative. On the contrary,
BARFRA gives extreme values very close to the experimental ones but only at one instant and, most of
the time, forces are smaller than the experimental data. Finally, acceleration responses in the frequency
domain (�g. 2.14b and 2.14e) show that the higher frequencies are less damped with the BARFRA model.
However, the peak amplitudes are more representative of experiments.

The results presented in �gure 2.14 demonstrate that the two constitutive models can more or less
characterise the experimental behaviour depending on the data of interest. While BARFRA reduces the
computational time and better evaluates extreme force, displacement or acceleration responses, RICBET
presents a more conservative behaviour and is closer to the experimental damage state. However, by
comparing other damping formulations, di�erent conclusions can be deduced (see BARFRA results in
�gures 2.17 and 2.18). Notably, for the MPD-type formulations, BARFRA leads to maximal displacement
and force values, respectively �ve and ten times larger than the experimental values. In these cases, the
high frequencies strongly in�uence responses. Indeed, it was already seen in �gure 2.14b that the high
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frequencies were less damped with the BARFRA model, and the MPD-type formulations do not damp
the high frequencies, meaning that the model is not dissipating energy through nonlinearities. So, the
use of BARFRA accentuates the di�culties observed with MPD-type formulations. It is also observable
on RD-type formulations to a lesser extent because of the signi�cant in�uence of the mass proportional
part in RD. Because of BARFRA problems, comparing damping models in the following part will be
performed with the RICBET model.

2.4.3.2 Damping model comparisons
First, table 2.13 shows that the damping ratio choice does not in�uence the computational convergence.
So, this is not the lack of viscous damping that can explain a computational convergence but rather the
combination of a damping formulation and a material model. Then, in terms of damping formulations,
modal and Wilson-Penzien types exhibit di�culties in performing nonlinear analyses with studied input
signals.

(a) Formulations Figure 2.15 synthesises the load-displacement curve envelops obtained with the
RICBET constitutive model and all damping formulations associated with a damping ratio of 2%. These
curves are plotted based on the displacements at the beam centre and the forces at supports. The �rst line
exhibits the envelop monotonic skeletons (also called "capacity curves"), demonstrating the good perfor-
mance of all damping models to characterise the experimental linear behaviour. But the nonlinearities
are developing too late, so larger maximal forces are reached numerically for the same displacements
as experimentally. Figures 2.15e to 2.15h show the entire load-displacement curve envelops allowing to
study the hysteresis loops. First, MD, CWPD and SWPD exhibit behaviours that are not representative
of the experimental data because, based on table 2.13, these formulations diverge with RICBET and 2%
of damping ratio. Then, despite its convergence, RD_ACT cannot match the experimental data because
too large forces and displacements are reached. For other formulations, di�erent load-displacement
curves are obtained. (i) WPD and WPD_ACT (�g. 2.15h) are almost linear, so very few nonlinearities
occur, and no energy is dissipated. (ii) For MPD-type formulations (�g. 2.15g), a low damage level is
again reached because the unloading sti�nesses are close to the initial ones. So, the beam is not damaged
enough compared to the experimental response. However, compared to WPD-type, a small amount of
energy is dissipated, demonstrating the development of few nonlinearities. (iii) For MD formulation
(�g. 2.15g), an adequate amount of damage (deduced from the sti�ness degradation) is developed, but
too large displacements and forces are reached. (iv) Then, with KPD-type formulations (�g. 2.15f), the
sti�ness loss is higher than MPD-type formulations for the same maximal displacements, so the experi-
mental behaviour is better represented. However, it seems again to lack of dissipations. (v) Finally, small
cycles are obtained for RD-type formulations (except RD_ACT) in �gure 2.15e, leading to a lack of dam-
age compared to experiments. The numerical responses are close to MPD-type formulation ones except
that more energy is dissipated (as observed with the hysteretic cycles). So, one more time, it appears
here that the mass proportional part strongly in�uences RD, but the sti�ness one has a correcting e�ect.
It can be concluded that the KPD-type formulations are the best to represent experimental hysteretic
loops.

Indications on �nal damaged states can be deduced from �gure 2.15. Figure 2.16 can be analysed to
further study the development of damage through computations. The decomposition between harmonic
blocks and white-noise signal parts presented in �gure 2.10a is applied to numerical and experimental
acceleration responses. The duration of all blocks is su�cient to reach steady-state responses so that
frequency identi�cations can be performed. The �rst line focuses on harmonic blocks. A linear evo-
lution of frequencies is observed experimentally and numerically because it corresponds to the signal
properties: from one block to another, the frequencies are decreasing from 0.5 Hz, so an evolution be-
tween 8 Hz and 5 Hz is obtained. Four formulations cannot correctly characterise this decrease: three
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Figure 2.15: DSS2 test - Envelops of the behaviour responses - (RICBET 2%)

are the damping models leading to divergent computations. They mainly show di�culties characteris-
ing the �rst block as MD_ACT, which converges only with a damping ratio of 2%. So, it appears that
some inadequate damping formulations can be identi�ed at the computation beginning.

Then, the white-noise signal parts must be of interest to study the beam modal properties. Fig-
ures 2.16e to 2.16h present the evolution of the beam eigenfrequencies for white-noise blocks, that is to
say, after di�erent damage levels imposed by the harmonic blocks with large amplitudes. The white-
noise blocks 1 and 8 are very shorts, so stronger errors can be obtained on these blocks. Experimentally,
the �rst eigenfrequency is 8 Hz. However, using the hammer shock and WN1 tests, an undamaged
beam eigenfrequency around 7 Hz was identi�ed. So, the initial eigenfrequency can not be above the
undamaged value, which explains that numerically the initial values are around 7 Hz. WPD and WPD-
type formulations are the only formulations given the same eigenfrequencies that experimental data
for the three �rst blocks. Despite the possible errors in eigenfrequency identi�cation at the beginning,
the global tendency during computations is a decrease in frequencies, meaning that the beam damages
along with the DSS2 test. From block 6, the frequency stabilises, so the harmonic block at 6 Hz is the
last one damaging the beam. After this block, the input signal frequency must be lower than the beam
eigenfrequency, and the beam does no more enter in resonance, leading to beam movements of lower
amplitudes. Numerically, the general tendency also presents a decrease but is much less signi�cant
than the experimental one. It means that the beam is numerically not damaged enough, consistent with
the conclusions performed in load-displacement curve envelops (�g. 2.15e to 2.15h). It is the case of
RD, CRD, SRD, KPD, KPD_ACT, CKPD, MPD and MPD_ACT formulations. For RD_ACT and MD_ACT,
better matching with the experimental data is obtained, corresponding to the larger damage observed in
the previous analysis. RD_ACT formulation is, therefore, an example showing that the damping model
performance depends on the variable of interest: the damage state is better characterised with RD_ACT
formulation. At the same time, too large displacements and forces are reached. Unlike RD_ACT, SKPD
demonstrates that even if the constitutive law correctly represents the experimental data, it is not the
case for the damage state. Finally, some blocks frequency identi�cations were not possible for some
formulations due to unrealistic dynamic responses, explaining that some data are missing.
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Figure 2.16: DSS2 test - Frequency responses (white-noise signals - WN - and harmonic block signals -
HB -) - RICBET 2%

(b) Damping ratios Figures 2.17 and 2.18 present the damping ratio choice in�uence. First, from
�gure 2.17, it appears that the more signi�cant is the damping ratio, the smaller is the hysteresis loop, as
expected. If more viscous damping is applied in the model, the beam movements are strongly damped,
and lower damage is developed in the beam. As discussed with the di�erent formulations, increased
energy dissipation leads to signi�cant errors in extreme forces and displacements. So a compromise is
required to choose the adequate damping ratio. Then, the four formulations in �gure 2.17 are attentively
studied, and some observable di�erences. For WPD formulation (�g. 2.17d), because of its strong damp-
ing e�ect, whatever the damping ratio is, the response is always linear. Then, for RD (�g. 2.17a), 1% of
damping ratio is not strong enough, but the load-displacement curves are equal with 2%, 3% and 5% of
damping ratios. In the same idea, with KPD, no in�uence of damping ratio is obtained. On the contrary,
with CRD (�g 2.17b) and CKPD (�g. 2.17c), a more linear evolution is observed on responses from one
damping ratio value to another, more representative of the expected behaviour. First, with 1%, using
the tangent sti�ness seems to stabilise the numerical response, maybe because the energy dissipations
are better balanced and physically modelled. All these remarks demonstrate the better performance of
the damping models with the tangent sti�ness matrix.

The same damping ratio comparisons are performed with BARFRA constitutive model. Figures 2.17e
to 2.17h demonstrate the strong di�culties of BARFRA to characterise the experimental behaviour,
whatever the damping formulation or the damping ratio. Extreme values numerically attained with RD
(�g. 2.17e) and CRD (�g. 2.17f) are ten times too large. With CKPD (�g. 2.17g) and WPD (�g. 2.17h) the
hysteresis loops are not developed, and even the beam global sti�ness is not matching. So, BARFRA
constitutive model should be carefully used because results matching the experimental behaviours are
only obtained with some viscous damping models.

In terms of damage state evolutions, �gure 2.18 presents the beam eigenfrequency evolutions for
white-noise input signal parts. With RD (�g. 2.18a), because of the large loops with 1% of damping
ratio, lower eigenfrequencies are obtained than with the other damping ratios. All studied damping
ratios, except 1%, gave equal constitutive laws, and similar modal properties are deduced. So there is
no damping ratio in�uence with this formulation. Then, with CRD (�g. 2.18b), the lower is the damp-
ing ratio, the lower is the �nal beam eigenfrequency. It is in adequacy with load-displacement curves
because the more damage develops, the more the eigenfrequency decreases. For CKPD (�g. 2.18c),
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(d) RICBET - WPD
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Figure 2.17: DSS2 test - Behaviour law envelops - damping ratio comparisons
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Figure 2.18: DSS2 test - Frequency responses of the white-noise signals - damping ratio comparisons

while a similar in�uence was observed on the behaviour laws than CRD, here the damping ratio does not
impact the eigenfrequencies, except for 1%, which exhibits divergences. Finally, for WPD (�g. 2.18d),
as observed in �gure 2.16h, it appears that a linear behaviour consideration does not allow to represent
the response modal frequency content.

The description of frequencies with the BARFRA constitutive model (�g. 2.18e to 2.18h) again ex-
hibits this model di�culty in performing nonlinear dynamic computations. Inconsistent results are
obtained, and they do not allow physical conclusions about this material model.
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2.4.4 Numerical responses of complementary tests
Based on the analyses performed with the DSS2 test, a smaller number of damping formulations are
compared on the following tests (number 3 to 5 in table 2.4) and only RICBET constitutive model is
considered. Notably, modal and Wilson-Penzien formulations are not considered because of their con-
vergence di�culties or their incapacity to represent experimental responses. Three tests are presented
with two damping formulations (RD and KPD_ACT). Di�erent damping ratios were tested and the ones
presented give the best results for each test: 1% for DSS3, 0.5% for DSS4 and 1% for DSS5. As DSS2, the
three studied tests are decreasing sinus sweep signals with di�erent frequencies and amplitudes, and
the numbers correspond to the order of experiments.

First, �gure 2.19 presents the acceleration responses in the time domain. For the DSS3 test (�g. 2.19a
and 2.19d) numerical data are well matching the experimental ones with maximal accelerations slightly
too large. On the contrary, the two other tests maximal experimental accelerations are not reached
numerically. This e�ect could be due to a lack of damage leading to a too rigid beam model. Numerically,
the resonance is attained one block too early compared to the experimental data. What is interesting
with the time acceleration responses is to observe the end of each harmonic block. The beam behaves
in free vibrations because the input signal becomes almost null. An exponential decrease is obtained,
and the selected damping ratio can be discussed. For DSS3 and DSS5 tests, RD and KPD_ACT both
match the experimental data, so 1% of damping ratio is pertinent. However, for the DSS4 test, RD and
KPD_ACT give di�erent results, and KPD_ACT is not damped enough. It again demonstrates that the
damping ratio does not follow a general tendency and needs to be selected carefully depending on the
computation and damping formulation.
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(d) DSS3 - KPD_ACT 1%
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Figure 2.19: DSS3 to DSS5 tests - Acceleration responses - RICBET

Then, �gure 2.20 shows that all computations correctly match the global beam sti�ness. However,
a considerable di�culty appears in hysteresis modellings. While for the DSS3 test, the hysteresis loops
are too large, not enough energy is dissipated numerically for DSS4 and DSS5 tests. So, despite a good
matching in dynamic responses, the models have shortcomings in energy dissipation. At the structural
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Figure 2.20: DSS3 to DSS5 tests - Behaviour law envelops - RICBET

level, these shortcomings are solved with viscous damping. Nevertheless, if hysteresis phenomena were
better modelled, the viscous damping requirement could be signi�cantly reduced. As for the accelera-
tions in �gure 2.19, it appears that neither the maximal beam displacements nor the extreme forces are
characterised. So, these computation results should not be considered to validate the structure safety.

Finally, the eigenfrequencies of the three tests are displayed in �gure 2.21. As for the DSS2 test, the
harmonic responses present a linear amplitude decreasing trend corresponding to the imposed harmonic
signals and are correctly modelled numerically (�g. 2.21a to 2.21c). Nevertheless, the last block of DSS4
and DSS5 tests is poorly characterised numerically. It is due to the low amplitude of the input signal
leading to a numerical characterisation of the beam properties and not the signal ones. Now, if the
extreme block values are removed because of their few data, experimentally, a continuous decrease can
be noticed until the end of the DSS4 test in �gures 2.21d to 2.21f. Then the eigenfrequency stabilises
during the DSS5 test. Thus, the beam is damaged, particularly during the DSS3 test and a little during
the DSS4 one. The undamaged beam frequency was around 7 Hz, and a decrease until 3 Hz was observed
about damage phenomena. Numerically, the decrease matches the experimental data except for the
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Figure 2.21: DSS3 to DSS5 tests - Frequency evolutions - RICBET
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last block. Then, at the beginning of the DSS4 test, the experimental frequency is more signi�cant than
at the end of the third computation, which is not physically acceptable because the beam damage can
not decrease. The experimental error can be due to an intense noise on measured accelerations with low
amplitudes. It explains, thus, the di�erence between the numerical and experimental responses for the
�rst block. For blocks 2 to 4, the numerical frequencies match the experimental ones. However, from
block 5, the numerical frequency does not decrease as expected. It is linked with �gure 2.19 because
the beam is not damaged enough during the fourth harmonic block, so the frequency decrease is not
observable. The lack of damage leads to the constant frequency during the end of DSS4 and all DSS5
tests. The frequency is not evolving as well as experimentally. Stabilisation of the eigenfrequency is
obtained numerically and experimentally but with a higher numerical value. An explanation for this
observation could be a lack of representativeness of the material model (the damage value is converging
towards a too low value) or the lack of mechanism descriptions (steel-concrete interface, for example).
The damage function presents an asymptote (�g. 2.5d) not allowing to reach the observed experimental
damage.

2.5 Energy balance analyses
Previously, the performances of studied model parameters were evaluated through some comparisons
with experimental data. This section analyses energy distributions at the structural (or global) and
material (or local) levels. First, the implementation of energy computations in Cast3M is explained
in section 2.5.1. Then, a study of constitutive models is proposed with one DOF system submitted to
quasi-static cycles in traction and compression (section 2.5.2). Finally, sections 2.5.3 and 2.5.4 focus on
dissipations respectively at the structural and concrete levels during the carried out numerical compu-
tations.

2.5.1 Description and implementation of energies
2.5.1.1 Energy classi�cation
Absolute and relative energy balance computations are de�ned in section 1.1.3. Table 2.14 synthesises
the equations of energies at the structural level. Imparted, kinetic and damping energies can be com-
puted with the matrices of the problem, so only an integration along the beam is required to compute
these values. However, for the absorbed energy, in the case of a nonlinear constitutive material model,
the sti�ness matrix can not be used to compute the energy, so the behaviour law integration on beam
volume is required.

The absorbed energy is linked with the dissipative phenomena. That is why an energy classi�cation
at the material level is also proposed in table 2.15. The terms de�ned in this table will be used during the
energy analyses, particularly in section 2.5.4. The hysteretic and associated work hardening energies
are de�ned with sums because they deal with the constitutive models dissipative phenomena.

2.5.1.2 Hysteretic energies of constitutive models
Both studied concrete models derive from a thermodynamic approach. So, the hysteretic and associated
work hardening energies can be deduced from the state potential, considering the Clausius-Duhem
inequality. For the BARFRA model (eq. 2.5), only a damage dissipative phenomenon Eh,d is considered
with an isotropic work hardening Wh,d (tab. 2.16). For the RICBET model (eq. 2.8), four dissipative
phenomena are considered: (i) the plasticity in compression Eh,p associated with an isotropic work
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Table 2.14: Energies classi�cation - structural level

Name Symbol aaaaaaaaaaaaaEquation(b)

Imparted energy Ei
(a) aaa

∣∣∣∣∣∣∣

Ei,r = −
∫

L (M.Üs.dU) dx

Ei,a =
∫

L (M.Üa.dUs) dx

Kinetic energy Ek
(a) aaa

∣∣∣∣∣∣∣

Ek,r =
∫

L (M.Ü.dU) dx

Ek,a =
∫

L (M.Üa.dUa) dx

Damping energy Ed aaa
∣∣∣∣Ed =

∫
L (C.U̇.dU) dx

Absorbed energy Ea aaa
∣∣∣∣Ea =

∫
V (σc.ε̇c + σs.ε̇s) dV

(c)

Total energy Et
(a) aaa

∣∣∣∣∣∣∣

Et,r = Ek,r + Ed + Ea

Et,a = Ek,a + Ed + Ea

(a) Relative / absolute decomposition
(b) ∫

L (.) dx is the integral on beam length L and
∫

V (.) dV is the integral on beam volume V
(c) .c and .s subscripts are respectively for "concrete" ans "steel"

Table 2.15: Absorbed energy decomposition

Name Symbol Equation(a),(b),(c)

Hysteretic energy Eh Eh =
nEh∑

i=1
Eh,i

Concrete strain energy
(elastic recoverable) Es,c Es,c =

∫
V (σc.ε̇ec) dV

Steel strain energy
(elastic recoverable) Es,s Es,s =

∫
V (σs.ε̇es) dV

Work hardening Wh Wh =
nWh∑

i=1
Wh,i

Dissipated energy Ediss Ediss = Eh −Wh

(a) nEh = 1 and nWh
= 1 for BARFRA model and nEh = 4 and nWh

= 3 for RICBET model
(b) ∫

V (.) dV is the integral on beam volume V
(c) .c and .s subscripts are respectively for "concrete" ans "steel"
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Table 2.16: Classi�cation of energies - BARFRA

Phenomenon Hysteretic energy Eh,i Work hardeningWh,i

Damage Eh,d =
∫

V

(
Y.ḋ

)
dV Wh,d =

∫
V (Z.ż) dV *

* Isotropic work hardening

hardening Wh,p, (ii) the friction Eh,f with a kinematic work hardening Wh,f , (iii) the damage Eh,d
with an isotropic work hardening, and (iv) the unilateral e�ect Eu,h. Expressions of these energies are
written in table 2.17.

Table 2.17: Classi�cation of energies - RICBET

Phenomenon Hysteretic energy Eh,i Work hardeningWh,i

Plasticity Eh,p =
∫

V (σc.ε̇pc) dV Wh,p =
∫

V (R.ṗ) dV *

Friction Eh,f =
∫

V (σπ.ε̇π) dV Wh,f =
∫

V (X.α̇) dV **

Damage Eh,d =
∫

V

(
Y.ḋ

)
dV Wh,d =

∫
V (Z.ż) dV *

Unilateral e�ect Eh,u
∫

V (ζ.η̇) dV -
* Isotropic work hardening
** Kinematic work hardening

2.5.1.3 Implementation of energy computations
The kinetic Ek , imparted Ei and damping Ed energies are directly computed with the knowledge of
mass (kinematic and imparted energies) or damping (damping energy) matrices. At each time step,
displacement, velocity and acceleration increments are known for each beam node. Products between
matrices and vectors are thus computed, and the incremental values are summed along time given the
energy evolutions over time.

The last term of the energy balance equation, the absorbed energy, could be computed similarly in
the case of a linear material behaviour using the sti�ness matrix. However, the stress-strain curve must
be integrated into beam volume because nonlinear constitutive models are considered here. Because of
the inhomogeneous section, the sum of concrete and steel absorbed energies gives the interest value.
The integrations on sections are already performed, considering both materials, given the forces and
displacements at beam nodes (multi-�bre methodology algorithm in �gure 2.3). So, only the integration
along the beam is required with the INTG operator applied on an "evolution"1.

The hysteretic and work hardening energy computations are also implemented to study the di�erent
dissipative phenomena. First, all internal variables and associated forces (tab. 2.1 and 2.2) are de�ned
in the constitutive model �les, as well as the dissipative terms de�ned by equations (2.5) and (2.8). All
computed values are incremental. Thus, during computations, at each time step, dissipative terms are

1The "evolution" is an object of Cast3M to characterise the evolution of a value f(x) as a function of another value x. The
evolution is composed of two (or more) vectors corresponding to x and f(x).
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integrated on sections (INTG operator applied on an "element �eld"2) and is expressed at beam nodes.
Finally, integrations are performed for the total absorbed energy, and the incremental energy values are
obtained. Then, the time-dependent energies are computed by accumulating the incremental data.

Di�erent parametric analyses were performed to validate the energy computations. Mainly, it was
observed that the energies are strongly dependent on the structure discretisation. So, the equality be-
tween the load-displacement curve integration on beam length and the stress-strain integration on beam
volume was investigated to choose an adequate section discretisation on the weak axis without increas-
ing too much computational time. For BARFRA, �ve elements were su�cient, while at least eight were
required for the RICBET model (�g. 2.4b). These numbers, allowing the representation of stress and
strain gradients, have been chosen for the numerical computations.

Finally, despite the �xed beam geometrical data, the in�uence of beam slenderness was studied to
characterise the shear e�ects on energy computations. Timoshenko hypotheses considered in Cast3M
are, indeed, including them. The absorbed energy in the tangent direction appeared to be at most 1%
of the value. So, the shear locking is well avoided.

2.5.2 Dissipative energies of constitutive models
One �bre element of concrete is considered and submitted to quasi-static traction and compression
cycles. Two traction/compression cycles are studied.

2.5.2.1 Energy distribution at the material level
First, �gure 2.22 presents the absorbed energy decomposition proposed in table 2.15 for both concrete
models, with the associated constitutive laws. The steel strain energy Es,s is not plotted here because
only concrete is studied.

For the BARFRA model, the constitutive law (�g. 2.22a) shows that the �rst cycle completely dam-
aged the element in traction because the second cycle begins with the slope of the �rst cycle ends. In
compression, no-nonlinearity develops, and the behaviour stays linear in the studied strain range. Then,
for the energy distribution in �gure 2.22b, it appears that hysteretic, work hardening and dissipated en-
ergies are only evolving during the �rst traction cycle. Indeed, this is the only one inducing nonlineari-
ties, as discussed in the behaviour law. Then, absorbed and strain energies are equal because a damage
model is considered, so the total strain is equal to the elastic one and

∫
V (σc.ε̇ec) dV =

∫
V (σc.ε̇c) dV

given Es,c = Ea. This energy increases during compression loading and decreases symmetrically dur-
ing compression unloading. So, recoverable energy is well developed during compression. The de�ned
strain energy does not return to zero for a zero strain in the traction parts.

RICBET constitutive law (�g. 2.22c) shows that the second cycle begins with the damaged sti�ness
obtained after the �rst cycle until the stress reaches the �nal value of the �rst traction loading. Then,
damage continues to develop while traction loading increases. Because of the more considerable dam-
age value, the traction unloading part follows a more "gentle" slope than during the �rst cycle. The null
strain value, corresponding to the limit of sti�ness recovery, is reached later. In compression, a sti�-
ness recovery is observed with a less steep slope than in the �rst cycle because this slope depends on
damage level. Then, the elastic sti�ness is reached at the limit of−0.5 MPa, and the unloading response
follows the same curve as the loading. Indeed, the same maximal strain is considered for both cycles,
so no more plasticity develops during the second cycle. Let us take a look at the energy distribution
in �gure 2.23d. First, the elastic strain energy, computed with εe = ε − εp − η.επ , slightly increases
during the �rst cycle beginning because of the small linear behaviour in traction. Then, it decreases
when the nonlinearities develop to reach a null value at the null strain. During compression, the elastic

2The "element �eld" is an object de�ned in Cast3M for data considered at model elements. So, knowledge of the element
formulation is generally required to process data.
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Figure 2.22: Energy analysis of one �bre element of concrete - two traction/compression cycles

energy increases during the linear behaviour and stabilises when plasticity occurs. Then, it is recovered
during the unloading. At the beginning of the second cycle, the damage sti�ness is again followed, so
no linear behaviour develops, and the strain energy stays null. Finally, the strain energy appears again
in compression. The e�ect of hysteretic, work hardening and dissipated energies are reversed because
they correspond to nonlinear behaviours. They stay constant when the elastic strain energy evolves and
inversely. Hysteretic and dissipated energies are not monotonous because of the unilateral e�ect, which
develops recoverable energy, as seen in �gures 2.23d to 2.23f. Finally, the absorbed energy evolution is
more complex due to the combination of nonlinear and elastic energies.

2.5.2.2 Dissipative phenomena
Then, �gure 2.23 focuses on the decomposition of hysteretic and work hardening energies as presented
in tables 2.16 and 2.17, respectively, for the BARFRA and RICBET models. Figures 2.23a and 2.23d exhibit
the responses of two traction and compression cycles. In contrast, only traction cycles are considered
in �gures 2.23b and 2.23e, and in �gures 2.23c and 2.23f only compression cycles are of interest.

With the BARFRA model (�g. 2.23a to 2.23c), the hysteretic energy is only associated with damage.
Nonlinearity develops during the �rst traction cycle (0 to 1 s in �gures 2.23a and 2.23b). The work
hardening associated energy is negative for damage. Clausius-Duhem inequality (eq. 2.5) is checked
because the dissipative energy stays positive, validating the thermodynamical approach of the BARFRA
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(c) BARFRA - only compression
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(d) RICBET - traction/compression
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Figure 2.23: Energy distribution of dissipative phenomena for one �bre element - two cycles

model.
RICBET model (�g. 2.23d to 2.23f) is characterised by four dissipative phenomena. For traction cy-

cles (�g. 2.23e), the plasticity energy is null because the plasticity model is de�ned for compression.
The damage energy only evolves during the �rst second corresponding to the �rst loading, meaning
that during the second cycle, no more damage develops. On the contrary, the friction energy increases
during both cycles because when cracks are opening, they dissipate energy. Here, the damage energy
represents the major part of the dissipated one because of the few considered cycles. Then, for the uni-
lateral e�ect, this is recoverable energy developing only during sti�ness recovery. Contrary to crack
openings, crack surface friction, which involves heat transfers, the unilateral e�ect is not responsible
for any energy transfer and does not eliminate energy from the system. Finally, in terms of work hard-
ening energies, the one associated with damage is also negative, as for the BARFRA model. For friction
phenomena, the work hardening energy is negligible in this case. In compression (�g. 2.23f), the most
dissipative phenomenon is plasticity with a positive associated work hardening energy.3 Because the
stress becomes positive at the �rst cycle end, the element is submitted to traction. So, damage energy,
followed by friction and unilateral e�ect, also appears. The same loading is applied during the second
cycle, so no additional plasticity develops, and only friction induces few energy dissipations. Due to
the positive plasticity work hardening, the dissipated energy is lower than the plastic hysteretic energy.
Finally, dissipated energies during traction and compression cycles in �gure 2.23d are a combination of
dissipations in �gures 2.23e and 2.23f. The plasticity is the most dissipative phenomenon here because
of the strong nonlinearities reached in compression. It will not be the case in the RC beam analysis. The
Clausius-Duhem inequality (eq. 2.8) is again checked in the three �gures because the dissipated energy
is always positive, validating the thermodynamical approach of the RICBET model.

3Here, only a concrete �bre is studied. That is why no discussion is done in terms of steel yielding. It would be required in a
RC element analysis if nonlinearities were to develop in compression.
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2.5.3 Energy balances at the structural level
The dynamic computations are now studied in terms of energy dissipations at the structural level, based
on the decomposition in table 2.14. First, �gure 2.24 presents the absorbed energy decomposition be-
tween steel reinforcements and concrete to validate the experimental objective. Steel absorbed energy
is recoverable, corresponding only to the elastic strain energy. No nonlinearity develops at the steel
material level. The rebars are well staying in their elastic range. On the contrary, the nonlinearity
developments at the concrete level induce an un-recoverable total absorbed energy.
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Figure 2.24: DSS2 test - Total absorbed energy decomposition between steel and concrete

2.5.3.1 WN1 test
Figure 2.25 displays the absolute and relative energy decompositions at the structural level (tab. 2.14),
as well as the associated errors between total and imparted energies. The total energy is decomposed
between damping, absorbed and kinetic energies. The absorbed energy is recoverable for both formu-
lations because of the computation linearity: the only non-null energy being the strain energy at the
material level. Then, the relative and absolute energy balances appear to behave similarly and are val-
idated. The errors in �gures 2.25c and 2.25d are converging towards values inferior to 5%, so it can
be considered that the energy implementations are accurate. In the beginning, more signi�cant errors
are due to the weak values of imparted energy. Finally, the global errors written represent the mean of
time-domain errors and again demonstrate a good accuracy or results for both formulations.

Because the absolute energy balance (section 1.1.3.1) exhibits an equal distribution and because it is
commonly used in earthquake engineering, �gures 2.26 and 2.27 focus on this formulation. The three
model parameters are studied herein: (i) the choice of material behaviour (BARFRA and RICBET), (ii)
the choice of damping formulation (RD, MPD, KPD, MD and WPD) and (iii) the choice of damping ratio
(0.5% and 1%).

In �gure 2.26, the �nal values of total and imparted energies are plotted to evaluate the ability of
each damping formulation to characterise the energies accurately. Remarkably, the modal damping
formulation leads to considerable di�erences between total and imparted �nal energies. In addition,
BARFRA and RICBET do not give the same responses with this formulation (MD) despite the com-
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Figure 2.25: WN1 test - Structural energy balances - RICBET - RD 0.5%

putation linearity, again demonstrating the incompatibility between BARFRA and MD formulation as
already discussed. So, this formulation is not adequate for this kind of input signal. Minor di�erences
are observable between the four other formulations between BARFRA and RICBET responses, partic-
ularly for KPD formulation. It demonstrates that microscopic cracks may open during this test despite
the expected computation linearity, leading to very few energy dissipations. It is not observable in the
global responses because the maximal displacement depends neither on the constitutive model nor the
damping model. Only the increase in viscous damping ratio leads to lower maximal displacements. In
comparison with the experimental data, all computations minimise the maximal displacements, partic-
ularly WPD with its more substantial damping e�ect. Finally, the relative energy values are also plotted
and follow the same tendencies as the absolute ones. So, the errors seem to result from damping and
absorbed energies. Indeed, the kinetic energy is the only one varying between both formulations, and
its consequence is observed in the lower amplitudes in the case of relative energy balances. Then, when
the damping ratio increases, the damping energy also rises, followed by the imparted and total ones.

Figure 2.27 presents the total energy decomposition at the computation end between damping, ab-
sorbed and kinetic energies. Despite the almost linearity of this test, the MD formulation exhibits a
non-negligible value of �nal absorbed energy, which is not physical because the beam was not damaged.
This value can explain the substantial gap between total and imparted energies (�g. 2.26a and 2.26c):
the non-null absorbed energy improves the total one, while the imparted energy is not changed. On the
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(b) RICBET - ξ = 0.5%
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(c) BARFRA - ξ = 1%
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(d) RICBET - ξ = 1%

Figure 2.26: WN1 test - Imparted and total energies in parallel to the maximal displacement - absolute
energy balance

contrary, the absorbed energy is negligible for all other formulations, as expected. Some variations are
observable between BARFRA and RICBET constitutive models, particularly for KPD and WPD formu-
lations. With RICBET, the kinetic energy is smaller than with the BARFRA model. It demonstrates that
BARFRA and RICBET are not given exactly the same responses. So, low nonlinearities are developed.
In addition, the damping formulation choice in�uences the numerical response. Finally, as expected, it
appears that increasing the damping ratio leads to an increase of the damping energy proportion and a
reduction of the kinetic one.

2.5.3.2 DSS2 test
DSS2 test is the �rst test leading to visible damage on the tested beam. Figure 2.28 again presents the
absolute and relative energy balances accompanied with their errors along time. The kinetic energy is
negligible in both cases because of values reached by other energies. In addition, relative and absolute
energy balances are similar because both decompositions’ damping and absorbed energies are equal.
The absorbed energy is no more recoverable because of nonlinearities. All energies increase by incre-
ments corresponding to the harmonic signal parts with large amplitudes. So, with the absorbed energy
study, it can be deduced that damage begins to develop during the second block and continues during
the third to �fth blocks, which are the ones with frequencies between 7.5 Hz and 6 Hz, close to the beam
eigenfrequency. It is also well observable in �gure 2.29, where the proportions between damping, ab-
sorbed and kinetic energies are plotted after each harmonic block. A substantial variation of absorbed
energy proportion is notable between n2 (white-noise after the �rst block) and n3 (white-noise after
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Figure 2.27: WN1 test - Distribution of dissipative energies at the structural level - absolute energy
balance

the second block) blocks. Then, it continues to increase until a stabilisation after the �fth block.
Back to �gure 2.28, in terms of errors4, an exact equivalence is obtained between total and imparted

energies because the global error is around 1.5%. In the beginning, the errors are localised during
damageable blocks, undoubtedly due to the nonlinearity development as discussed with the WN1 test.
In the end, a more stable error is due to the damping energy because the gap between total and imparted
energies is equal to the increase of damping energy. So, this error is removed with other damping
formulations.

Then, the aim of �gures 2.29 and 2.30 is to compare BARFRA and RICBET constitutive models with
two damping formulations for which the dynamic responses with the BARFRA model were satisfactory:
RD and KD_ACT. These �gures show that both models behave di�erently in terms of energies. The
proportion of absorbed energy (�g. 2.29) is much more prominent with the BARFRA model, linked with
the larger displacements computed (�g. 2.30). So, even if BARFRA considers less dissipative phenomena,
the model can dissipate a signi�cant amount of energy. The absorbed energy evolution discussed above
is more regular with the RICBET model and RD formulation between the second and �fth blocks. With
the BARFRA model, the second harmonic block much more damages the beam. It can be deduced that

4The error evaluates the gap between the total and imparted energies
∫

t

|Etot(t)− Ei(t)|
|Ei(t)|

dt.
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Figure 2.28: DSS2 test - Structural energy balances - RICBET - RD 2%
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Figure 2.30: DSS2 test - Imparted and total energies in parallel to the maximal displacement - 2%

the second block leads to a crack opening. Because this is the only dissipative phenomenon with BAR-
FRA, a large amount of energy is dissipated at this moment. On the contrary, with the RICBET model,
the dissipations are more balanced between the di�erent phenomena than with the BARFRA modal,
and this model can accurately represent the evolution of dissipations. Finally, �gure 2.30 shows that
the absolute and relative balances are similar with smaller relative values because of the kinetic energy.
The errors between �nal imparted and total energies are much larger with BARFRA. The total energy
is larger than the imparted one, so unrealistic energy is dissipated with the BARFRA model. Finally,
between the damping formulations, KPD_ACT appears to be better than RD, particularly in terms of
maximal displacements compared with the experimental value, BARFRA giving a too large value and
RICBET a too-small one.

RICBET is now considered to compare the damping formulations because of the better dynamic
responses obtained with this constitutive model and its best ability to characterise energies. Again,
�gure 2.31 focuses on comparing imparted and total energies and maximal displacements. Figure 2.32
is particularly interested in the dissipation decomposition between damping and absorbed energies at
the computation ends. Because the beam movement stops at the end, the kinetic energy must be null at
this moment, so it is not plotted.

Figure 2.31 �rst shows that the �nal energies are inversely proportional to the maximal displace-
ments and are depending on damping formulations because of the integration through displacement
increments. Indeed, more damage occurs if larger displacements are reached and a more considerable
amount of absorbed energy is developed. However, this induces a reduction of the damping energy to a
more substantial extent, explaining the decrease of energy. In addition, the relative and absolute energy
balances are similar because equality between the relative and absolute energies is observed here. Some
formulations are inducing accurate energy balances corresponding to equality of total and imparted en-
ergies: (i) for RD-type formulations only RD_ACT must be removed, (ii) on the contrary, for MPD-types,
the parameter update is improving the energy characterisation, (iii) all of the KPD-type formulations
are accurately representing the energetic structural behaviour, (iv) while neither MD nor MD_ACT are
adequate, (v) �nally, the use of the tangent or secant sti�ness matrices in WPD-type formulations must
be avoided.
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Figure 2.31: DSS2 test - Imparted and total energies in parallel to the maximal displacement - RICBET -
2%
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Again, �gure 2.32 demonstrates that each damping formulation impacts energy computations dif-
ferently. For WPD and WPD_ACT, almost no absorbed energy develops because the computations stay
linear. On the contrary, with MD, MD_ACT or CWPD and SWPD, the damping energy is negligible,
demonstrating the considerable impact of material dissipations. However, because it was previously
observed that these formulations were not leading to numerical responses matching the experimental
ones, it can be deduced that this behaviour is not representative of the physical one. Now, the RD-
, MPD- and KPD-type formulations can be compared. KPD-type ones induce lower damping energy
values, while MPD-types leads to the most considerable damping energy proportions. RD-type for-
mulations are in the middle because of the impact of both mass and sti�ness proportional parts. This
observation is in adequacy with the literature, where it was demonstrated that the mass proportional
part in RD is responsible for developing spurious damping forces. RD_ACT leads to stronger hysteresis
loops, as discussed in part 2.4.3. That is why the proportion of absorbed energy is superior to other
RD-type formulations. If RD_ACT is eliminated from the analyses, it appears that updating the param-
eters or the sti�ness matrix during computations induces the most substantial in�uence of the damping
energy compared to the absorbed one.

The �nal model parameter to study is the damping ratio. Figures 2.33 and 2.34 focus on four damping
formulations (RD, CRD, CKPD and WPD) with four damping ratios (1%, 2%, 3% and 5%). Figure 2.33
shows that the damping ratio in�uence on �nal energies strongly depends on the damping formulation.
It is not very important for RD and WPD formulations (�g. 2.33a and 2.33b). While increasing the damp-
ing ratio induces an increase of �nal energies, accompanied by a decrease of the maximal displacements
for CRD and CKPD (�g. 2.33c and 2.33d). When the damping ratio increases, a decrease of the beam
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(c) CRD
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Figure 2.33: DSS2 test - Imparted and total energies in parallel to the maximal displacement - RICBET -
ξ in�uence
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Figure 2.34: DSS2 test - Distribution of dissipative energies at the structural level along the
computation - RICBET - ξ in�uence

movement amplitudes is expected, and particularly of the maximal displacement. So, using the tangent
sti�ness matrix seems to be more representative of the experimental behaviour. If no update is per-
formed during the computation, the response is merely in�uenced by the damping formulation choice
than by the damping ratio. Then, a larger error is obtained between the �nal total and imparted energies
for a damping ratio of 1% for all formulations. The total energy is larger than the imparted one, so it
can be supposed that the absorbed energy is too strong in this case. 1% of damping ratio is insu�cient
to obtain an equitable energy balance compared to stronger viscous damping ratios.

In terms of total energy decomposition at the computation end, �gure 2.34 presents the proportion
evolutions for each white-noise signal part, again with the same four damping formulations and four
damping ratios. As observed in �gure 2.33, CRD and CKPD exhibit a behaviour strongly dependent on
the damping ratio. At the same time, there is no more in�uence for RD, above 2%, and WPD shows
the same decomposition for all damping ratios. Let us now focus on each damping formulation. With
WPD, the (�g. 2.34b) the absorbed energy is negligible along with computation because of its strong
damping e�ect leading to a linear behaviour during the DSS2 test. With RD (�g. 2.34a), the absorbed
energy proportion linearly increases until n6 white-noise block and stabilises then with all damping
ratios. So, it signi�es that the damage develops in the beam until the �fth harmonic block but no more
later. Then, other nonlinearity developments are observed from one damping ratio to another with CRD
(�g. 2.34c). When the damping increases, nonlinearities appear during a smaller number of harmonic
blocks, and the proportions of both energies stabilise later in the computation. Indeed, if the viscous
damping applied on the beam increases, the beam movement amplitudes are reduced, and minor damage
occurs. It, thus, leads to a lower decrease of the beam eigenfrequency, and harmonic blocks with lower
eigenfrequencies are no more inducing resonance in the beam. It explains the sooner stabilisation and
the reduction of absorbed energy proportion. This conclusion is also applicable to CKPD formulation
(�g. 2.34d). Finally, an important conclusion from �gures 2.27, 2.32 and 2.34 is that the damping energy
always represents the major part of the total energy (in the case of adequate damping formulations),
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demonstrating the signi�cant impact of the viscous damping in structural nonlinear dynamic analyses.

2.5.3.3 Complementary tests
Section 2.4.4 was interested in three complementary dynamic tests. Figures 2.35 and 2.36 characterise
the structural energy representations of these tests. Di�erent energy amplitudes are reached during the
three tests. Substantial errors are obtained for the DSS3 test between the imparted and total energies,
with total energy inferior to the imparted one. It can be due to the lack of damage occurring during
the �rst two harmonic blocks because it appears in �gure 2.36a that no damage develops during these
blocks. From �gure 2.19, it was deduced that the DSS3 test was the best dynamically characterised. Now,
it appears that energetically this is the contrary. Again, it demonstrates that an accurate description of
energies does not always accompany an accurate representation of beam movements. It can also explain
the lack of damage discussed for the DSS4 test. If the beam is not damped enough during the DSS3 test,
the eigenfrequency does not decrease enough, and the beam resonance is reduced, leading to smaller
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beam movements. Finally, for DSS4 and DSS5 tests, energy balances are validated in �gure 2.35. How-
ever, the evolutions of energy proportions in �gures 2.36b and 2.36c are not smooth: oscillations are
observed from one block to another what will have to be explained using the analyses of dissipative
phenomena in concrete (section 2.5.4).

2.5.4 Dissipative phenomena at the concrete level
This section aims to study the absorbed energy decomposition proposed in table 2.15 from the di�erent
dissipative phenomena described in table 2.16 for the BARFRA model and table 2.17 for the RICBET
model. Dissipations occur when the concrete reaches a nonlinear behaviour. It was previously demon-
strated that the WN1 test conserves the beam in its elastic behaviour. In �gure 2.37, it is thus shown
that the absorbed energy is equal to the elastic strain one, and the hysteretic or dissipated energies are
null. It validates the beam elastic behaviour again during this test. So, the analyses will be focused on
the DSS2 and the following tests.
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Figure 2.37: WN1 test - Concrete energy balance - RICBET - RD 0.5%

First, the classical RD formulation with a damping ratio of 2% and the RICBET constitutive model
is considered in �gure 2.38. Figure 2.38a displays the energies de�ned in table 2.15. The strain energy
is negligible compared to the other ones because it is the elastic part of the behaviour. Then, di�er-
ences between absorbed, hysteretic and dissipated energies come from considering the work hardening
energies and the strain one. It appears that they are very close from one to another, meaning that the
work hardening energy is, as the strain one, negligible. The three non-negligible energies are cumula-
tive what explains the stepwise increase during the computation, corresponding to the harmonic signal
parts. These conclusions are similar to all damping models and constitutive models. Then, the hysteretic
and work hardening energies are decomposed between the dissipative phenomena in �gure 2.38b. It ap-
pears that friction is the most substantial dissipative phenomenon, and the stepwise increase observed
in �gure 2.38a is mainly due to the friction phenomenon. No work hardening associated with friction
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Figure 2.38: DSS2 test - Concrete energy analysis - RICBET - RD 2%

develops for the considered signal. On the contrary, the amount of energy dissipated through the dam-
age phenomenon is much smaller, but a negative work hardening energy accompanies it. Finally, the
unilateral e�ect dissipates also a tiny amount of energy. On the contrary, no energy is dissipated through
plasticity, so no nonlinearity is reached in compression for concrete. Finally, �gure 2.38c presents the
time history energy evolutions along computation. In the beginning, the beam behaves elastically, so
only the strain energy exists. Nevertheless, as soon as cracks open, the damage is activated and dissi-
pates energy. Because dynamic tests are performed, cyclic loadings are applied on the beam, and the
consequence is the development of friction at crack surfaces directly after the crack openings. That is
why friction and unilateral e�ect energies appear directly after the damage one. Then, no more cracks
open if the input signal is reduced, so the damage energy stabilises, but the crack surface friction still ex-
ists. The substantial increase of friction proportion characterises this. Finally, for each harmonic block,
if it is more damaging the beam, new cracks are opening, and the proportion of damage energy increases
to the detriment of friction one, which explains the curve forms. No dissipative energy is decreasing;
these are the proportions that are evolving. Finally, because the friction and damage energies control
the dissipations, a focus will be performed on themselves to compare the damping models.

Figure 2.39 shows the friction and damage energies normalised to their �nal values and the ratio of
friction energy on the sum of damping and friction energies. Two damping formulations (RD and CRD)
are presented herein with the two extreme damping ratios (1% and 5%).5 With these �gures, it appears
that both friction and damage energies are only increasing during computation, as expected because
they are unrecoverable energies. However, their evolutions are di�erent: the damage energy increases
are discontinuous contrary to friction ones. Because the damage energy is only dissipated once when
cracks are opening. In contrast, the friction energy is dissipated continuously when cracks exist, on
the condition that the crack opening is smaller than the aggregate sizes. In addition, the ratio evolution
again demonstrates that at the beginning of each damageable harmonic block, damage occurs just before
the friction phenomenon because the cracks must be opened before dissipating energy through friction.

A di�erent damage behaviour develops between RD and CKPD, with a damping ratio of 1% (�g. 2.39a
and 2.39c). The most severe damage occurs during the �fth block with RD formulation, while the evolu-
tion is more regular with CKPD, even if more severe damage also occurs during the �fth block. Experi-
mentally, the monitoring of crack openings would be a way to improve the study of di�erent damping
formulations using dissipated energy tendencies. Now, the observation is di�erent with 5% of damping
ratio. First of all, the �nal damage is reached during the fourth block and not the �fth. With RD, a
regular evolution appears similar to CKPD and 1%. However, with CKPD and 5%, only three damage
steps are observed. So, the development of nonlinearities in dynamic nonlinear computations strongly
depends on the selected damping formulation and damping ratio (�g. C.1 and C.2).

5All damping formulations with a damping ratio of 2% are plotted in �gure C.1 (appendix C.1) to go further in the analysis.
In addition, the four studied damping ratios are compared in �gures C.2 (appendix C.2) for RD, CRD, CKPD and WPD damping
formulations.
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(b) RD 5%

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Time [s]

E
h

,i

E
h

,i
,e

n
d

[%
]

Friction
Damage

0

10

20

30

40

50

60

70

80

90

100

Ratio of friction / total

(c) CKPD 1%
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Figure 2.39: DSS2 test - Dissipation proportions at the material level - RICBET - some results

Concrete constitutive models are, now, compared in �gure 2.40 for three damping formulations and a
damping ratio of 2%. In the BARFRA model, the only dissipative phenomenon is the damage. The �gure
shows that the evolution of the damage energy in the BARFRA model is a mix of damage and friction
with RICBET. Indeed, discontinuous increases are observable, followed by continuous ones. The damage
model implemented in BARFRA represents a global model of concrete dissipative behaviour. Again,
stepwise increases are obtained with BARFRA, but the proportions di�er from RICBET. It demonstrates
that the development of nonlinearities in nonlinear dynamic computations is also dependent on the
constitutive model.
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Figure 2.40: DSS2 test - Dissipation proportions at the material level - RICBET and BARFRA - 2%
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Finally, the following tests are studied in �gure 2.41. As discussed in previous analyses, a last level of
damage occurs during the DSS3 test. During DSS4 and DSS5 tests, no more cracks opened. However, the
friction is still dissipating energy during the three tests due to cracks. From one formulation to another,
only the proportion amplitudes are evolving. Finally, the oscillatory evolution of the absorbed energy
in �gure 2.36 is necessarily a consequence of the friction between crack surfaces. It can be assumed that
the friction energy is strongly in�uenced by the input signal contrary to the damage one because the
friction variable is oscillating with the cyclic signals while the damage one is monotonously increasing.
That is why the oscillations only appear during the DSS4 and DSS5 tests.
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(a) DSS3 - RD 1%
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(b) DSS4 - RD 0.5%

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Time [s]

Friction
Damage

0

10

20

30

40

50

60

70

80

90

100

E
h

,f

E
h

,f
+

E
h

,d
[%

]

Ratio of friction / total

(c) DSS5 - RD 1%
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(d) DSS3 - KPD_ACT 1%
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(e) DSS4 - KPD_ACTD 0.5%

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Time [s]

Friction
Damage

0

10

20

30

40

50

60

70

80

90

100

E
h

,f

E
h

,f
+

E
h

,d
[%

]

Ratio of friction / total

(f) DSS5 - KPD_ACT 1%

Figure 2.41: DSS3 to DSS5 tests - Dissipation proportions at the material level - RICBET

To go further, the evolutions of both variables of interest can be followed during the computation
using a 3D representation of the multi-�bre beam. The damage variable is plotted at the end of each
increment because it is a monotonous value. In contrast, the friction variable is plotted in the middle of
increments to have an envelope value. An example of obtained results is plotted in �gures 2.42 and 2.43
for the RD formulation, a damping ratio of 2% and the RICBET constitutive model. The evolutions
along all increments with these modelling parameters are then plotted in appendices D.2.1 (�g. D.3)
and D.2.2 (�g. D.5). In addition, in appendices D.2.1 (�g. D.4) and D.2.2 (�g. D.6), a comparison of �ve
damping formulations is proposed. It appears in �gure D.3 that the damage variable stabilises between
the fourth and �fth increments, as already discussed in previous analyses. Then, between the di�erent
damping formulations in �gure D.4, more severe damage is obtained with KPD and CKPD formulations.
For the friction variable, the evolution along time in �gure D.5 is more complex to study because it is
constantly evolving with the beam excitation. Between the formulations in �gure D.6, it also appears
di�erent variations. So, the nonlinearities are evolving di�erently from one model to another, with the
largest nonlinearities observed with the KPD-type damping formulations.
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(a) d - increment t(i−1) (b) d - increment t(i) (c) d - increment t(i+1)

Figure 2.42: DSS2 test - Damage variable evolution along the beam - RICBET - RD 2%

(a) επ - increment t(i−1) (b) επ - increment t(i) (c) επ - increment t(i+1)

Figure 2.43: DSS2 test - Friction deformation variable evolution along the beam - RICBET - RD 2%
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2.6 Synthesis

2.6.1 Performed analyses
An exhaustive numerical analysis was performed on RC beams and based on experimental data. The
model has been developed in Cast3M with a multi-�bre approach. It has been calibrated on quasi-
static tests before performing nonlinear dynamic analyses. Di�erent modelling parameters have been
studied: the concrete constitutive model, the viscous damping matrix and the damping ratio considered
to evaluate damping formulation parameters. For the DSS2 test, sixteen damping formulations have
mainly been studied with �ve damping ratios (0.5%, 1%, 2%, 3%, 5%) and two constitutive models.
Thus, it corresponded to 160 computations with seven increments of mean duration one hour and forty-
�ve minutes, leading to an approximative computational time of 1, 680 hours only for the DSS2 test. This
number explains why some comparison choices have been made. But, the numerical analysis could have
been even more enriched by studying: (i) the use of di�erent damping ratios for the considered modes
(for example, in the case of RD-type damping formulations or the modal damping matrices), (ii) the
choice of the modes to use (for example, considering the modes 1 and 3 for the RD-type formulations),
(iii) the use of a non-constant damping ratio for the parameter updates, or (iv) the combination of
sti�ness matrix and parameters updates, . . .

Two studies have been performed to compare the studied damping parameters. First, the comparison
of numerical dynamic responses with the experimental data. The accelerations, displacements, forces
and eigenfrequencies at di�erent damage states have been interesting. Then, an exhaustive energetic
analysis has been performed to evaluate the distribution of dissipative energies at the structural level
and the dissipative phenomenon evolutions at the material level. A synthesis of performed analyses
is proposed in �gures 2.44 and 2.45. Some dynamic and energetic indicators are considered on the
presented "spider" diagrams6: (i) the global acceleration error, (ii) the global displacement error, (iii) the
global force error, (iv) the mean error on the harmonic signal part frequencies, (v) the mean error on the
white-noise signal part frequencies, (vi) the global error of absolute energy balance and (vii) the ratio of
damping energy on the total one. So, the best performative models are the ones given the largest area
on these representations.

As a remark, some results were compared with engineering software: (i) ARTEMIS is software to
identify damping values on time-dependent data (A/S, 1999), and (ii) NONLIN can evaluate structural
energy balances (Advanced Structural Concepts, 2004). With ARTEMIS, identifying damping values
with the considered input signals has proved complicated because of the signal de�nitions and the
noisy experimental data. Then, NONLIN was an excellent tool to validate the energy implementations
on a SDOF system at the beginning. Indeed, the comparison was performed with an elastoplastic model
because no constitutive model equivalent to BARFRA or RICBET is proposed in this software. However,
performing such analyses was interesting to understand how the engineering software functions and
think about what is missing.

2.6.2 Important conclusions
Based on the results discussed in section 2.4, the BARFRA constitutive model (�g. 2.45c and 2.45d) is
inadequate to perform nonlinear dynamic analyses. Indeed, this model lacks dissipative phenomenon
modelling, despite its ability to dissipate a substantial amount of energy. It can thus be concluded that
the dissipated energy is unrealistic. In addition, the brutal variation of sti�ness between compression
and traction can be problematic in the case of seismic excitations. However, the more complex model,
RICBET (�g. 2.45a and 2.45b), can validly represent the experimental behaviour. However, based on the

6The considered error is de�ned in section 2.4.1.2.
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Figure 2.44: DSS2 test - Synthesis of damping formulation comparisons - RICBET - 2%

DSS4 and DSS5 test analyses, it seems that the model limits are reached. Indeed, the di�culty to match
the experimental data for these two tests seems to be a consequence of the available maximal numerical
damage, de�ned by the brittleness parameter ab,t in table 2.8.

Between the damping formulations (�g. 2.44), it was demonstrated that the WPD-type formulations
(�g. 2.44d) have a too strong damping e�ect avoiding nonlinearities to develop. So it should not be used
with the studied signals. Likewise, the MD-type formulations (�g. 2.44c) often exhibit unrealistic forces.
MD is not able to characterise the energies even for a linear computation. In addition, both formulation
types are generally inducing negligible damping energy, which is not representative of reality. So, RD-
type formulations are the most appropriate. Nevertheless, the choice of these formulations must be
careful. With only MPD (�g. 2.44c), few levels of damage are developed, and unrealistic forces appear.
Due to the proportional sti�ness part, these issues are reduced in RD-type formulations (�g. 2.44a).
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Figure 2.45: DSS2 test - Synthesis of damping ratio and constitutive model comparisons

However, the mass proportional part still plays a signi�cant role in RD. So, RD- and KPD-type formu-
lations (�g. 2.44a and 2.44b) are the best performative in representing experimental data with an ade-
quately calibrated damping ratio. The accuracy is even improved by using the tangent sti�ness matrix
because the energy dissipations seem to be more distributed. This conclusion was obtained by consider-
ing a compromise of accuracy between all studied results. Indeed, particularly for RD-type formulations
in �gure 2.44a, RD_ACT gives the largest area demonstrating its better general performance. For the
KPD-type formulations in �gure 2.44b, KPD appears to be the best closely followed by KPD_ACT. All
these results are synthesised in table 2.18. The formulations are classi�ed based on the areas in "spi-
der" diagrams of �gure 2.44, from the largest to the lowest. An important conclusion of all performed
analyses is that the most appropriate damping formulation strongly depends on the variable of interest
(serviceability displacements, internal design forces, maximal accelerations, damage development,
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Table 2.18: Classi�cation of damping formulations based on "spider" diagram area - RICBET 2%

Formulation Area [% of total
area] Formulation Area [% of total

area]

1 RD_ACT 35.2% 9 CWPD − SWPD 12.9%
2 WPD_ACT 31.7% 10 MD_ACT 11.9%
3 KPD 30.7% 11 MPD_ACT 11.5%
4 KPD_ACT 29.2% 12 SKPD 9.76%
5 RD 28.9% 13 MPD 9.43%
6 WPD 23.4% 14 CKPD 9.14%
7 MD 19.5% 15 SRD 8.39%
8 CRD 17.7%

energy dissipation, . . . ). Particularly, the choice of the damping formulation appears even to in�uence
the distribution of energies in elastic computations. For example, the sti�ness matrix or parameters
updates increase the damping energy proportion in dissipations.

From the analyses on damping ratio choices, similar conclusions can be discussed. This value must
be carefully chosen depending on the damping formulation, the input signal, . . . Few recommendations
can, regardless, be proposed: (i) the choice of the damping ratio does not play a signi�cant role if the
initial sti�ness is considered in RD- or KPD-type formulations, (ii) on the contrary, the damping ratio
strongly in�uences the response in the case of the tangent sti�ness matrix use and (iii) when a nonlinear
constitutive model is considered a low level of damping ratio must be considered (table 2.19). For the
elastic WN1 test, only 0.5% is required, and for the most damageable tests, 1% to 2% are given the best
results. Notably, it is observed energetically that 1% of damping ratio is insu�cient for the DSS2 test.
A last important conclusion is that the damping formulation choice in�uences the beam response more
than the damping ratio choice without any damping update.

The last study on the dissipative phenomena particularly shows that the friction phenomenon is the
most dissipative one. As expected experimentally, the plasticity energy does not develop, so any non-

Table 2.19: Classi�cation of viscous damping ratios based on "spider" diagram area - RICBET and
BARFRA - RD and CRD

textaRD textCRD

Formulation Area [% of total
area] Formulation Area [% of total

area]

1 BARFRA 2% 48.0% 1 RICBET 1% 30.0%
2 RICBET 1% 34.5% 2 RICBET 5% 19.4%
3 RICBET 2% 28.9% 3 RICBET 2% 17.7%
4 RICBET 3% 28.9% 4 BARFRA 5% 12.3%
5 RICBET 5% 28.8% 5 RICBET 3% 12.0%
6 BARFRA 1% 20.4% 6 BARFRA 2% 2.35%
7 BARFRA 3%-5% 0.00% 7 BARFRA 1%-3% 0.00%



2.6 Synthesis 117

linearity is reached in compression. Then, the analyses focus on the damage, representing the concrete
cracking and friction energy evolutions: the damage evolves discontinuously and always precedes the
friction energy because the cracks must be open to dissipate energy by crack surface friction.

2.6.3 Scienti�c problems highlighted
Finally, some problematics are deduced from the performed numerical computations concerning the
use of a viscous damping matrix in nonlinear dynamic computations. First, no damping model can
be proposed as a universal solution for all dynamic nonlinear computations. All analyses demonstrate
that compromises must always be made in the damping model choices, mainly depending on the in-
terest data. For example, it was shown that for the DSS3 test, accurate acceleration responses were
obtained compared to the experimental data. However, the energies were inaccurately characterised (a
consequence of the lack of accuracy on hysteresis loops). Then, with all damping formulations studied,
the damping energy always represents more than 50% of the dissipated energies. It demonstrates the
strong in�uence of viscous damping in nonlinear dynamic computations and the necessity of improv-
ing its modelling. It also appears that the nonlinearity evolutions are strongly dependent on the chosen
damping formulations and damping ratios. So, there is a di�culty in using nonlinear models in dynamic
analyses. Their advantage would be to characterise the material dissipations better. Nevertheless, they
are insu�cient, so viscous damping is required, strongly in�uencing the nonlinearities. So, it is im-
possible to validate the accuracy of the dissipation representations, while the choice of the damping
formulation is complex and no perfect solution exists.
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Reminder: The nomenclature of the classical damping formulation acronyms used in the following can be
found in appendix A (table A.1).

3.1 Damping projection on the modal basis
The numerical resolution of undamped dynamic problems can be performed easily because the system is
uncoupled on the modal basis. This hypothesis is still valid for lightly damped systems, as demonstrated
in section 1.1.2.2. That is why damping matrices of the Rayleigh type are considered. A simple form
of damping matrix diagonal in the modal basis and easily constructed is, for example, the Rayleigh
damping matrix. However, suppose updates are performed to consider the development of nonlinearities
through the tangent sti�ness matrix, for example. In that case, the system has no more reason to stay
decoupled in the undamaged eigenbasis. Thus, in this section, some analyses are performed to evaluate
the development of couplings between modes when nonlinearities develop in computations.

3.1.1 Theory
A nonlinear MDOF system excited by an earthquake can be described by equation (3.1) already presented
in section 1.1.2.2:

M · Ü + C · U̇ + f int (U) = −
∑

k

M · Γk · Üs,k (3.1)

with k ∈ {x, y, z}. On the undamped system modal basis B =
{
φ
i

}
i∈[[1,N ]]

, the displacement can be
re-written as in equation (3.2):

U =
N∑

i=1
αi.φi (3.2)

where {αi}i∈[[1,N ]] are the generalised coordinates. By replacing the displacement expression in equa-
tion (3.1), equation (3.3) is obtained:

M ·
(

N∑

i=1
α̈i.φi

)
+ C ·

(
N∑

i=1
α̇i.φi

)
+ f int

[
N∑

i=1
αi.φi

]
= −

∑

k

M · Γk · Üs,k (3.3)

The basis is orthogonal, so the modes verify φT
i
·M · φ

j
= mi × δij and φT

i
·K · φ

j
= ki × δij for all

{i, j} ∈ [[1;N ]]2. However, for a damped system, the damping matrix is not necessarily diagonal in the
modal basis. So, a modal damping matrix Cmod can be de�ned by considering the terms Cmodij (eq. 3.4)
for all {i, j} ∈ [[1;N ]]2 with N the number of considered modes.

Cmodij = φT
i
· C · φ

j
, ∀{i, j} ∈ [[1;N ]]2 (3.4)

Two ideas can be developed: (i) considering the initial damping matrix and performing modal analyses
to compute the updated eigenmodes at di�erent damage levels, or (ii) considering the updated damping
matrix at di�erent damage levels and keeping the undamaged eigenmodes. The second will be of interest
in the following.

Then in the case of a classical damping matrix, that is to say, that Cmod is initially diagonal, the
projection on mode j of equation (3.3) leads to equation (3.5):
(
φT
j
·M · φ

j

)
α̈j +

(
φT
j
· C · φ

j

)
α̇j + φT

j
· f int

[
N∑

i=1
αi.φi

]
= −

∑

k

(
φT
j
·M · Γk

)
· Üs,k (3.5)
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And, because the basis is generally normalised to the mass matrix, given φT
i
·M · φ

i
= mi = 1 for all

i ∈ [[1;N ]], equation (3.5) can be simpli�ed in equation (3.6), where the only direction considered is the
one with the higher e�ective modal mass for the fundamental mode (k = y):

α̈j + 2.ξj .ωj × α̇j + fintj = −LjÜs (3.6)

where fintj = φT
j
· f int

[
N∑

i=1
αi.φi

]
is the internal force projected on mode j, Lj,k =

(
φT
j
·M · Γk

)
is

a generalised displacement projected on mode j, Lj =
(
φT
j
·M · Γy

)
and 2.ξj .ωj =

(
φT
j
· C · φ

j

)
=

Cmodjj is the diagonal term of the modal damping matrix Cmod associated with mode j. So, equivalent
viscous damping can be identi�ed from the last relation as presented in equation (3.7):

ξj =
Cmodjj

2.ωj
(3.7)

where ωj is the initial eigenfrequency associated with mode j. As a remark, equation (3.7) becomes
equation (3.8) if the basis is not normalised to the mass matrix.

ξj =
Cmodjj

2.ωj .mj
(3.8)

3.1.2 Results
Some analyses are performed from the results of the DSS2 test computations performed in the numerical
analysis of chapter 2. First, �gure 3.1 focuses on the identi�ed viscous damping ratios associated with ten
modes at di�erent time steps. The Rayleigh damping matrix, computed with a viscous damping ratio of
2% for modes 1 and 2 and with the tangent sti�ness matrix (CRD), is studied along with the DSS2 test. So,
the identi�ed viscous damping ratios evolve over time and can be correlated with the damage level. The
identi�ed viscous damping ratios of the ten studied modes decrease along with computation. The beam
damage level so in�uences those values. However, the in�uence is less signi�cant for the �rst modes
than for the higher ones. Then, for all time steps, the viscous damping ratios follow the same tendency
with a decrease between the �rst and second modes and an increase after. It is well representative of
the evolution of the viscous damping ratio for RD, as discussed in �gure 1.13 of section 1.2.2.1.

Figure 3.2 focuses on the identi�ed viscous damping ratios for the beam with di�erent damping
formulations. The evolutions are plotted with the initial matrices. As expected, it appears that KPD
follows almost a linear evolution with the frequency, while MPD follows an inverse decrease, and RD is
a combination of the two others. Finally, WPD behaves similarly to MPD (zoom in �gure 3.2b), so the
lowest modes are strongly damped compared with the highest, which are not damped at all.

Finally, �gure 3.3 presents the modal damping matrices Cmod for two damping formulations con-
sidering the tangent sti�ness matrix (Rayleigh - RD - and Wilson-Penzien - WPD - damping) before any
damage and after two damage levels. RD with the tangent sti�ness was computed with a viscous damp-
ing ratio of 2% for modes 1 and 2. WPD was computed with 2% of viscous damping ratio on modes 1 to
6 and with updates based on re-computation of the modal basis after each time step (choices based on
the most performative formulations discussed in chapter 2). Only three modes are plotted here because
they characterise more than 99% of the beam modal mass. The matrices are almost diagonal for both
formulations even after the stronger damage level applied on the beam during the DSS2 test. Only a
small coupling is observed between the �rst and third modes because they are symmetrical. Then, am-
plitude di�erences are observed from one damage level to another with a decrease of the modal damping
values, demonstrating the e�ect of the damping matrix update. Finally, with CRD (�g. 3.3a to 3.3c), the
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Figure 3.1: Equivalent viscous damping ratios (eq. 3.8) for ten modes over time
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Figure 3.2: Equivalent viscous damping ratio for ten modes - initial matrices

�rst mode is the less damped, while an inverse evolution is observed with CWPD (�g. 3.3d to 3.3f).
These remarks can be explained with �gure 3.2: (i) for RD, the three �rst modes are similarly damped,
and (ii) for WPD, the two �rst modes are much more damped than the third one.

In conclusion, �gure 3.3 illustrates that the damping matrix is nearly uncoupled in the modal basis
when nonlinearities develop, so resolutions on the modal basis are still accurate even for the nonlinear
computations studied herein with the tangent sti�ness matrix.
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Figure 3.3: Projection of the damping matrix on the undamaged eigenbasis - DSS2 test - RICBET - 2%

3.2 Modal basis of the studied beam
A numerical model of the reinforced concrete (RC) beam is proposed in chapter 2. It is a complex
system composed of a simple beam with elastic supports and additional masses. No analytical model of
the studied complex system can be de�ned. That is why strategies that combine the subsystem modal
bases (section 3.2.2) and the modal basis of the simply supported beam (section 3.2.1) are used. Finally, a
comparison between experimental, numerical and approximate analytical modal properties is proposed
in section 3.2.3.

3.2.1 Modal analysis of a simple beam
3.2.1.1 Analytical continuous eigenbasis for an elastic behaviour
In the case of an elastic framework, the vibration equation of an Euler-Bernoulli beam in �exion (�g. 3.4)
is expressed in equation (3.9):

Ec.Ih
∂4uy
∂x4 (x, t) + ρc.Sh

∂2uy
∂t2

(x, t) = 0 (3.9)

with ρc the concrete density, Sh the homogenised section, Ec the concrete Young’s modulus and Ih the
homogenised inertia.
The general form of the stationary wave is given in equation (3.10):

uy(x, t) = X(x).T (t) (3.10)

where T (t) = A1 cos(ωt) + A2 sin(ωt) is the time-dependent function and X(x) = B1 cos(λ.x) +
B2 sin(λ.x) +B3 cosh(λ.x) +B4 sinh(λ.x) is the space-dependent function linked by ω2 = λ4Ec.Ih

ρc.Sh
.
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Figure 3.4: Simply supported beam scheme

Then, the boundary conditions are null vertical displacements and moments at the beam extremities

corresponding to X(x = 0) = X(x = L) = 0 and d2X

dx2

∣∣∣∣
x=0

= d2X

dx2

∣∣∣∣
x=L

= 0. The system can thus

de�ne the displacement space function in equation (3.11):




ϕi(x) = sin
(
iπx

L

)

λi = iπ

L

ωi =
(
iπ

L

)2√
Ec.Ih
ρc.Sh

, ∀ i ∈ N (3.11)

where {ϕi(x)}i∈N and {ωi}i∈N are respectively the mode shapes and eigenfrequencies.

3.2.1.2 Finite element model
In the case of �nite element models, the beam is discretised in space elements, so the eigenmodes are
decomposed on these elements φ

ssb,i
given the simply supported beam (ssb) total eigenbasis Btot,ssb ={

φ
ssb,i

}
i∈N

. The eigenmodes are still associated with the eigenfrequencies {ωssb,i}i∈N given in equa-
tion (3.11). Finally, the eigenbasis can be reduced on the N -most in�uential eigenmodes given Bssb in
equation (3.12):

Bssb =
{
φ
ssb,i

}
i∈[[1;N ]]

(3.12)

Practically, the modal properties are obtained thanks to numerical modal analysis.

3.2.2 Analytical modal analysis of a complex model
The methodology to evaluate the analytical eigenbasis of a complex system is to study each subsystem
independently and combine them.

3.2.2.1 Decomposed subsystems

(a) Simply supported beam with elastic supports The multi-�bre beam is composed of rota-
tional and translational elastic supports. Figure 3.5 presents the scheme of the subsystem considered
herein. The complete demonstration of the equations (3.13) and (3.14) are presented in appendix E. The
new sti�ness parameters to consider are indicated in table 3.1.
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Figure 3.5: Scheme of the beam on elastic supports

Table 3.1: Boundary conditions with elastic supports

Position Forces Momentum

x = 0 V (0, t) = −KT,1 × uy(0, t) M(0, t) = KR,1 × θz(0, t)
x = L V (L, t) = KT,2 × uy(L, t) M(L, t) = −KR,2 × θz(L, t)

A system with four equations and four unknowns (eq. E.22 in appendix E.2) is obtained by trans-
forming the terms in table 3.1. Some abacus can be used to obtain analytical solutions to such problems.
For example, Karnovsky and Lebed (2000) proposed the analytical eigenproperties for one beam with
two translational elastic supports (eq. 3.13) - the demonstration is proposed in appendix E.3 - or for one
beam with two rotational elastic supports (eq. 3.14) - the demonstration is proposed in appendix E.4.
The presented equations are simpli�ed because KT,1 = KT,2 = KT as KR,1 = KR,2 = KR and the
terms λ̄ = L.λ and x̄ = x/L are considered.




K∗T
2 +K∗T .

2λ̄3 [− sinh(λ̄) cos(λ̄) + cosh(λ̄) sin(λ̄)
]

2 sin(λ̄) sinh(λ̄)
+
λ̄6 [1− cos(λ̄) cosh(λ̄)

]

2 sin(λ̄) sinh(λ̄)
= 0

XT (x̄) = sin(λ̄x̄) + sin(λ̄)
sinh(λ̄)

sinh(λ̄x̄) + γT
[
cos(λ̄x̄) + cosh(λ̄x̄) + γT1 sinh(λ̄x̄)

]
(3.13)

where K∗T = KT .L
3

Ec.Ih
, γT1 = cos(λ̄)− cosh(λ̄)

sinh(λ̄)
and γT = sinh(λ̄)− sin(λ̄)

2K
∗
T

λ̄3 sinh(λ̄) + cos(λ̄)− cosh(λ̄)
.





K∗R
2 +K∗R.

2λ̄
[
sin(λ̄) cosh(λ̄)− cos(λ̄) sinh(λ̄)

]

1− cos(λ̄) cosh(λ̄)
+ 2λ̄2 sin(λ̄) sinh(λ̄)

1− cos(λ̄) cosh(λ̄)
= 0

XR(x̄) = sin(λ̄x̄)− sinh(λ̄x̄) + γR

[
cos(λ̄x̄)− cosh(λ̄x̄)− 2λ̄

K∗R
sinh(λ̄x̄)

] (3.14)

where K∗R = KR.L

Ec.Ih
and γR = sinh(λ̄)− sin(λ̄)

cos(λ̄)− cosh(λ̄)− 2 λ̄
K∗
R

sinh(λ̄)
.

The functions XT (x̄) and XR(x̄) correspond to the mode shapes associated respectively with the
translational and rotational elastic supports. The values {λ̄T,i}i∈N and {λ̄R,i}i∈N can be deduced from
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the equations (3.13) and (3.14). The associated eigenfrequencies are equal to ωT,i =
λ̄2
T,i

L2

√
Ec.Ih
ρc.Sh

and

ωR,i = λ̄R,i
L2

√
Ec.Ih
ρc.Sh

for all i ∈ N.

(b) Simply supported beamwith additionalmasses Figure 3.6 presents the beam with one addi-
tional mass positioned at xmadd . As for the elastic supports, Karnovsky and Lebed (2000) gave an abacus
to solve this problem. The complete demonstration is presented in appendix E.5. First, the eigenfrequen-
cies are deduced from equation (3.15), with x̄1 = x1/L, x̄2 = 1− x̄1 and αM = Madd/ρc.Sh.L.

2 sin(λ̄) sinh(λ̄)− αM λ̄
[
sin(λ̄x̄1) sin(λ̄x̄2) sinh(λ̄)− sinh(λ̄x̄1) sinh(λ̄x̄2) sin(λ̄)

]
= 0 (3.15)

Maddς1

X1 (ς)

ς2

X2 (ς)

L

~x

~y

xmadd

Figure 3.6: Scheme of the beam with one additional mass

The eigenfrequencies are then given by ωMadd,i =
λ̄2
Madd,i

L2

√
Ec.Ih
ρc.Sh

for all i ∈ N.

Then, to evaluate the mode shapes, �gure 3.6 decomposition is considered, given two parts for the
mode shapes and four unknowns as expressed in equation (3.16).

{
X1(x̄) = A sin(λ̄x̄) +B sinh(λ̄x̄)
X2(x̄) = C sin(λ̄x̄) +D sinh(λ̄x̄)

(3.16)

Four compatibility equations (eq. 3.17) are thus used to determine the four unknowns of equation (3.16):
(i) the displacement compatibility, (ii) the slope compatibility, (iii) the bending moment compatibility,
and (iv) the shear force compatibility corresponding to the dynamic equilibrium of the moving lumped
mass. 




X1(x̄ = ζ1) = X2(x̄ = ζ2)

dX1
dx̄

∣∣∣∣
x̄=ζ1

= − dX2
dx̄

∣∣∣∣
x̄=ζ2

d2X1
dx̄2

∣∣∣∣
x̄=ζ1

= d2X2
dx̄2

∣∣∣∣
x̄=ζ2

d3X1
dx̄3

∣∣∣∣
x̄=ζ1

+ d3X2
dx̄3

∣∣∣∣
x̄=ζ2

= −λ4Madd

ρc.Sh
×X1(x̄ = ζ1)

(3.17)
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with ζ1 = xmadd/L and ζ2 = 1− ζ1. Rewritten in a matrix form with A = 1 gives equation (3.18):



sinh(λ̄ζ1) − sin(λ̄ζ2) − sinh(λ̄ζ2)
cosh(λ̄ζ1) cos(λ̄ζ2) cosh(λ̄ζ2)
sinh(λ̄ζ1) sin(λ̄ζ2) − sinh(λ̄ζ2)








B

C

D





=





− sin(λ̄ζ1)
− cos(λ̄ζ1)
sin(λ̄ζ1)





(3.18)

Remark: The additional mass introduces an extra inertial force on the beam. So, another method to
solve that subsystem would be to add that force (eq. 3.19) on the right part of the wave equation (3.9).

−Madd × δ (x− xmadd)× üy (x1, t) (3.19)

where δ is the Dirac distribution and üy (x1, t) the acceleration at the mass position.

3.2.2.2 Combination of the subsystems
The complete beam can be decomposed into four subsystems: (i) a simple beam on translational elastic
supports, (ii) a simple beam with elastic supports, (iii) a simply supported beam with one additional
mass at xmadd,1 = L/4, and (iv) a simply supported beam with one additional mass at xmadd,2 =
3.L/4. Table 3.2 summarizes the eigenproperties deduced for each subsystem with the eigenmodes
discretised along the beam. The aim is so, now, to combine those responses to evaluate the complete
system eigenproperties.

Table 3.2: Synthesis of the subsystem eigenproperties

Simply
supported

beam

Translational
elastic

supports

Rotational
elastic

supports

First
additional

mass

Second
additional

mass

Frequency ωssb,i
(eq. 3.11) ωT,i (eq. 3.13) ωR,i (eq. 3.14) ωMadd,1,i

(eq. 3.15)
ωMadd,2,i

(eq. 3.15)

Mode
φ
ssb,i

(eq. 3.11)
φ
T,i

(eq. 3.13) φ
R,i

(eq. 3.14) φ
Madd,1,i

(eq. 3.18)
φ
Madd,2,i

(eq. 3.18)

(a) Combination of frequencies Some methods are proposed in the literature to evaluate the
analytical eigenfrequencies of complex systems. First, Dunkerley (1893) developed "a method to estimate
the lowest natural frequency of a dynamic system, which is composed of substructures (components)
of which the lowest natural frequencies are known". He demonstrated that the �rst eigenfrequency of
a global system is given by the combination of the subsystem eigenfrequencies considered in parallel
(eq. 3.20):

1
ω2

1
6

nss∑

k=1

1
ω2
k

(3.20)

where ωk is the kth SDOF subsystem eigenfrequency and nss is the total number of subsystems. Levy
(1991) proposed to extend the evaluation to higher modes by using an iterative procedure to determine
all the eigenfrequencies of the global system.

In addition, Low (2000) focused on the study of beams carrying concentrated masses to evaluate the
ability of Dunkerley’s formula to approximate the system eigenfrequencies. The formulation proposed
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for a beam carrying nmadd concentrated masses is given in equation (3.21):

1
ω2
i

≈
nmadd∑

k=1

(
1

ω2
Madd,k

)
− (nmadd − 1) 1

ω2
ssb,i

(3.21)

where ωssb,i is the eigenfrequency of the beam without mass. The eigenfrequency of each subsystem
considers the simply supported beam without additional masses. So the terms[
−(nmadd − 1)× 1

ω2
ssb,i

]
removes the multiple consideration of the simply supported beam e�ect on

the global system eigenfrequency.
Based on Low (2000)’s proposition, the formulae in equation (3.22) is proposed to evaluate the beam

eigenfrequencies:

1
ω2
i

= 1
ω2
T,i

+ 1
ω2
R,i

+ 1
ω2
Madd,1,i

+ 1
ω2
Madd,2,i

− 3× 1
ω2
ssb,i

, ∀ i ∈ [[1;N ]] (3.22)
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Figure 3.7: Validation of eigenfrequency
combinations

where ωi is the complete beam eigenfrequency
associated with mode i.

To validate equation (3.22), modal analyses
are performed in Cast3M software with each sub-
system and the complete beam to obtain the as-
sociated ten �rst eigenfrequencies. Figure 3.7
exhibits the complete numerical system eigen-
frequencies compared to the ones deduced from
the subsystem eigenfrequencies combinations in
equation (3.22). The computed eigenfrequen-
cies match the ones extracted from the complete
model. So, Low (2000)’s formula seems to be ad-
equate for more extensive applications than only
additional masses.

(b) Combination ofmode shapes The idea
for mode shape combinations is to use Rayleigh’s quotient de�ned in equation (3.23) for a FE model:

R
(
φ
i

)
=
φT
i
·K · φ

i

φT
i
·M · φ

i

(3.23)

The starting hypothesis is that the global system mode shape φ
i

can be written as a linear combination
of the subsystem ones (eq. 3.24).

φ
i

= αT,i×φT,i+αR,i×φR,i+αMadd,1,i×φMadd,1,i
+αMadd,2,i×φMadd,2,i

, ∀ i ∈ [[1;N ]] (3.24)

Then, to determine the proportionality parameters, Rayleigh’s quotient minimisation is considered,
meaning that the system in equation (3.25) is solved.

∂R
(
φ
i

)

∂αT,i
= 0 ,

∂R
(
φ
i

)

∂αR,i
= 0 ,

∂R
(
φ
i

)

∂αMadd,1,i
= 0 ,

∂R
(
φ
i

)

∂αMadd,2,i
= 0 (3.25)
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where the Rayleigh’s quotient expression is given in equation (3.26) for a continuous model, adapted to
the studied beam and deduced from equation (3.23):

R (φ) =

1
2

∫ L

0
Ec.Sh

(
dφ
dx

)2
dx+ 1

2KT

[
φ(0)2 + φ(L)2]+ 1

2KR

[
dφ
dx

∣∣∣∣
2

x=0
+ dφ

dx

∣∣∣∣
2

x=L

]

1
2

∫ L

0
ρc.Shφ

2 dx+Madd,1 × φ
(
L

4

)2
+Madd,2 × φ

(
3.L
4

)2 (3.26)

As for the eigenfrequencies, a validation is performed using the numerical model of independent subsys-
tems and the complete beam model. To improve the determined eigenbasis, Gram-Schmidt’s algorithm
(theorem 1) is applied to de�ne an orthonormal basis.

Theorem 1. If (vn)n∈N is a pre-Hilbertine space free family, then there is one and only one orthonormal
family (en)n∈N , such as:
X Vect(e0, . . . , en) = Vect(v0, . . . ,vn) , ∀n,
X Scalar products (en|vn) are strictly positive for all n.

Gram-Schmidt’s orthonormalisation procedure is, then, de�ned by the iterations in equation (3.27):




u1 = v1 , e1 = u1
‖u1‖

u2 = v2 − proju1
(v2) , e2 = u2

‖u2‖
u3 = v3 − proju1

(v3)− proju2
(v3) , e3 = u3

‖u3‖
...

...
uk = vk −

∑k−1
j=1 projuj (vk) , ek = uk

‖uk‖

(3.27)

where the orthogonal projection operator on a vector line and directed by the vector u is given by

proju (v) = 〈u,v〉〈u,u〉u, 〈., .〉 is the scalar product on considered space, [v1, . . . ,vk] is an unrelated vec-

tor set, [u1, . . . ,uk] is a set of two-by-two orthogonal vectors and [e1, . . . , ek] is a set of two-by-two
orthonormal vectors. The normalisation has to be performed based on the mass or sti�ness matrix. So,
the vector-based products are also made with respect to the mass, respectively sti�ness, matrix. The
mass matrix will be considered for the normalisation in the performed analyses.

3.2.3 Adequacy between analytical, numerical and experimen-
tal models
The analytical eigenfrequencies of subsystems are evaluated from the equations presented in sections 3.2.1
and 3.2.2. The computed values are indicated in table 3.3 for the beam three �rst modes. The last column
of table 3.3 gives the complete system eigenfrequencies computed with equation (3.22). The subsystem
frequencies are higher than the complete system ones. Mainly, the rotational elasticity of supports ex-
hibits a negligible impact because the three frequencies fR,i are close to the simply supported beam ones
fssb,i. On the contrary, the addition of translational elastic supports fT,i or additional masses fMadd,1,i

and fMadd,2,i induces a reduction of eigenfrequencies. The equality observed between the two masses
is a consequence of the studied system symmetry. Then, in �gure 3.8, the computed analytical eigen-
frequencies are compared with the experimental and numerical ones. The �rst eigenfrequency is equal
for the three models. A small error is observed for the second mode between the numerical frequency
and the two others. Indeed, a compromise was performed for the numerical model calibration, leading
to a small error on the second eigenfrequency. Finally, for the third mode, the analytical frequency is
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Table 3.3: Analytical eigenfrequencies of subsystems and the complete beam

Frequencies [Hz]

fssb,i fT,i fR,i fMadd,1,i fMadd,2,i fi

Simply
supported Trans. springs Rot. springs Add. mass 1 Add. mass 2 Complete beam

Mode 1 9.28 8.61 9.29 8.28 8.28 7.18
Mode 2 37.1 27.6 37.1 31.3 31.3 22.9
Mode 3 83.5 47.2 83.5 78.3 78.3 45.3
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Figure 3.8: Comparison of the three �rst
eigenfrequencies

closer to the numerical one, but the con�dence in
the experimental one is too low to conclude on
that value. In conclusion, the applied methods to
determine the analytical eigenfrequencies accu-
rately work for the modes of interest.

Then, the method described in paragraph
3.2.2.2(b) to combine mode shapes is also applied
to the three �rst modes. A comparison is per-
formed with the experimental mode shapes, de-
duced from the hammer-shock tests, as discussed
in paragraph 1.4.3.1(b), and the numerical ones
deduced from a modal analysis on the complete
beam model. Figures 3.9a to 3.9c exhibit the
results without applying Gram-Schmidt’s algo-
rithm, on the contrary to �gures 3.9d to 3.9f. The
analytical �rst mode matches the two other ones.
The non-null values at supports are due to the translational elastic supports. The analytical response
is closer to the numerical ones without applying Gram-Schmidt’s algorithm, while the orthonormalisa-
tion application leads to a better analytical representation of experimental data. That e�ect is observed
for the three modes demonstrating the importance of considering an orthonormal eigenbasis. Then,
the second mode is also accurately characterised, but it is more di�cult for the third one as observed
on eigenfrequencies. For the third mode, the fact that the experimental shape is not symmetric also
shows low con�dence. So, again, the proposed combination method is adequate for the eigenproperties
of interest.

3.3 Proposition of a damping identi�cation method
One of the scienti�c gaps discussed in chapter 1 from the literature analysis is the development of a
performative damping identi�cation method. This section aims to propose a damping identi�cation
method to identify the transient evolution of equivalent viscous damping ratios and eigenfrequencies
based on experimental or numerical data. The proposed method is based on a SDOF system equivalent
to the beam multi-�bre model. The system is projected in the modal basis evaluated in section 3.2 to
perform this equivalence. This projection is possible because it was demonstrated, in section 3.1, that
such projection is still possible for nonlinear computations using the tangent sti�ness matrix.

The method proposed by Demarie and Sabia (2011) and presented in paragraph 1.3.1.1(a) is used in
this section. The SDOF system considered is the projected beam response. The projection is performed
on the �rst mode of the beam eigenbasis because this mode mainly characterises the beam movement.
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(c) Mode 3
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(d) Mode 1 - Gram-Schmidt

0 1 2 3 4 5 6
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Position along the beam [m]

Experimental
Cast3M model
Theoretical

(e) Mode 2 - Gram-Schmidt
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Figure 3.9: Combination of mode shapes - Rayleigh’s quotient method

3.3.1 Method algorithm
The proposed method is based on the idea that the global response of the RC beam can be decomposed
into a set of equivalent SDOF systems. In addition, the total studied signal is decomposed into time win-
dows. First, the method algorithm is presented in the hypothesis of linear behaviour in section 3.3.1.1,
and then, required modi�cations are discussed in the case of a nonlinear behaviour (section 3.3.1.2).

3.3.1.1 Algorithm for a by-pieces linear constitutive model
Figure 3.10 presents the algorithm in the case of linear behaviour. First, the modal eigenbasis is computed
following the methodology discussed in section 3.2. Then, because it was demonstrated in chapter 2
that the beam movement is mostly characterised by its �rst mode and because the �rst mode represents
89.6% of the total modal mass, a projection of the global system is performed on the �rst eigenmode.
Equation (3.5) projected on the �rst eigenmode for a linear behaviour model becomes equation (3.28):
(
φT1 ·M · φ1

)
× α̈1 +

(
φT1 · C · φ1

)
× α̇1 +

(
φT1 ·K · φ1

)
×α1 = −

(
φT1 ·M · Γ

)
× Üs (3.28)

where K is the linear sti�ness matrix. The following modal properties are thus de�ned from equa-
tion (3.28) and computed from the eigenbasis knowledge:
X the modal mass of the �rst eigenmode: m1 = φT1 ·M · φ1,
X the modal damping of the �rst eigenmode: c1 = φT1 · C · φ1,
X the modal sti�ness of the �rst eigenmode: k1 = φT1 ·K · φ1,

X the modal projection of the seismic acceleration on the �rst mode: κ1 =
φT1 ·M · Γ
φT1 ·M · φ1

, called the

modal participation factor.
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Determination of the
system eigen-basis

Projection of data on the
�rst mode of modal basis

Choice of the func-
tion to identify fid

Recovery of the data in
window w −→ fid,w

Choice of a parame-
ter couple (ξ1,w, ω1,w)

Resolution of the pro-
jected dynamic equation (a)

Comparison with the
function to identify fid,w

Error criterion
εid < εid,lim ?

Computation
end ?

END

Parameter updates (ξ1,w, ω1,w)

Moving to the next window

B =
{
φ

i

}
i∈[[1,N ]]

−→ U =
N∑

i=1
αi · φi

α̈1 + 2.ξ1.ω0 × α̇1 + ω2
1 ×α1 = −κ1 × Üs iii (a)

Computed function fc,w

ε =

∫ tw

t=0
(fid,w − fc,w)2 dt

∫ tw

t=0
(fid,w)2 dt

YES

YES

NO

NO

Figure 3.10: Algorithm of the damping identi�cation method
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Then, by dividing equation (3.28) by the modal mass m1, equation (3.29), corresponding to (a) in �g-
ure 3.10, is obtained:

α̈1 + 2.ξ1.ω0 × α̇1 + ω2
1 ×α1 = −κ1 × Üs (3.29)

where 2.ξ1.ω0 = c1/m1 and ω2
1 = k1/m1.

Then, a function to identify fid (the target function for the identi�cation) must be de�ned from
experimental data or responses of the numerical computations. It can be the acceleration, velocity or
displacement responses, or a combination of these functions. Windows are de�ned to decompose the
input signal in nw time segments for which the response can be modelled with a linear behaviour. These
windows have to verify two properties: (i) long enough to have su�cient data for the identi�cation, and
(ii) short enough to validate the linear tangent behaviour hypothesis.

So, in each time window of length tw , the performed steps are presented in the algorithm 1.1 At the
beginning, the data of fid are extracted in the studied window w given fid,w as well as the projected
seismic acceleration Üs,w . The Newmark’s algorithm (3 in appendix F.1) is applied with the parameters
γ = 1/2 and β = 1/4 because these parameters give an unconditionally stable system while conserving
system energy. For updating the parameters, the "interior-point method" is used. The stopping criterion
is a variation inferior to 10−10 of identi�ed parameters: if xw has to be identi�ed, the optimization algo-
rithm stops when

∥∥∥x(k+1)
w − x(k)

w

∥∥∥ < 10−10. The "interior-point method" is described in appendix F.2.
Finally, when ξ1,w and ω1,w are deduced on the window w, algorithm 1 is applied again on the next
window up to the last one.

Algorithm 1: Algorithm of the identi�cation method for the window w

input : fid,w , Ü(1,w)
s

output: ξ1,w , ω1,w

begin
ξ

(0)
1,w = ξ1,w−1 , ω(0)

1,w = ω1,w−1

while ε(k)
id > εid,lim do

Computation of the response at step k solved with the Newmark’s algorithm:

α̈
(k)
1,w + 2.ξ(k)

1,w.ω0 × α̇
(k)
1,w +

(
ω

(k)
1,w

)2
× α

(k)
1,w = −κ1 × Üs, w

Computation of f (k)
c,w

Computation of the error ε(k)
id : ε(k)

id =

∫ tw

t=0

(
fid,w − f (k)

c,w

)2 dt
∫ tw

t=0
(fid,w)2 dt

Updating of the parameters
(
ξ

(k+1)
1,w , ω

(k+1)
1,w

)
using the interior-point method

end

ξ1,w = ξ
(kc)
1,w , ω1,w = ω

(kc)
1,w

end

1The index 1 corresponds to the projection in the �rst mode.
The index w corresponds to the window of interest.
The index k corresponds to the iteration step, and kc is the convergence iteration.
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3.3.1.2 Modi�cations for nonlinear constitutive models
In the case of a nonlinear constitutive model, with a displacement �eld U = α1 · φ1, equation (3.28) is
replaced by equation (3.30):

(
φT1 ·M · φ1

)
× α̈1 +

(
φT1 · C · φ1

)
× α̇1 + φT1 · f int

(
α1.φ1

)
= −

(
φT1 ·M · Γ

)
× Üs (3.30)

Simplifying by m1, this equation can be rewritten in equation (3.31):

α̈1 + 2.ξ1.ω0 × α̇1 + fint1 = −κ1 × Üs (3.31)

where fint1 =
φT1 · f int

(
α1.φ1

)

m1
and the parameter to identify is ξ1. The parameters of the nonlinear

model fint1 are identi�ed on a cyclic test. So the variations of dynamic dissipations are only carried
by the viscous damping ξ1. The equation to solve for a nonlinear constitutive model is expressed in
equation (3.32):

α̈
(k)
1,w + 2.ξ(k)

1,w.ω0 × α̇(k)
1,w + fint

(k)
1,w = −κ1 × Üs,w (3.32)

where fint
(k)
1,w is the nonlinear internal force associated with the computed displacement on the modal

basisα(k)
1,w . A Modi�ed Newmark’s algorithm (algorithm 2 from the knowledge of time step t−1 data) is

thus used to solve the nonlinear equation, with k
(t)
t the tangent sti�ness at time

k1 k1

m1c1

~x
üs

u1

k2 k2

m2c2

k3 k3

m3c3

u2

u3

Figure 3.11: Three DOFs discrete system

step t.

3.3.2 Calibration of the
method parameters
3.3.2.1 Simplify problem pre-
sentation
The identi�cation method performances
strongly depend on numerous choices the
user has to make. The study of a three DOFs
system (�g. 3.11) is so considered to discuss
the possible method characteristics. In addi-
tion, a simple seismic signal presented in �g-
ure 3.12 is used as seismic acceleration. In-
tegration with the Newmark’s scheme and
a linear constitutive model are used to de-
�ne the "reference solution" (�g. 3.13). A
mass proportional damping is considered
ci = a0.mi (as schematised in �gure 3.13)
with mi = 500 kg for all i ∈ [[1; 3]], given
ξi = a0

2.ωi as damping ratio for node i in �g-
ure 3.11. A modal analysis gives the mass-
normalised mode shapes in �gure 3.13a. Ta-
ble 3.4 presents the modal properties of the
studied three DOFs system, corresponding
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Algorithm 2: Modi�ed Newmark’s algorithm
input : α1,w(t− 1) , α̇1,w(t− 1) , α̈1,w(t− 1) , fint1,w(t− 1) , Üs,w(t) , ∆t , γ , β , k(t−1)

t , m1 , c1 ,
κ1 , R(t−1)

n

output: α1,w(t), α̇1,w(t), α̈1,w(t), fint1,w(t), k(t)
t , R(t)

n

begin
u = α1,w(t− 1) , Rn = R

(t−1)
n , fext = κ1 × Üs,w(t)

∆u(0) = 0 , ε(0) = 1
Am = m1

β.∆t2 + c1.
γ

β.∆t + k
(t−1)
t

a∗ = − 1
β.∆t × α̇1,w(t− 1) −

(
1

2.β − 1
)

× α̈1,w(t− 1)

v∗ =
(

1 − γ

β

)
× α̇1,w(t− 1) +

(
1 − γ

2.β

)
× ∆t× α̈1,w(t− 1)

b∗ = fext − (m1 × a∗ + c1 × v∗)
b = b∗ −Rn

while ε(k) > εlim do

δu(k) = b(k)

Am
∆u(k) = ∆u(k−1) + δu(k)

u(k) = u(k−1) + δu(k)

Application of the behaviour law to deduce f (k)
mod

[
u(k)]

f
(k)
int = m1 ×

(
a∗ + ∆u(k)

β.∆t2

)
+ c1 ×

(
v∗ + γ.

∆u(k)

β.∆t

)
+ f

(k)
mod

[
u(k)]

ε(k) =
∣∣∣∣
fext − f

(k)
int

fext

∣∣∣∣

R
(k)
n =

(
m1

β.∆t2 + c1.
γ

β.∆t

)
× ∆u(k) + f

(k)
mod

[
u(k)]

b(k) = b∗ −R
(k)
n

end

α1,w(t) = u(kc) , α̇1,w(t) = v∗ + γ.
∆u(kc)

β.∆t , α̈1,w(t) = a∗ + ∆u(kc)

β.∆t2

k
(t)
t =

f
(kc)
mod

[
u(kc)]

u(kc)

fint1,w(t) = f
(kc)
mod

[
u(kc)]

R
(t)
n = R(kc)

n

end

to the exact values of the parameters to identify with the proposed method. Finally, the acceleration
responses for the three nodes are plotted in �gure 3.13b.

The method parameters to evaluate are:
X the number of modes nm for the projection on the modal basis,
X the global response used to de�ne fid,
X the window properties (tw),



136 Chapter 3. Damping identi�cation and New damping model

X the modal parameters (ξi andωi) to identify. In addition, few remarks are discussed concerning the
in�uence of the initial and extreme parameter values. In some cases, some evolution constraints
for the parameters are also applied from one window to another.
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Figure 3.12: Seismic acceleration
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Figure 3.13: "Reference solution" of the three DOFs system

Table 3.4: "Reference modal properties" to identify

Eigenfrequency Damping ratioMode
[rad/s] [Hz] [%]

n°1 19.90 3.17 10.1
n°2 55.77 8.88 3.59
n°3 80.59 12.8 2.48
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3.3.2.2 Parameter calibrations
In the analyses presented in this section, the following parameters are considered:
X projection on the �rst mode of the eigenbasis (nm = 1),
X the acceleration response of node 3 is considered as objective function fid,
X classical windows are considered with a length tw = Tw,c = 0.2 s,
X ξ1 and ω1 are the parameters to identify.

In each paragraph, a parameter is studied and evolves. The objective of those analyses is to test the
method implementation by discussing some choice in�uences.

(a) Number of modes for the projection on the modal basis The system is composed of three
DOFs. The three mode shapes associated are plotted in �gure 3.13a. The modal masses associated are:
m̃1 = 1371.1 kg, m̃2 = 112.3 kg and m̃3 = 16.6 kg. Using the projections respectively on the �rst
mode, on the two �rst modes and the three modes, identi�cation errors are 6.1%, 2.8% and 0.96%. The
three identi�cation errors illustrate the intuitive result that increasing the number of modes allows a
better representation of the function to identify. However, it signi�cantly increases the computational
time. Furthermore, the identi�ed parameters associated with the third mode are not converging towards
the target values because they do not in�uence the system response enough.

(b) Objective function The DOF of interest must �rst be chosen to de�ne the objective function.
Figure 3.13b shows the acceleration responses for the three DOFs. The �rst DOF is the closest to the
�xed support, so its acceleration amplitude is the lowest, contrary to DOF number 3. As expected, the
global identi�cation errors are the strongest for DOF 1. Then, di�erent global responses (displacement,
velocity, acceleration, force) can be considered objective functions. A combination of di�erent functions
could also be considered. For the studied example, the identi�cations of respectively displacement,
velocity and acceleration lead to global errors equal to 26%, 1.6% and 6.1%. The more signi�cant error
with the displacement is due to the transitory phase during which the method tries to stabilise around
the target parameters. This phase is longer with the displacement response than with the two others.
An idea to improve the response could be to add relaxation.

(c) Window properties On each window, it is considered that the system response behaves as a
linear SDOF system. So, the window length must be short enough to check this hypothesis. However,
enough data have to be used for the identi�cation, so the window length also has to be long enough to
have a su�cient number of data. In addition, two strategies can be studied: (i) windows ones after the
others with the initial conditions for the window (w) corresponding to the end of the previous window
(w − 1), or (ii) partially superpose the windows to obtain smoother responses at window interfaces.
These strategies are respectively called "classical windows" and "moving windows". For the studied
system, the lengths given the minimal errors for both window types are respectively Tw,c = 0.2 s for
classical windows, corresponding to twenty-time increments, and Tw,m = 0.4 s, corresponding to 40
time increments, with a lag time of δTw,m = Tw,m/3 for moving windows. The "moving windows" do
not improve the identi�cation responses, but the associated computational time is higher that is why
they will not be used.

(d) Initial values and variations of parameters to identify Equation (3.29) is considered, and
parameters ξ1 and ω1 are identi�ed with a global identi�cation error of 6.1%. As expected, the initial
values and limits of the parameters to identify play a signi�cant role in the identi�cation performances.
Coherent initial values must be considered to reduce the initial transient phase and ensure the method
convergence towards expected parameters. Furthermore, because the beam properties are physically not



138 Chapter 3. Damping identi�cation and New damping model

able to vary too much from one window to another, a constraint minimisation is introduced through a
de�nition of a maximal variation for both parameters.

3.3.2.3 Simple system identi�ed response

Considering the best identi�cation characteristics from all in�uential parameters leads to the identi�-
cation response in �gure 3.14. Figure 3.14a shows that the identi�ed acceleration is very well matching
the "reference solution", which is linked with errors in �gure 3.14b. A global error under 10% demon-
strates the good performance of the developed method. Figure 3.14b also exhibits a transient phase
corresponding to the convergence of identi�ed parameters towards the target values, mainly observed
in �gure 3.14d with the eigenfrequency. For the damping ratio, more substantial variations are observed.
A hypothesis could be that the viscous damping energy is low compared to the other during the compu-
tation. So strong errors of viscous damping ratio do not in�uence the global response, and the algorithm
can not correct these errors. It could be the consequence of a lack of sensitivity to the damping, which
is the interest value.

In conclusion, the method seems to be performative to identify an objective function, but the inter-
pretation of parameters has to be carefully discussed.
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Figure 3.14: Validation of the damping identi�cation method on a three simple DOFs system
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3.3.3 Method validation

After performing a parametric study with a simple discrete system, the damping identi�cation method
is applied to the experimental and numerical (Cast3M) beam responses analysed in chapter 2. WN1
test is chosen to validate the proposed method because concrete and steel materials stay elastic. The
experimental response is identi�ed, as well as the numerical one with RICBET constitutive model and
Rayleigh damping formulation computed with a viscous damping ratio of 1%.

The following choices are made for the beam system based on a parametric study. (i) The �rst
beam e�ective modal mass represents 89.6% of the total mass based on the experimental data. So, the
projection on beam �rst mode is considered su�cient. This result is con�rmed by the study performed
by Heitz, Giry, et al. (2019). The �rst mode shape considered is the one identi�ed analytically. (ii) For
the objective function, the node at the centre of the beam is considered (i.e. the node with the most
signi�cant displacement in the fundamental mode shape). The experimental data considered is the
acceleration as it shows the best signal-to-noise ratio with respect to displacement measurements. (iii)
According to the preliminary test performed, no signi�cant improvements are observed with moving
windows, so classical ones are considered. A new parametric study is performed with the data to identify
to validate these windows length (Tw,c = 1.0 s). (iv) Finally, parameters ξ1 and ω1 are considered for the
identi�cation. Their initial values are respectively 5%, a classical viscous damping ratio, and 44 rad/s
(7.0 Hz) the undamaged beam eigenfrequency. 10% of the maximal variation is applied as a constraint
from one window to another.

Figures 3.15 and 3.16 present the results of the damping identi�cation method applied on WN1
numerical and experimental data. First, the global responses are plotted in �gure 3.15 with the "exact
values" corresponding to the numerical or experimental data and the "identi�ed values" corresponding
to the data deduced from the identi�cation method. Experimentally, the velocity is not measured. That
is why no "exact value" is presented in �gure 3.15b. So, if �gures 3.15a and 3.15d are considered, a good
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(c) Experimental displacement
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(d) Cast3M acceleration
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(e) Cast3M velocity

0 20 40 60 80 100 120 140
-4

-3

-2

-1

0

1

2

3

4

Time [s]

D
isp

la
ce

m
en

t[
m

m
]

Cast3M response
Identify function

(f) Cast3M displacement

Figure 3.15: WN1 test - Application of the damping identi�cation method on beam responses - global
responses
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Figure 3.16: WN1 test - Application of the damping identi�cation method on beam responses -
identi�ed parameters

match is observed between exact and identi�ed responses. By studying the identi�cation errors, higher
values are obtained with the experimental data because the initial experimental values are very noisy.
Experimentally, a global error of 363% is obtained, while it is only 73.1% for the numerical data. The
apparent signi�cant errors result from the comparison of data oscillating around null values. So, what
is more interesting than the values themselves is their comparison, in parallel of the time evolution of
exact and identi�ed responses. An explanation for the more signi�cant experimental error could be the
noise on low amplitude measurements. It could also explain the amplitude di�erences in �gure 3.15c
between exact and identi�ed displacements. Indeed, the three plotted global responses demonstrate
good method performances to identify dynamic data with the numerical data.

Then, identi�ed parameters are presented in �gure 3.16. Experimentally, �gures 3.16a and 3.16b
again show the transitory phase during which the system tries to stabilise. It corresponds to the very
low accelerations at the computation beginning. After this phase, the parameters stabilise and oscillate
around constant values. This oscillation could be a numerical bias. Numerically, oscillations are also
observable but with more considerable variations. In addition, while both computations lead to eigen-
frequencies around 7 Hz corresponding to the undamaged beam eigenfrequency (�g. 3.16b and 3.16b),
the viscous damping ratios exhibit bigger di�erences. Experimentally (�g. 3.16a), a stabilisation around
4% is obtained while it is mainly around 6% for the numerical data (�g. 3.16a). Experimentally, the
identi�ed viscous damping ratio corresponds to the recommended value in earthquake engineering us-
ing a linear constitutive model, with modi�cation factors for the anticipated nonlinear behaviour. It
demonstrates that 5% seems to be a good value for remaining elastic RC structures.

3.4 Viscous damping identi�cation of a SDOFmodel
The previous section presented and validated the damping identi�cation algorithm with a linear sys-
tem. Let us use it to evaluate the viscous damping ratios and eigenfrequencies in the case of nonlinear
structural behaviour. DSS2 and DSS3 tests, whose input signals are presented in �gures 2.10a and 2.10b,
are of interest. A by-pieces linear constitutive model will �rst be considered in section 3.4.1 to propose
evolutions of the damping ratio as a function of a damage variable. Then, a nonlinear constitutive model
will be used in section 3.4.2 to discuss how the consideration of hysteretic dissipations in�uences the
identi�ed viscous damping.

The same method characteristics considered in the validation are used herein, except that the win-
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dow length is adapted to the time increments given Tw,c = 0.2 s and corresponding to forty increments
in each window.

3.4.1 Linear constitutive model
Equation (3.29) is used to identify the viscous damping ratio ξ1 and the damaged beam eigenfrequency
ω1. A damage index is de�ned by equation (3.33):

d = 1−
[
k(t)
k0

]
= 1−

[
ω(t)
ω0

]2
(3.33)

3.4.1.1 Experimental data
DSS2 and DSS3 tests are the most damaging dynamic tests applied on the HA16-C1A-2 RC beam. The
signal harmonic parts are the ones damaging the beam. The white-noise parts have very low ampli-
tudes and are strongly noisy. So they lead to di�use clouds of data and limit the result interpretations.
Consequently, the identi�cation is made only with the signal harmonic parts. The acceleration re-
sponses measured experimentally at the beam centre are considered herein for identi�cation purposes.
The viscous damping ratios and eigenfrequencies are identi�ed, and the damage index is deduced from
equation (3.33). Finally, the global identi�ed responses are presented in �gure 3.17 associated with
identi�cation errors in �gure 3.18. The viscous damping ratio evolution is plotted in �gure 3.19 as a
function of the damage index for both tests. There are no constraints on the damage evolution, so this
is not damaged in the thermodynamic sense.

Figure 3.17 shows a good accuracy between the experimental and identi�ed responses, particularly
for the accelerations (�g. 3.17a and 3.17c) because the identi�cation is performed on this response. Ac-
celeration equivalences can be characterised by �gure 3.18, where global errors are much more minor
than for the WN1 test previously analysed. Indeed, by removing white-noise parts for the identi�cation,
the noisiest parts are eliminated, reducing the error. It appears that the peaks at the block beginnings
are challenging to characterise, as it was observed with the numerical computations using the multi-
�bre model. It could be a consequence of the limitation of the viscous damping evolution (±10%). For
the displacements (�g. 3.17b and 3.17d), the DSS2 test exhibits a long transient phase before stabilis-
ing around the exact values. So, divergences at the beginning are only due to numerical bias. It can
be supposed that a too-small eigenfrequency is unexpectedly evaluated at the beginning leading to a
displacement response with long periods. Then, from around 30 s, the identi�cation response stabilises
and no more bias is observed even during the DSS3 test.

Identi�ed parameters induce the viscous damping ratio evolution de�ned in �gure 3.19 as a function
of the damage index d de�ned in equation (3.33). The damage evolution from one test to another is well
observable. Identi�ed damage indices for the DSS3 test are superior to those of the DSS2 test. By
considering all data, two experimental viscous damping ratio functions can be identify: ξ(exp)

1,expo(d) and
ξ

(exp)
1,ratio(d) respectively in equations (3.34) and (3.35).

ξ
(exp)
1,expo(d) = 2.96× 10−3 × exp (4.75× d) (3.34)

ξ
(exp)
1,ratio(d) = −62.1× d− 385

d2 − 1.36× 104 × d+ 1.41× 104 (3.35)

Furthermore, two di�erent behaviours seem to exist before and after d = 0.6. For damage indices
inferior to 0.6, the viscous damping ratio is almost constant and equal to 4%, while above d = 0.6, the
viscous damping ratio can not be considered constant anymore. The value of 4% for null damage is in
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(a) DSS2 test - acceleration
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(b) DSS2 test - displacement
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(c) DSS3 test - acceleration
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(d) DSS3 test - displacement

Figure 3.17: DSS2 and DSS3 tests - Global responses of identi�ed experimental data - harmonic signal
parts
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Figure 3.18: DSS2 and DSS3 tests - Identi�cation errors - harmonic signal parts
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adequacy with the results of the WN1 test and the identi�cation of experimental data where a value
around 5% was deduced. The function best representing the two distinct behaviours is the ratio in
equation (3.35). So, it can be recommended, to engineers, that using a constant viscous damping ratio is
acceptable if the damage is low enough. However, updates should be performed in dynamic numerical
analyses above a speci�c range of damage.

Remark : This limit dcrit = 0.6 was also de�ned by Roth, Léger, and Soulaïmani (2015) as a thresh-
old to switch from continuum to XFEM concrete cracking models. The limit represents a transition
between di�use damage and macrocracks. The dissipations seem to increase with the development of
macrocracks.

3.4.1.2 Numerical data (Cast3M)
As for the experimental data, the damping identi�cation method can be applied to the numerical re-
sponses obtained with the multi-�bre model in Cast3M and presented in chapter 2. Then the evolution
ξ1(d) could be compared from one damping formulation to another or between the two studied consti-
tutive models.

Figure 3.20 presents some identi�ed accelerations. Di�erent comparisons are exposed: (i) the RD-
type formulations (�g. 3.20a to 3.20c), (ii) the KPD-type formulations (�g. 3.20g to 3.20i), (iii) the viscous
damping ratios (�g. 3.20c and 3.20d to 3.20f), and (iv) the BARFRA constitutive model (�g. 3.20j to 3.20l)
compared to the associated RICBET responses (�g. 3.20a, 3.20c and 3.20h). Globally, the identi�ed func-
tions are well matching the numerical data. The responses with the most signi�cant global errors (CKPD
and RD_ACT for RICBET and RD, CRD and KPD_ACT for BARFRA) present the most signi�cant maxi-
mal accelerations. These high values were not observed experimentally, so they are not due to physical
phenomena. They should be a consequence of the multi-�bre numerical model because it is impossible
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(a) RICBET - RD 2%
global error = 46.3%
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(b) RICBET - RD_ACT 2%
global error = 63.0%
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(c) RICBET - CRD 2%
global error = 54.0%
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(d) RICBET - CRD 1%
global error = 51.4%
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(e) RICBET - CRD 3%
global error = 47.8%

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time [s]

Cast3M response
Identify function

(f) RICBET - CRD 5%
global error = 45.4%
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(g) RICBET - KPD 2%
global error = 52.9%
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(h) RICBET - KPD_ACT 2%
global error = 51.9%
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(i) RICBET - CKPD 2%
global error = 65.0%
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(j) BARFRA - RD 2%
global error = 57.2%
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(k) BARFRA - CRD 2%
global error = 82.8%

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time [s]

Cast3M response
Identify function

(l) BARFRA - KPD_ACT 2%
global error = 60.3%

Figure 3.20: DSS2 test (harmonic parts) - Identi�ed accelerations

to reproduce themselves with the SDOF equivalent system used for the identi�cation. As soon as the
damping formulations lead to smooth acceleration responses, it is possible to obtain an accurate identi-
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�ed response with or without damping matrix updates. Then, for the damping ratio in�uence, it appears
that the error is decreasing with the increase of the viscous damping ratio. A by-pieces linear model is
considered for identi�cation, and the developed nonlinearities are reduced when the viscous damping
ratio increases. It could explain the better identi�cation of these data. Finally, identi�cations performed
with BARFRA results give more signi�cant errors than with RICBET because the data are not smooth
enough. Nevertheless, as for RICBET, the last blocks with RD and KPD_ACT are very well-identi�ed
because no damage evolution and a more stable response are observed. As discussed in section 3.3.3,
the apparent large errors result from the comparison of data oscillating around null values.

The identi�ed parameters can also be studied as presented in �gures 3.21, 3.22 and 3.23, respec-
tively to compare the damping formulations, the viscous damping ratios and the constitutive models.
In �gure 3.21, it can be concluded that all RD-type formulations give similar responses, as well as all
KPD-type ones. However, the evolution di�ers between both groups because the identi�ed damping
ratios are smaller above d = 0.6 for KPD-type formulations than RD-type ones. For the viscous damp-
ing in�uence, �gure 3.22 shows, as expected, that the larger it is, the higher are the identi�ed damping
ratios for one damage value. Finally, between BARFRA and RICBET (�g. 3.20), the identi�ed damping
ratios with BARFRA are generally stronger than with RICBET.
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Figure 3.21: DSS2 test (harmonic parts) - Numerical identi�ed evolutions ξ1(d) - RICBET 2%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Damage [-]

Vi
sc

ou
sd

am
pi

ng
ra

tio
[%

]

1% 2% 3% 5%

Figure 3.22: DSS2 test (harmonic parts) - Numerical identi�ed evolutions ξ1(d) - RICBET CRD -
viscous damping ratio in�uence
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Figure 3.23: DSS2 test (harmonic parts) - Numerical identi�ed evolutions ξ1(d) - constitutive model
in�uence - 2%

In conclusion, it is possible to identify the numerical data by considering a linear equivalent SDOF
system. However, the identi�ed parameters are not giving a di�erent evolution contrary to the exper-
imental data. In addition, the identi�ed damping ratios are more signi�cant than the ones identi�ed
on experimental data. So, the numerical models cannot represent the damping content of experimental
data. To improve these results, a nonlinear constitutive model could thus be used in the identi�cation
method to dissipate energy at the local scale and limit the dissipations at the global scale.

3.4.2 Nonlinear constitutive model
A SDOF nonlinear model representing the RC behaviour was proposed by Heitz, Giry, et al. (2019), and
it is named IDEFIX in the present study. It was calibrated based on the experimental campaign presented
in section 1.4 and used in the presented work. The model was then used to perform a numerical study of
equivalent viscous damping ratio dependences on two engineering demand parameters: the mid-span
curvature γ and a degradation index Γ corresponding to the maximum historic curvature at mid-span
γm over the �rst steel yielding curvature γy . It led to an equivalent viscous damping ratio surface
response (eq. 3.36):

ξeq = C̄ × f(Γ)g(γ) (3.36)

where C̄ is a coe�cient of normalisation, and the identi�ed functions are expressed in equations (3.37)
and (3.38):

f(Γ) = 3.679× Γ
Γ + 0.2806 (3.37)

g(γ) = 0.03759× γ
γ2 − 0.004994× γ + 8.397× 10−5 (3.38)

It can be noticed that g(γ) corresponds to the form obtained in equation (3.35) from the experimental
data identi�cation.

The thermodynamic framework of the IDEFIX model, and the corresponding dissipative phenomena,
will be presented in section 3.4.2.1. Then, the proposed damping identi�cation method will be used in
section 3.4.2.2 to identify equivalent viscous damping ratios using algorithm 2.

3.4.2.1 Nonlinear model presentation
(a) Thermodynamic framework Based on the internal and observable global variables in ta-
ble 3.5, Helmholtz’s free energy Ψ is used to de�ne the state potential. Considered phenomena are
the damage with the unilateral e�ect, the friction and the pinching e�ect. In the following, the index ·±
means that the variable takes di�erent values in tension (+) and compression (−).
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Table 3.5: IDEFIX model variables

Observable Internal Associated
forces Phenomena

u F Elasticity
uπ Fπ Friction
απ Xπ Kinematic hardening associated to friction
d± Y± Damage (sti�ness degradation)
z± Z± Isotropic hardening associated to damage
η F η Unilateral e�ect

The state potential Ψ (u, d±, uπ, απ, η) is expressed in equation (3.39) by the decomposition between
an elastic (eq. 3.40) part Ψe (u, d±, η) and friction (eq. 3.41) one Ψπ (uπ, απ, η, d±). Especially, d±, η
and Kp(η) expressions are de�ned in equation (3.42).

Ψ (u, d±, uπ, απ, η) = Ψe (u, d±, η) + Ψπ (uπ, απ, η, d±) (3.39)

where u is the displacement variable, d± the damage variable (two variables for two crack families on
each side of the beam), uπ the friction displacement variable, απ the variable associated with friction
work hardening and η the crack closure variable evolving from 0 (crack completely closed) to 1 (crack
opened) to take into account the pinching e�ect.

Ψe (u, d±, η) = 1
2 .Kp(η). (1− d±) .u2 (3.40)

where Kp(η) is the altered sti�ness meaning that the pinching e�ect appears progressively with the
damage evolution.

Ψπ (uπ, απ, η, d±) = 1
2 .Kp(η).d±.(u− uπ)2 + 1

2 .b
π.(απ)2 (3.41)

where bπ is a parameter for the model of friction work hardening.





d± = d∞.

(
1−

(
Y0

Y d±

)q)

η = d±. exp
(
−
∣∣∣∣
u

Uc

∣∣∣∣
)

Kp(η) = K.(1− η)

(3.42)

where d∞ is the maximum potential damage given a secant sti�ness K0. (1− d∞) for an in�nite dis-
placement, Y0 the initial energy threshold for damage, Y d± = 1

2 .Kp(η).(u)2
± the energy rate driving

damage, q a coe�cient driving the slope right after the damage initiation in the force-displacement
curve and Uc characterising the crack closure displacement. Then, the state laws are deduced from the
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state potential derivation towards model variables. They are given in equation (3.43):




F = ∂Ψ
∂u

= Kp(η). (1− d±) .u+Kp(η).d±. (u− uπ)

Fπ = − ∂Ψ
∂uπ

= Kp(η).d±. (u− uπ)

Xπ = ∂Ψ
∂απ

= bπ.απ

Y± = − ∂Ψ
∂d±

= 1
2 .Kp(η).u2 − 1

2 .Kp(η).(u− uπ)2

Z± = ∂Ψ
∂z±

= dH

dz±
= Y0(

1 + z±
d∞

)1/q − Y0

F η = −∂Ψ
∂η

= 1
2 .K. (1− d±) .u2 + 1

2 .K.d±.(u− u
π)2

(3.43)

where F is the total force, Fπ the friction force, Xπ the thermodynamic force related to a kinematic
work hardening, Y± the energy restitution rate associated to damage, Z± the thermodynamic force
related to an isotropic work hardening and F η the force associated with the pinching e�ect. Finally,
by applying the Clausius-Duhem inequality, IDEFIX model dissipation law in equation (3.44) can be
deduced:

D =




Fπ

−Xπ

Y±

−Z±
F η




T

·




u̇π

α̇π

ḋ±

ż±

η̇



> 0 (3.44)

(b) Model calibration IDEFIX model comprises eight parameters presented in table 3.6. The pa-
rameter calibrations are performed on quasi-static experimental data. First, the capacity curve is used
to identify δy , k0, pidefix and q. Then, aπ , bπ , Uc and lp are deduced from the complete response identi-
�cation because hysteresis loops are required to determine these parameters. The identi�ed parameter

Table 3.6: Calibrated parameters of Heitz, Giry, et al. (2019) model

Parameter Description Value Unit

δy Yield displacement 2.61 mm
k0 Initial sti�ness 3.262 N.mm−1

pidefix Sti�ness loss coe�cient 0.20 −
q Fragility coe�cient 0.35 −
aπ Hysteresis loops width 1249 N
bπ Initial sti�ness of the hysteresis loops 82.3 N.mm−1

Uc Crack closure displacement 57.1 mm
lp Pinching coe�cient 1.14×10−11 −
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values are given in table 3.6. In addition, �gure 3.24 presents the capacity curve and complete response
with experimental and numerical (IDEFIX model) data. A good match is observed. The experimental
one is not entirely symmetrical for global responses, so more signi�cant errors are observed for negative
displacements.
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Figure 3.24: Quasi-static responses of calibrated IDEFIX numerical model

(c) Dissipative phenomena For a quasi-static test, the total energy is only composed of the ab-
sorbed one. Figure 3.25 presents the energies associated with the quasi-static response in �gure 3.24b.
First, �gure 3.25a validates the energy balance because the hysteretic energy represents the total numer-
ical energy recoverable part. It can be easily compared with the experimental energy by computing the
integration of hysteresis loops. The conclusion is that the numerical model dissipates a lower amount
of energy than the physical beam. Then, �gure 3.25b presents the decomposition between the di�erent
dissipative phenomena of the numerical absorbed energy. As for the RICBET model, IDEFIX is particu-
larly dissipating energy through friction. Finally, �gure 3.25c shows the evolution of experimental and
numerical total energy envelops as functions of the damage variable. It appears that the experimental
and numerical energies begin to increase around d = 0.5, and the most substantial variations occur
after d = 0.6, demonstrating that something occurs at that threshold, as observed in identi�ed vis-
cous damping ratios (�g. 3.19). While the RC structure develops low nonlinearities, a small amount of
hysteretic energy is dissipated, and a constant small equivalent viscous damping ratio adequately rep-
resents physical dissipations. However, after a certain amount of nonlinearities, the hysteretic energy
increases strongly. So, if a linear model is considered with an equivalent viscous damping ratio to model
the dissipations, the energy must be dissipated through the equivalent viscous damping. The amount of
energy is thus dependent on the damage level to represent the substantial hysteretic energy variations
best.

3.4.2.2 Viscous damping ratio identi�cation
In section 3.3.1.2 was presented the algorithm modi�cations to take into consideration a nonlinear con-
stitutive model. Equation (3.31) is used to identify the parameter ξ1, which is the only one playing
an additional role in dynamic. The experimental response and a numerical one (RICBET constitutive
model with CRD formulation and 2% of viscous damping ratio), computed with Cast3M, are studied.
Figure 3.26 presents the identi�ed accelerations compared to the experimental and numerical solutions.
Identifying only the viscous damping ratio with the linear behaviour (i.e., a �xed value for ω1) is insu�-
cient to obtain accurate identi�cations because nonlinearities develop during this test. On the contrary,
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Figure 3.25: Quasi-static energy balance with IDEFIX model
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Figure 3.26: DSS2 test (harmonic parts) - Identi�ed accelerations with IDEFIX model

for the numerical and experimental data, using a nonlinear constitutive model allows to model nonlin-
earities, and so to better identify the experimental and numerical data.

Then, in �gure 3.27 are plotted the identi�ed viscous damping ratios. First, �gures 3.27a and 3.27b
give their values for each window, along with computation. Few variations are observed for the linear
behaviour (�g. 3.27a), and small values are identi�ed. That is why the identi�ed accelerations are
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Figure 3.27: DSS2 test (harmonic parts) - Identi�ed viscous damping ratios with IDEFIX model -
dependence on the damage indices γ and Γ

not damped enough during the �rst blocks. On the contrary, substantial variations of identi�ed viscous
damping ratios are obtained with the IDEFIX model (�g. 3.27b). The most signi�cant values are obtained
with the largest amplitudes in the signal parts. From one block to another, identi�ed viscous damping
ratios are decreasing. In the beginning, no energy is dissipated through nonlinearities, and more signif-
icant viscous damping is obtained. Then, the nonlinearities develop, and the identi�ed viscous damping
ratios become more negligible. So, considering physical dissipations through the nonlinearities induces
a reduction of required viscous damping representing the unmodelled dissipations.

Between numerical and experimental data, on the contrary of linear identi�cation in section 3.4.1,
lower identi�ed equivalent viscous damping ratios are deduced from the numerical data. Thus, consid-
ering the local dissipations allows characterising only the unmodelled phenomena with the viscous part
characterised by ξ.

As the damage variable (�g. 3.28a) for the complete RC behaviour is not the best damage index,
the viscous damping ratio evolution is preferred using the damage index and the indicator of cycle am-
plitudes proposed by Heitz, Giry, et al. (2019) in equation (3.36). Figures 3.27c and 3.27d respectively
present the experimental and numerical evolutions of ξ1(γ) for the di�erent values of Γ2 with a logarith-
mic scale. For both data, at a �xed value of Γ, ξ1(γ) follows, globally, a linear decrease in the logarithmic

2Γ is a degradation index "de�ned as the maximum historic curvature measured at mid-span over the theoretical �rst steel
yielding curvature" (Heitz, Giry, et al., 2019).
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Figure 3.28: DSS2 test (harmonic parts) - Nonlinear parameter evolutions - IDEFIX model

space, so an exponential evolution in the initial space. In addition, if Γ increases, ξ1 decreases. For the
damage index Γ, the stronger it is, the more energy is dissipated through nonlinearities, and the lower
is the required viscous damping ratio.

Then, nonlinear dissipative phenomena computed with the IDEFIX model are plotted in �gure 3.28.
They are characterising the RC behaviour. For the damage evolution (�g. 3.28a), a substantial variation
is observed at the beginning corresponding to crack opening in concrete. So, after reaching d = 0.6,
the steel reinforcements mainly take up the forces. Experimental and Cast3M response evolutions are
similar, increasing at the same instants. The only di�erence is the slightly higher value with the nu-
merical data computed with Cast3M. For the friction behaviour (�g. 3.28b), the same conclusions can
be made: the evolutions are similar, but the experimental dissipations are lower than the numerical
(Cast3M) ones.

Finally, larger values for damage indices are obtained for Cast3M results with respect to experimental
ones. Furthermore, the identi�ed values for viscous damping ratio are smaller for Cast3M. From the
comparison of the damage and viscous damping ratio evolutions between Cast3M and experimental
data, one can conclude that there is: (i) a lack of dissipation in the model (too large damage values are
reached numerically), and (ii) a need to improve the link between the damage and additional viscous
damping at the local scale to compensate for the lack of dissipation in the model.

3.4.3 Synthesis
To conclude, it appears that the proposed damping identi�cation method is accurately working with lin-
ear and nonlinear constitutive models in the condition that proper method parameters are considered.
In the case of a linear behaviour used to identify a damaging test, the nonlinearities can be considered
by identifying the damaged beam eigenfrequency. It is a �rst way to de�ne a damage index and pro-
pose an evolution of the equivalent viscous damping ratios as a function of a damage index (eq. 3.33).
However, the di�culty observed with the linear behaviour strategy is the unrealistic characterisation
of dissipations. The second proposed strategy was to consider a RC nonlinear constitutive model to
improve the latter. Other damage indices, more representative of the global RC behaviour, can be used
to propose evolutions of equivalent viscous damping ratios. Finally, by comparing experimental and
numerical (Cast3M) data, it is possible to evaluate the performances of the numerical (Cast3M) models
to accurately model the dissipative phenomena.

Enhancements could be developed to de�ne the error function and improve the identi�cation per-
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formance. Indeed, it was observed that, in some cases, a slight phase shift between the reference and
identi�ed responses could induce huge errors and lead to wrong identi�ed responses.

3.5 A new damping model as a function of internal
variables - SDOF system
It was demonstrated in the previous section that the equivalent viscous damping ratio is strongly depen-
dent on damage indices. That is why the objective herein is to propose an equivalent viscous damping
ratio formulation depending on di�erent internal variables Vint

(i) of the considered nonlinear consti-
tutive model. The projection of the experimental response over the fundamental mode is considered for
the analysis. In order to focus on the nonlinear terms linked to velocity and displacement, the relative
and seismic accelerations are input data coming from experiments.

3.5.1 Initial analysis
The advanced identi�cation method is again used in presented analyses to identify di�erent model
parameters. The dynamic equation projected on the �rst mode is re-written in equation (3.45):

fd
(
α̇1,Vint

(i)
)

+ fint

(
α1,Vint

(i)
)

= −κ1 × Üs −m1 × α̈1 (3.45)

where κ1 is the modal participation factor, fd is the damping model depending on velocity α̇1 and nfd
internal variables

{
Vint

(i)
}
i∈[[1,nfd]]

and fint is the constitutive model depending on displacement α1

and nfi internal variables
{

Vint
(i)
}
i∈[[1,nfi]]

.

The right part of equation (3.45) depends on seismic Üs and system α̈1 accelerations. To focus
on the nonlinear part, the experimental data are considered for these accelerations. The fourth-order
Runge-Kutta solver is used to solve the �rst-order ODE (Ordinary Di�erential Equation) (eq. 3.46). The
solver is changed compared with the previous analyses due to the variable change. The recurrence
expression is given in equation (3.47) with y(tn) = yn and ∆t = tn+1 − tn:

y′ = f(t, y) (3.46)

yn+1 = yn + ∆t
6 (A+ 2B + 2C +D) (3.47)

where the initial condition is y(t0) = y0, A = f (tn, yn), B = f
(
tn + ∆t

2 , yn + ∆t
2 .A

)
,

C = f
(
tn + ∆t

2 , yn + ∆t
2 .B

)
and D = f (tn + ∆t, yn + ∆t.C).

Combinations of constitutive models, presented in table 3.7, and damping models in table 3.8 are
studied. The proposed damping models are mainly based on viscous damping. The constitutive models
are based on dissipative phenomena discussed in previous analyses. The identi�cation method is ap-
plied to determine the parameters presented in tables 3.7 and 3.8. For those identi�cations, windows
are considered, so parameter variations are obtained. However, constant values of the parameters are
required to consider explicit models. So, the mean values of the identi�ed parameters are �nally chosen.

The identi�cation errors are presented in table 3.9. The global conclusion is that the damping models
are much less in�uential on the dynamic responses than the constitutive models. Mainly, considering a
tangent sti�ness (linNC) is a way to model all dissipations, giving minor errors. Even if the errors are
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Table 3.7: Proposed constitutive models - fint

Name Expression Parameters to identify

"Linear" with a constant sti�ness - linC fint = k1.α1 −
"Linear" with a non constant sti�ness - linNC fint = kd.α1 kd

Damage - dam fint = k1.(1− d).α1 d

Proposed nonlinear elasticity model(a)a - NLel fint = k1. (α1 −απ1 ) aπf and bπf
Coupling of damage with the proposed

nonlinear elasticity model(b)a - dam_NLel fint = k1. (α1 − d.απ1 ) d, aπf and bπf

Coupling of damage, with the proposed
nonlinear elasticity model and unilateral e�ect(b,c)

aa - dam_NLel_uni
fint = k1.(1− d).α1 + d.k1. (α1 − η.απ1 ) d, aπf , bπf and Fc

IDEFIX 1(d,e) fint = Kp(η).(1− d).α1 +Kp(η).d. (α1 −απ1 ) −
IDEFIX 2(d,f) fint = Kp(η).(1− d).α1 +Kp(η).d. (α1 −απ1 ) p1/p2/ . . . /p7/p8

(a) The proposed nonlinear elasticity model is de�ned by απ1 = aπf . exp
(
bπf .α1

)
× α1. The model was proposed using Ragueneau, La

Borderie, and Mazars (2000) works to take into consideration the thermodynamic adequacy: if επ > 0 then 0 6 επ 6 2ε and if επ 6 0
then 0 > επ > 2ε.
(b) When couplings are considered, two multiplied parameters pi1 and pi2 have, sometimes, to be identi�ed (for example, that is the
case with d.aπf is considered). So, more constraints have to be de�ned to converge towards adequate parameters. Those additional con-
straints can be a maximal value on damage value, energy constraints, . . .
(c) η is the variable representing the unilateral e�ect or the closure of cracks. In an elastic part (−F e < F < F e), η = 1. Then, between
the elastic force F e and the crack closure force Fc, η is evolving with F : η = 1− F

Fc
. And, beyond Fc, η = 0. The evolution is symmet-

rical in traction and compression.
(d) In IDEFIX model: Kp(η) = k1 × (1− η), η = d. exp

(
−
∣∣∣α1
Uc

∣∣∣
)

, d = d∞.
(

1−
(
Y0
Y d

)q).
(e) IDEFIX parameters considered are constant and correspond to calibrated values.
(f) IDEFIX parameters are parameters to identify. The most in�uential parameters can be considered for the identi�cation, and the other
ones are kept constants to limit computational time.

Table 3.8: Proposed damping models - fd

Name Expression Parameters to identify

Viscous damping - vD fd = cv × α̇1 cv

Viscous damping (Rayleigh type) - vRD fd = (a0.m1 + a1.k1)× α̇1 a0 and a1

Viscous damping (mass proportional type) - vMPD fd = (a0.m1)× α̇1 a0

Viscous damping (sti�ness proportional type) - vKPD fd = (a1.k1)× α̇1 a1

around 11%, �gure 3.29a shows a very well matching between experimental and identi�ed displace-
ments. Then, the proposed nonlinear elasticity model (NLel) is the one also given minor errors demon-
strating one more time the necessity to best characterise that phenomenon. On the contrary, using a
coupling of damage and the proposed nonlinear elasticity model increases the number of parameters
to identify, which could explain the di�culty to reproduce best the experimental function (�g. 3.29b).
Finally, the IDEFIX model seems adequate to characterise the experimental responses provided that the
model parameters are accurately calibrated.

3.5.2 Advanced damping models
Let us now focus on viscous damping models. The IDEFIX model has been accurately calibrated, and it
can be used to study new formulations of viscous damping models. The internal variables taken into
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Table 3.9: Errors of proposed model identi�cations

aaaa aaaaDamping models

aaaa vD vRD vMPD vKPD

linC 30.3% 31.3% 30.5% 62.6%
linNC 10.4% 10.8% 10.5% 10.6%
dam 30.3% 19.7% 30.0% 19.0%
NLel 11.7% 11.7% 11.7% 11.7%

dam_NLel 30.3% 11.0% 16.5% 10.8%
dam_NLel

(dmax = 0.8)* 30.3% 11.0% 16.5% 10.8%

dam_NLel_uni 30.3% 31.3% 30.5% 30.6%
dam_NLel_uni
(dmax = 0.8)* 30.3% 31.3% 30.5% 30.6%

IDEFIX 1 29.6% 50.2% 29.7% 64.7%

C
on

st
it
ut
iv
e
m
od

el
s

IDEFIX 2 14.4% 16.6% 15.3% 15.0%
* A maximal damage value of 0.8 is chosen as an additional constraint for the
identi�cation.
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Figure 3.29: Displacement identi�cations

consideration in the IDEFIX model are the damage variable d, the sliding displacement uπ and the
variable η characterising the pinching e�ect.

3.5.2.1 Model presentations
(a) Damage variable The equation (3.48) is inspired by Heitz, Giry, et al. (2019) for equivalent
viscous damping model (eq. 3.38):

cv,inv (d) = αd,inv × d
d2 + βd,inv.d+ γd,inv

+ δd,inv (3.48)
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where αd,inv, βd,inv, γd,inv and δd,inv are the parameters to identify.3

(b) Friction variable The sliding displacement oscillates between positive and negative values fol-
lowing the input signal. When the absolute value of uπ increases, the experimental response amplitude
follows the same tendency, as observed with the peaks at the block beginnings. So the function has
to decrease with the sliding displacement absolute value increase. That is why the two functions in
equations (3.49) and (3.50) are chosen:

cv,lin (uπ) = −αuπ,lin × |uπ|+ βuπ,lin (3.49)

cv,inv (uπ) = αuπ,inv
βuπ,inv + |uπ| (3.50)

where αuπ,lin, βuπ,lin, αuπ,inv and βuπ,inv are the parameters to identify.4

(c) Pinching e�ect variable η follows a similar tendency to d, except for a few notable variations
in the frequency imposed blocks. That is why the objective is to obtain an increasing function with a
strong variation around the maximal value of η. It explains the two chosen functions in equations (3.51)
and (3.52):

cv,exp (η) = αη,exp × exp (βη,exp × η) (3.51)

cv,inv (η) = αη,inv × η
βη,inv − η

(3.52)

where αη,exp, βη,exp, αη,inv and βη,inv are the parameters to identify. Those models allow representing
dissipations around null displacements.5

(d) Input force amplitude consideration Crambuer (2013) and Heitz, Giry, et al. (2019) (γ vari-
able) recommended taking into consideration the input signal intensity to update damping models. This
idea is also studied here by multiplying the proposed models by Finput

Finput,max
for each time step. For ex-

ample, equation (3.48) becomes equation (3.53):

cv,inv,f (d) = Finput
Finput,max

[
αd,inv,f × d

d2 + βd,inv,f .d+ γd,inv,f
+ δd,inv,f

]
(3.53)

where αd,inv,f , βd,inv,f , γd,inv,f and δd,inv,f are the parameters to identify. For the two other variables,
the adaptations are similar.6

3.5.2.2 Model calibrations
The parameters are calibrated using the identi�cation method with the DSS2 test based on experimental
data. First, initial parameters are de�ned by considering the maximal and minimal viscous damping
coe�cients deduced from the Rayleigh damping formulation. Then, the identi�cation method gives
parameters for each window, and the mean of all values is considered. Identi�ed parameters are thus

3The index d is considered for the parameters of models depending on the damage variable, and inv is for an inverse evolution
function (ratio of polynomials).

4The index uπ is considered for the parameters of models depending on the friction variable, lin is for a linear evolution
function, and inv is for an inverse evolution function (ratio of polynomials).

5The index η is considered for the parameters of models depending on the pinching e�ect variable, exp is for an exponential
evolution function, and inv is for an inverse evolution function (ratio of polynomials).

6The index f is considered for the parameters of models depending on the input for amplitude in addition to another variable.
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presented in tables 3.10 to 3.12 respectively for d, uπ and η variables, with and without the input signal
consideration.

Table 3.10: Parameters of equation (3.48) for d variable

aaaiWithout Finput consideration aaWith Finput consideration

Parameter Identi�ed value Parameter Identi�ed value

αd,inv 3.00 αd,inv,f 16.9
βd,inv 4.94× 10−4 βd,inv,f 5.30× 10−2

γd,inv 4.25 γd,inv,f 6.27
δd,inv 3.83 δd,inv,f 15.1

Table 3.11: Parameters of equations (3.49) and (3.50) for uπ variable

aaaiWithout Finput consideration aaWith Finput consideration

Parameter Identi�ed value Parameter Identi�ed value

αuπ,lin 3.33× 103 αuπ,lin,f 3.33× 103

βuπ,lin 4.97 βuπ,lin,f 17.5

αuπ,inv 2.94 αuπ,inv,f 3.16
βuπ,inv 0.693 βuπ,inv,f 0.196

Table 3.12: Parameters of equations (3.51) and (3.52) for η variable

aaaiWithout Finput consideration aaWith Finput consideration

Parameter Identi�ed value Parameter Identi�ed value

αη,exp 8.76× 10−2 αη,exp,f 0.366
βη,exp 4.96 βη,exp,f 4.92

αη,inv 9.93 αη,inv,f 10.1
βη,inv 2.58 βη,inv,f 1.25

3.5.3 Evaluation of proposed model performances
Proposed models are now used to solve the nonlinear dynamic problem. Their performances are eval-
uated compared to the Rayleigh damping (cv = a0.mi + a1.ki). Global response errors and energy
descriptions are thus evaluated.
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3.5.3.1 Result analyses
First, table 3.13 indicates the global response errors (computed as presented in section 2.4.1.2) obtained
with a constant Rayleigh damping coe�cient all along with computation and with IDEFIX constitutive
model. Experimental responses are the reference ones. The system is solved numerically with cv =
a0.m1 + a1.k1 where a0 and a1 are constant coe�cients evaluated with di�erent viscous damping
ratios as presented in table 3.13. They are computed with the same ξ for modes 1 and 2. Table 3.13
shows that the smallest errors are obtained with ξ = 5%, so this value will be considered to evaluate
the proposed damping model performances.

Table 3.13: Errors for a constant Rayleigh damping model

Damping ratios
Errors

ξ = 0% ξ = 2% ξ = 5%

Displacement 76.91% 64.84% 62.38%
Velocity 61.94% 48.79% 46.84%

Acceleration 46.02% 40.64% 42.67%
Force 105.90% 67.44% 56.01%
Global 72.70% 55.43% 51.98%

Tables 3.14 and 3.15 present the global response errors respectively without and with the input sig-
nal amplitude consideration for proposed damping models. The general conclusion is that all proposed
models are given similar global responses compared to the Rayleigh damping coe�cient. If the re-
sponses are not improved and generally unconservative (�g. 3.30), the dissipations are modelled using
physical phenomena without increasing the computational time signi�cantly because all models are
explicit. Very few di�erences are observed between considered variables except for the damage vari-
able. Indeed, by focusing on nonlinear parameters, �gures 3.31b and 3.31e show very similar damage
variable evolutions. On the contrary, for the friction evolution (�g. 3.31c and 3.31f), more signi�cant
variations are observed: if uπ and η variables lead to similar friction forces and displacements than the
constant Rayleigh damping,more energy is dissipated with the damping update depending on the dam-
age variable rather than the other variables. Finally, in terms of viscous damping coe�cients (�g. 3.31a
and 3.31d), non-negligible variations are observed. Notably, low values are obtained with the update

Table 3.14: Errors for proposed damping models - without Finput
Finput,max

d variable uπ variable η variable
Errors*

Inverse function
(eq. 3.48)

Linear function
(eq. 3.49)

Inverse function
(eq. 3.50)

Exponential function
(eq. 3.51)

Inverse function
(eq. 3.52)

Displacement 71.48%(+9.10%) 62.04%(−0.34%) 62.37%(−0.01%) 62.34%(−0.04%) 62.35%(−0.03%)

Velocity 55.93%(+9.10%) 46.54%(−0.30%) 46.73%(−0.11%) 46.70%(−0.14%) 46.75%(−0.09%)

Acceleration 43.13%(+0.47%) 42.24%(−0.43%) 42.29%(−0.38%) 42.25%(−0.42%) 42.38%(−0.30%)

Force 88.99%(+32.98%) 56.98%(+0.96%) 56.43%(+0.42%) 56.40%(+0.38%) 56.29%(+0.27%)

Global 64.89%(+12.91%) 51.95%(−0.03%) 51.96%(−0.02%) 51.92%(−0.05%) 51.94%(−0.03%)

* The subscripts correspond to the error di�erences with the classical Rayleigh damping coe�cient computed with a viscous damping ratio ξ = 5%, the value
currently used in building codes (tab. 3.13).
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Table 3.15: Errors for proposed damping models - with Finput
Finput,max

d variable uπ variable η variable
Errors*

Inverse function
(eq. 3.53)

Linear function
(∼eq. 3.49 + 3.53)**

Inverse function
(∼eq. 3.50 + 3.53)**

Exponential function
(∼eq. 3.51 + 3.53)**

Inverse function
(∼eq. 3.52 + 3.53)**

Displacement 71.67%(+9.29%) 62.55%(+0.17%) 62.64%(+0.26%) 62.63%(+0.25%) 62.67%(+0.28%)

Velocity 56.02%(+9.18%) 46.45%(−0.39%) 46.48%(−0.36%) 46.51%(−0.33%) 46.49%(−0.35%)

Acceleration 43.26%(+0.59%) 42.74%(+0.06%) 42.46%(−0.20%) 42.73%(+0.06%) 42.62%(−0.05%)

Force 88.54%(+32.53%) 55.48%(−0.54%) 55.82%(−0.19%) 55.32%(−0.69%) 55.44%(−0.57%)

Global 64.87%(+12.90%) 51.80%(−0.17%) 51.85%(−0.12%) 51.80%(−0.18%) 51.80%(−0.17%)

* The subscripts correspond to the error di�erences with the classical Rayleigh damping coe�cient computed with a viscous damping coe�cient ratio ξ = 5%,
the value currently used in building codes (tab. 3.13).
** Combinations of the two indicated equations as discussed in paragraph 3.5.2.1(d).
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Figure 3.30: DSS2 test with IDEFIX constitutive model - Global responses with cv,inv (uπ) damping
model

based on the damage variable, which explains the more considerable amount of energy dissipated
through friction and the more signi�cant di�erences in computation errors of tables 3.14 and 3.15. For
the two other variables, if Finput/Finput,max is not considered, the viscous damping coe�cient is almost
constant and close to the one obtained with Rayleigh damping, explaining the minor di�erences in ta-
ble 3.14. Then, by considering Finput/Finput,max, substantial variations of damping ratios are observed
in �gure 3.31d when updates are considered. Remarkably, the most signi�cant values are obtained dur-
ing the harmonic parts of the signal. Rayleigh damping coe�cient appears to be a mean of variations
obtained with uπ and η variables. Table 3.15 shows very close responses in comparison with table 3.14.
It demonstrates that considering the input signal does not improve the response. However, it also shows
that viscous damping is not required all along with computation depending on the input signal ampli-
tudes. Indeed, the acceleration response is accurately represented in white-noise signal parts even if the
viscous damping coe�cient is almost null.

Now, �gures 3.32 to 3.34 present the energy content of computations with updated damping coe�-
cients. First, �gure 3.32 shows that all energy balances are validated since total and imparted energies are
similar, which validates the use of updated damping coe�cients to perform nonlinear dynamic compu-
tations. Again, the damage variable exhibits a di�erent behaviour with respect to the other formulations
since the largest maximum displacements are reached, so the �nal energies are the lowest.
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Figure 3.31: DSS2 test with IDEFIX constitutive model - Nonlinear parameters with proposed damping
models depending on internal variables
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Figure 3.33: DSS2 test with IDEFIX model - Distribution of dissipative energies at the structural level
along computation - proposed damping models depending on internal variables

Experimentally, a maximal displacement of 5.6 mm is obtained, so the damage variable seems to lead to
a more accurate response if the extreme global responses are of interest. Then, taking into consideration
Finput/Finput,max seems to reduce the maximum displacements slightly. However, it does not strongly
in�uence the energy content, as also observed in �gure 3.33 for the three updating variables. In this
�gure, it also appears that the absorbed and damping energies are almost equally distributed except for
the damage variable, where more dissipations occur at the material level.

Finally, �gure 3.34 focuses on dissipative phenomena evolution, particularly the most dissipative
ones: damage and friction. The grey curves for the three damping models show negligible damage
because the friction phenomenon represents 100% of hysteretic energies from computation beginning.
As expected, the friction energy evolves by steps.
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3.5.3.2 Conclusions
Viscous damping coe�cient models depending on internal variables are proposed in this section. They
demonstrate similar behaviours in comparison with a constant Rayleigh damping. Particularly the dam-
age variable leads to more signi�cant global response errors. However, it seems to induce a more accu-
rate response if only the extreme global responses are of interest, demonstrating the strong in�uence
of the variable of interest selection for evaluating damping formulations. In addition, it gives a more
physical representation of energy dissipations because the absorbed energy (i.e. the hysteretic internal
dissipation) represents almost 90% of the total energy. In addition, the input signal amplitude in�uence
is studied. It is necessary to integrate this in�uence mainly for the most signi�cant signal amplitudes
when the nonlinear constitutive models are not dissipating enough energy.

3.6 Anewdampingmatrix formulation -multi-�bre
model
The previous section demonstrated that damping updates based on internal variables (mainly the dam-
age d and friction uπ variables) could characterise the nonlinear dynamic responses of RC elements.
Now, the objective is to adapt these results in the multi-�bre model presented in chapter 2. To achieve
that goal, an elementary updated damping matrix formulation is developed in section 3.6.1. Then, appli-
cations are performed on experimental tests in section 3.6.2. Finally, a synthesis (section 3.6.3) �nalises
the analysis by comparing the proposed damping matrix performances with the classical damping for-
mulations studied in chapter 2.

3.6.1 Formulation
In order to model the evolution of dissipation not taken into by the local model, an evolution of the
damping with respect to material damage is proposed. The global damping matrix is assembled from
elemental evolving damping matrices, leading to a local scale damping model. Two types of formulations
are studied to evaluate the in�uence of the o�-diagonal terms: a diagonal matrix and a matrix with modal
coupling.

3.6.1.1 Generalities on o�-diagonal terms in damping matrices

(a) Problem description Undamped MDOF linear systems excited by a seismic acceleration can
be decoupled on the modal basis. Nevertheless, in the case of damped systems, the equations of motion
are coupled because of the generally non-proportional damping considered (Thomson, Calkins, and
Caravani, 1974). For example, Clough and Mojtahedi (1976) de�ned non-proportional damping as "a
form of linear viscous damping which introduces coupling between the undamped modal coordinate
equations of motion". As the Rayleigh formulation, using classical damping is a mathematical tool to
overcome this di�culty. However, if a non-classical damping matrix is used, the system decoupling
in the modal basis is no more possible. Between the 1960s and 1980s, many papers were interested
in proposing or studying methodologies to approximate non-proportionally damped systems. The aim
was to reduce the computational time and required memories to perform MDOF damped systems with
the available computational facilities.

First, T. K. Caughey and O’Kelly (1965a) proposed necessary and su�cient conditions for linear
damped systems to possess normal classical modes. For discrete problems, the condition is that the
matrices M−1C and M−1K commute, that is, CM−1K = KM−1C. Similarly, for continuous systems,
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damping and sti�ness operators have to commute with conditions on boundary conditions. When T. K.
Caughey and O’Kelly (1965b) conditions are not validated, in engineering especially, approximations
are performed to obtain diagonal damping matrices leading to uncoupled equations. It is thus expected
that the errors induced by the approximations are low enough (Thomson, Calkins, and Caravani, 1974).

(b) Methods to approximate the damping matrix Di�erent methods to approximate the non-
diagonal damping matrices are proposed in the literature. Thomson, Calkins, and Caravani (1974) fo-
cused on three methodologies (leading to similar responses) to determine a diagonal damping matrix.
(i) The �rst method consisted in computing the modal damping matrix and neglecting its o�-diagonal
terms. It was de�ned as the "decoupling approximation" by Morzfeld, Ma, and Ajavakom (2008). (ii) In
the second method, an optimization algorithm was used to compute the diagonal matrix minimizing the
mean square error of the frequency response. (iii) For the third method, the objective was to match the
peaks of coupled and uncoupled system responses to normalised di�erential equations. Lázaro (2016)
explained that the �rst method was the most used. That is why many papers were interested in math-
ematical tools to diagonalise the damping matrix (Meirovitch, 1967; Pipes, 1963; Frazer, Duncan, and
Collar, 1938; Veletsos and Ventura, 1986). Later, Goel (2001) proposed to use such a methodology with a
damping matrix considering supplemental dampers for asymmetric structures, and Lázaro (2016) used
the complex eigenvalue problem to characterise the damping matrix. Papers also proposed to com-
pare di�erent proposed formulations and system resolution procedures (Beredugo, 1976; Clough and
Mojtahedi, 1976; S. Lee et al., 2011).

(c) Induced errors and criterion de�nitions To go further and characterise the reliability of pro-
posed procedures, some papers �nally focused on developing error formulations and performance cri-
teria to use the approximation procedures. Hasselman (1976) showed that a problem is dynamically
decoupled if the mode frequencies are su�ciently apart (eq. 3.54), even for a non-diagonal damping
matrix. ∣∣Cmodji

∣∣
4
√

4(ωj − ωi)2 +
(
Cmodii

)2
1√
Cmodjj

= O(ε) (3.54)

Then, Warburton and Soni (1977) proposed a criterion (eq. 3.55) leading to an acceptable error for a
dynamic problem solved by neglecting the damping matrix diagonal terms. The criteria must be veri�ed
for modes with a signi�cant in�uence on responses. In equation (3.55), the parameter εcoupling must be
small: for example, for εcoupling = 0.05, the error stays inferior to 10%.

ξmodi < εcoupling

∣∣∣∣∣
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ω2
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)∣∣∣∣∣

min j

(3.55)

where ξmodi is the modal damping ratio associated with mode i. Finally, Xu and Igusa (1991) proposed
two criteria to discuss the in�uence of damping matrix o�-diagonal terms on modal properties (eq. 3.56)
and structural responses (eq. 3.57).
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For the four presented models, the terms Cmodii and Cmodij where {i, j} ∈ [[1, N ]]2 are respectively the
diagonal and o�-diagonal terms of the modal damping matrix associated with modes i and j. In addition,
the terms ωi and ωj are the eigenfrequencies also associated with these modes.

After damaging states, all criteria have been applied to the classical damping matrices of chapter 2.
They are all veri�ed with the MPD formulation because it is already a diagonal matrix, validating the
criterion computations. Then, the criteria for RD, KPD, MD, and WPD are veri�ed for almost the 30 �rst
modes. It demonstrates that the studied problem can be solved by neglecting the o�-diagonal terms
of damping matrices. It is in adequacy with section 3.1, where it was demonstrated that the modes
presented very low couplings. However, Hasselman (1976) criterion is more discriminating because it
says that the studied problem can not be considered wholly decoupled. However, it is still possible to
approximate it with diagonal matrices. So, the formulations of diagonal and non-diagonal elemental
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Application of the damping coe�cient
function c

(e)
v = cv,fct

(
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Choice of the damping coe�cient
function cv,fct (eq. 1.63 to 1.65)

aInitialization

aFor each element (e)

Assembly of the damp-
ing matrix Cupdated

aUpdated damping matrix

Figure 3.35: Algorithm of updated
damping matrix computations

matrices can be proposed.

3.6.1.2 Algorithm to update damping ma-
trix computations
The general algorithm of the proposed updated damping
matrix computations is presented in �gure 3.35. At the be-
ginning of the dynamic computation, an internal variable
and the damping coe�cient function must be selected, and
the function must be calibrated depending on the required
damping level. Then, at each time step, the damping matrix
is updated. The computation is performed at the elemen-
tal level before assembling the total matrix. The damping
coe�cient function is applied on the internal variable val-
ues at the Gauss points of section elements for each ele-
ment. Then, the values are integrated into sections to de-
termine the damping coe�cients at �bre-element sections
(�g. 3.36), and the elemental damping matrix can be com-
puted depending on the chosen damping matrix form (diag-
onal or not).

(a) Diagonal elemental damping matrix To reduce
the complexity linked with the coupling, only bending
DOFs are considered. Two operators in Cast3M can be used:
MANU RIGI operator (application of a punctual sti�ness),
applied on an element �eld corresponding to all considered
DOFs, given a complete diagonal matrix, or MASS opera-
tor (application of a punctual mass) for all nodal elements,
given a sparse diagonal matrix. Equation (3.58) de�ned the
elemental matrix at beam element e for the complete form.
The sparse one is identical except that the zero values are
not stocked, representing a gain in memory.

C(e)
elem =




c
(e,uy,1)
v 0 0 0

0 c
(e,θz,1)
v 0 0

0 0 c
(e,uy,2)
v 0

0 0 0 c
(e,θz,2)
v


 (3.58)
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Figure 3.36: cv from Gauss point to beam nodes

where uy,1 and θz,1 are associated with the element �rst node and uy,2 and θz,2 are associated with the
second node.

(b) Non-diagonal elemental damping matrix The non-diagonal damping matrix is built as α ·
K(e) withK(e) the sti�ness of the Timoshenko beam as implemented in Cast3M (Pegon, 1994). Reducing
the matrix to the bending part, the elemental matrix writes like equation (3.59) where E is the Young’s
modulus,G = E

2(1 + ν) the shear modulus, le the element length, Se the element section, Sy = Se
αsy

the

shear section in ~y-direction, Sz = Se
αsz

the shear section in ~z-direction and Iz the inertia moment around
z-axis. In addition, index 1 refers to the element �rst node and index 2 to the second node. With Cast3M,
to compute such a matrix, the RIGI operator (eq. 3.59) is used by considering a �ctitious constitutive
model. So, to consider only the coupling terms EIz

le
, the strategy is to build a �ctitious model with an

in�nite Poisson’s ratio (so thatG converges to 0) and Young’s modulus equal toEfictitious = c
(e,n)
v × le
Iz

because the values le and Iz are only geometrical and known.




Fy,1

Mz,1

Fy,2

Mz,2




=




GSy
le

GSy
2 −GSyle

GSy
2

GSy
2

EIz
le

+ leGSy
4 −GSy2 −EIzle + leGSy

4

−GSyle −GSy2
GSy
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−GSy2

GSy
2 −EIzle + leGSy

4 −GSy2
EIz
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+ leGSy
4







uy,1

θz,1

uy,2
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(3.59)
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3.6.1.3 Method parameters and calibration
The updated damping matrices proposed are based on some internal variables "Vint" and damping co-
e�cient functions, which must be selected and calibrated.

(a) Internal variables Two strategies are proposed for the selection of internal variables. The �rst
one considers the constitutive model internal variables de�ned at the Gauss points of concrete �bres
for each beam section. d and επ are considered as representative variables of nonlinear phenomena.7
Furthermore, a function depending on the steel rebar stress σs is considered. Indeed, the steel stress can
represent the crack opening in concrete.

The second strategy consists in computing a damage index for each beam element. The proposed
damage indices dET and dES for element e are de�ned in equation (3.60) respectively by taking into
consideration the tangent and secant Young’s modulus.

d
(e)
ET

= 1−
[
K(e)

0 : K(e)
T

K(e)
0 : K(e)

0

]
and d

(e)
ES

= 1−
[
K(e)

0 : K(e)
S

K(e)
0 : K(e)

0

]
(3.60)

where K(e)
0 is the initial elemental sti�ness matrix of element (e) and K(e)

T and K(e)
S are the tangent and

secant elemental sti�ness matrices. The initial sti�ness matrices for all elements are computed at the
computation beginning. Then, at each time step, the tangent or secant modulus of the nonlinear model
is evaluated, and a �ctitious "damaged" constitutive model is built to compute the elemental tangent or
secant sti�ness matrix with RIGI operator (eq. 3.59). Then, the matrix products are performed with
A1 : A2 = Tr

(
AT1 .A2

)
. Because sti�ness matrices are considered, AT1 = A1 and the matrix products

are performed with KOPS CMCT operator (A1 = K(e)
0 .K(e)

T ) of Cast3M, followed by EXTR DIAG to

Figure 3.37: Steel/Concrete interface (Jehel, 2009)

extract the product diagonal matrix (A2 =
diag (A1)), EXTR VALE to extract the values of
the diagonal matrix A2 in a vector V 3 and SOMM
to sum the terms of V 3.

(b) Damping coe�cient functions Again,
based on the study in section 3.5, the damping
coe�cient functions in equations (3.61) and (3.62)
are chosen according to the evolution of damage
and friction variables. Finally, for the steel stress
(linked between steel plasticity and friction), an
evolution similar to the friction phenomena is
considered (eq. 3.63) because of the similar varia-
tions of these two values when nonlinearities de-
velop. Indeed, the local degradation of concrete
induces a stress recovery in rebars (�g. 3.37).




cv,lin (d) = αd,lin × d+ βd,lin

cv,inv (d) = αd,inv × d
d2 + βd,inv.d+ γd,inv

+ δd,inv

(3.61)
7The variable η associated to the unilateral e�ect is not studied here because it gave similar results than the friction variable

for the SDOF system, and because the unilateral e�ect does not represent a signi�cant dissipative phenomenon. In addition, the
consideration of input signal amplitudes is not studied here because it was demonstrated, with the SDOF system study, that it
does not improve the results and makes the function calibrations more complicated.
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where αd,lin, βd,lin, αd,inv, βd,inv, γd,inv and δd,inv are the parameters to calibrate,




cv,lin (επ) = −αεπ,lin × |επ|+ βεπ,lin

cv,inv (επ) = αεπ,inv
βεπ,inv + |επ|

(3.62)

where αεπ,lin, βεπ,lin, αεπ,inv and βεπ,inv are the parameters to calibrate,




cv,lin (σs) = −ασs,lin × |σs|+ βσs,lin

cv,inv (σs) = ασs,inv
βσs,inv + |σs|

(3.63)

where ασs,lin, βσs,lin, ασs,inv and βσs,inv are the parameters to calibrate.
A �rst evaluation of these parameters is done by considering the maximal and minimal values of

Rayleigh damping matrix with a viscous damping ratio of 2%, as well as the extreme values of considered
variables. The considered signal is the DSS2 test inducing nonlinearities. So, the parameters evaluated
are presented in table 3.16 with cv,RD,2%,max = 1.65×107 N.s/m and cv,RD,2%,min = 1.72×104 N.s/m.

Table 3.16: Evaluated parameters of evolution functions based on maximal and minimal values of
Rayleigh damping matrix

aExtreme values aaaaaParametersInternal
variable

Vint

Evolution
function

fct Minimal Maximal P1,0
*

αVint,fct

P2,0
*

βVint,fct

P3,0
*

γVint,fct

P4,0
*

δVint,fct

Linear (lin) 1.65× 107 1.72× 104 − −d-dES -
dET Inverse (inv)

0 1
2.90× 106 −0.132 0.0317 1.72× 104

Linear (lin) 8.96× 1010 1.30× 107 − −
επ

Inverse (inv)
−1.44×10−4 1.44× 10−4

2.48 1.92× 10−7 − −
Linear (lin) 0.561 1.30× 107 − −

σs
Inverse (inv)

−2.31× 107 2.31× 107

3.97× 1011 3.06× 104 − −
* The notation Pi is used in the following parts to study the in�uence of the evolution function parameters. Pi,0 is the identi�ed
value of parameter Pi as presented in this table.

3.6.2 Application of proposed damping matrices
The proposed damping model is applied on thr DSS2 test (input signal in �gure 1.23b) to evaluate its
performance to represent the RC beam global responses and characterise the energy distributions. First,
a parametric study is performed on function parameters of table 3.16 (sec. 3.6.2.1), and then the proposed
damping matrix evolutions in parallel of local dissipations are presented (sec. 3.6.2.2).

3.6.2.1 Parametric analysis
(a) dES and dET instabilities For the variables dES and dET , the �rst dynamic computations ex-
hibited strong instabilities in white-noise signal parts. So, a parametric study has been performed to
evaluate the in�uence of using a limit on the tangent or secant modulus variation, ∆Elim, under which
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the updated damping matrix is not computed. As expected, increasing the limit induces a decrease in
computational time because the higher is the limit, the fewer updates are computed during computa-
tions. The evaluation of global errors with the di�erent studied limits is presented in �gure 3.38. Again,
the strong error values are due to the oscillations around null values, but what is more interesting is the
comparison between the computed errors. For the displacement and force errors (�g. 3.38b and 3.38c),
it appears that under ∆Elim = 5.0 × 107 Pa, the responses are not really in�uenced. For the accelera-
tion (�g. 3.38a), a more substantial in�uence is observed for the di�erent computations. However, until
∆Elim = 5.0× 107 Pa, the global tendency is a decrease of errors with the limit increase because fewer
instabilities are thus observed on dynamic responses. In addition, the energy analyses demonstrate �rst
that the distribution of dissipated energies is not in�uenced, and then that the energy balances are val-
idated until ∆Elim = 1.0× 107 Pa. Finally, updating the damping matrix only if the secant or tangent
Young’s modulus is evolving of more than ∆Elim = 1.0× 107 Pa allows improving the dynamic results
by reducing the computational time.
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Figure 3.38: Parametric study for the update limit with dES and dET variables - non-diagonal damping
matrix formulation

(b) Function parameter analyses The non-diagonal damping matrix formulation is studied here.
The diagonal one, whose results are presented in appendix G.2, gives similar conclusions. In addition,
only the linear functions are studied. Indeed, for σs variable, they are very close to the inverse ones.
For d variable, it is the most straightforward function given also accurate results. So, two function
parameters (αVint,fct and βVint,fct) are interesting. From identi�ed values presented in table 3.16, and
considered as the initial parameters P1,0 and P2,0, variations between 0.01 ×Pi,0 and 100 ×Pi,0
are studied. Figures 3.39 to 3.41 present the P1 = αVint,fct parameter analysis because it appears to be
the most in�uential. The analysis of P2 = βVint,fct is nevertheless presented in appendix G.1. Finally,
four updating variables are studied: dES (from eq. 3.60), d (from the nonlinear model), επ and σs.

First, if P1 is too small, the computations diverge. This parameter represents the function slope.
So, with low P1 values, the damping is almost constant, whatever the nonlinearity amplitudes. The
proposed updating formulation has no more interest. In addition, with a constant Rayleigh damping
matrix, the computations were converging. So, it demonstrates that the evaluation of the proposed
damping matrix formulation is working for a proper function calibration and so a proper consideration
of dissipations through dissipative phenomena.

Figure 3.39 presents the global response errors in �gures 3.39a to 3.39c and the errors in maximal val-
ues in �gures 3.39d to 3.39f. For errors of maximal accelerations, displacements and forces, the positive
values correspond to numerical values more signi�cant than the experimental ones given conservative
results if used for engineering design, and vice versa for negative values. Accelerations, displacements
and forces are exhibiting similar evolutions. For d and dES variables, the global response errors exhibit
a general decrease with the increase of P1 parameter. It means that the viscous damping must be more
prominent for the maximal values of damage. The in�uence is reverse for σs variable. The viscous
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Figure 3.39: Parametric study of function parameters - non-diagonal damping matrix formulation - P1
evolution - global responses

damping must dissipate enough energy for large nonlinearities because the constitutive model does
not do it su�ciently. Mainly, with d and dES variables, the errors go from positive values to negative
ones. So, even if the global error is minor for even more signi�cant parameters, it is better to select a
parameter given the most accurate maximal values in the conservative part in engineering design. With
the σs variable, the errors oscillate around zero with all parameter variations.

Then, in �gure 3.40, normalised maximal and minimal values of d and επ internal variables as well
as σs values are plotted. The normalisation is performed with respect to P1,0 values. For d and dES ,
increasing P1 leads to the low development of nonlinearities because too much energy is dissipated
through viscous damping, which is not representative of the physical behaviour.

Finally, �gure 3.41 focuses on the evolution of the energies. For d and dES , similar evolutions are
obtained. Energy balances are veri�ed respectively from 0.5×P1,0 and 1×P1,0 (�g. 3.41b and 3.41a).
From �gures 3.41e and 3.41d, it can be concluded that with a too-small P1 parameter, too much energy
is dissipated at the local scale leading to total energy being more considerable than the imparted one.
With σs, again, oscillatory results are obtained depending on parameters. However, the best energy
balances are obtained when the absorbed energy represents less than 40% of all dissipations as with
1×P1,0 for example.

3.6.2.2 Local dissipations and updated damping matrices

In the parametric analysis, global responses and energy balances were presented and compared depend-
ing on variables used for updating the damping matrix and evolution function parameters. Let us focus
on the damping matrix evolution (�g. 3.42) by considering local dissipations. One computation with a
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Figure 3.40: Parametric study of function parameters - non-diagonal damping matrix formulation - P1
evolution - normalised maximal and minimal values of some variables
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Figure 3.41: Parametric study of function parameters - non-diagonal damping matrix formulation - P1
evolution - energy analyses

diagonal damping matrix and d variable is considered and compared to the response of a non-diagonal
damping matrix with dES variable.

Figure 3.42 shows the two damping matrix types for the undamaged beam and after two damage
levels. Only half of the beam elements are plotted. The diagonal and non-diagonal forms are well
observable, but the coe�cient order of magnitudes are highly di�erent. The initial matrix (�g. 3.42a
and 3.42d) presents small amplitudes for both types. So, the development of nonlinearities induces an
increase in the damping matrix terms. Figures 3.42b, 3.42c, 3.42e and 3.42f demonstrate that only the
damaged terms at the beam centre lead to more signi�cant damping coe�cients. For the non-diagonal
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Figure 3.42: Updated damping matrices at di�erent damage levels

damping matrix, it can even be observed that between both studied damage levels, more elements have
su�ered nonlinearities. Thus, the proposed damping matrix formulations are well evolving as expected.

The internal variable evolutions, as well as the steel stress one, are plotted in �gure 3.43. Nonlin-
earities are well developed for both damping formulations. However, lower values are obtained with
the diagonal damping matrix, meaning that the beam response drops too much. In parallel, by study-
ing the global response errors, values two times larger are obtained with this matrix. So, the function
parameters are not accurately calibrated, or the diagonal matrix form is not adapted. Besides, the fric-
tion hysteretic energy evolution in �gure 3.44b presents instantaneous variations as the damage energy,
contrary to �gure 3.44a with the non-diagonal matrix. It can, thus, also be concluded that as soon as
the damage variable increases, a strong damping matrix is computed, almost stopping the beam move-
ment and avoiding the development of friction between crack surfaces. It is not corresponding to the
expectation, so the non-diagonal damping matrix should be preferred.

3.6.3 Evaluation of matrix performances

3.6.3.1 Comparisons with classical damping formulations
Because computed results are in agreement with the experimental data, a comparison can now be per-
formed with more classical damping formulations studied in chapter 2. The acceleration response is
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Figure 3.43: Updated damping matrix - Evolution of nonlinear variables and steel stresses -
comparison of updated damping matrix formulations
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Figure 3.44: Updated damping matrix - Dissipation proportions at the material level - comparisons of
updated damping matrix formulations

considered herein as the variable of interest, and parameters in table 3.16 are chosen for the damping
coe�cient functions of proposed damping formulations. Figure 3.45 proposes to compare all studied
damping formulations in a plan of two numerical acceleration errors compared to experimental data:
(i) the global error all along with computation, and (ii) the maximal acceleration error. Figures 3.45c
and 3.45d are respectively the same as 3.45a and 3.45b with the most discussed formulations. Each
colour represents a damping formulation. The marks characterise the viscous damping ratios for the
classical damping formulations and the variable used for the updates in the case of proposed damping
formulations. Some examples are indicated in the �gures. Figure 3.45b is a zoom on the best formulations
of �gure 3.45a. First, as already discussed, the e�ect of viscous damping ratio choice is well observable
for the classical formulations. The best one does not appear to be the same for all formulations. Now,
�gure 3.45a shows that the locally updated formulations are pretty well placed because they are staying
in the left bottom angle as a considerable majority of classical formulations. By looking at �gure 3.45b,
it appears that the diagonal damping matrix with dES variable, as well as the non-diagonal one with the
friction variable επ , are the ones given the lowest global acceleration errors. Nevertheless, because the
maximal acceleration error is negative, they should not be used for structural design. Conversely, the
non-diagonal damping matrix with the damage variable d gives a more signi�cant global error. However,
it is best to characterise the maximum acceleration conservatively undergone by the structure. It is, in
addition, positioned close to the Rayleigh-type damping formulations evaluated as the ones to prefer in
chapter 2.

3.6.3.2 Conclusions
To conclude, an updated damping matrix based on local variables has been proposed in this section. The
damping matrix is computed at the elemental scale before being assembled to compute structural non-
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Figure 3.45: Comparison of classical and locally updated damping matrix performances to characterise
the experimental accelerations

linear dynamic computations. Di�erent internal variables have been studied, and functions to compute
the damping coe�cients from the identi�ed variables on section elements have been discussed. The
dynamic responses are strongly depending on these two properties of the method.

A comparison with the classical damping formulations studied in chapter 2 shows that the proposed
damping matrices similarly match the experimental data than the classical ones. The method is thus
validated. Notably, its advantage is that it is based on physical dissipative phenomena. The results can
therefore be expected to be more predictive. The best results are obtained when the damage (crack-
ing) and friction phenomena are considered. However, improvements are still required. The evolution
function parameters have to be carefully calibrated. It is a limitation of the proposed method because,
currently, the calibrations are performed with experimental data, so experiments are required. In terms
of variable choice, d and dES (or dET ) demonstrated similar behaviours meaning that the proposed dam-
age index (eq. 3.60) accurately characterises the damage computed by the RICBET constitutive model.
For these variables, the linear damping coe�cient function has been extensively studied. But, if the
damping matrix is too important for the large damage values, no nonlinearity develops, and the exper-
imental behaviour is no more numerically represented. So, an inverse function should be interesting to
improve the results. The function parameters less in�uence the friction variable. The di�erence may be
that the friction variable constantly evolves during the computation inducing lots of damping matrix
variations, while the damage variable increases by step, with crack initiation and propagation, so the
damping matrix is only becoming larger and larger. Finally, the steel stress data may need improvements
because the link between the steel stresses and concrete nonlinearities is poorly modelled. However,
a focus could also be performed on that variable because it is a stable variable linked with the crack
opening and dissipations at the concrete level.
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3.7 Synthesis

3.7.1 Performed analyses and conclusions
Di�erent analyses around the damping modelling in structural nonlinear dynamic computations have
been proposed in this section. First, section 3.1 focused on the damping matrix projection on the modal
basis to evaluate the development of couplings between modes when the tangent sti�ness matrix is
considered in damping matrix computation. Because the modes appeared to stay decoupled even when
nonlinearities developed, the resolution on the modal basis was demonstrated as accurate even with the
tangent sti�ness matrix consideration. Then, based on the works developed by Heitz (2017), a viscous
damping identi�cation method was proposed with a SDOF system equivalent to the studied RC beam
in section 3.3. Then, section 3.2 was interested in proposing an evaluation of the analytical eigenbasis
associated with the complete system of interest to derive the equivalent SDOF model. Finally, the viscous
damping identi�cation method algorithm and all the method parameters were discussed in section 3.3.

The viscous damping identi�cation method was then applied on experimental results and numerical
data to characterise the viscous damping ratio evolution depending on a damage index representing the
sti�ness loss, in section 3.4. Experimentally, an exponential evolution of ξ was obtained with respect
to the damage index. However, below d = 0.6, considering a constant viscous damping ratio of 4%
was accurate. Above that limit, this parameter must be updated with the development of nonlinearities.
Numerically, the determined evolutions appeared to depend on modelling properties, particularly on
viscous damping matrix formulations. In addition, signi�cant di�erences were observed with the ex-
perimental data, demonstrating a lack of accuracy in dissipation descriptions. That is why a nonlinear
constitutive model characterising the RC behaviour was then used to identify the viscous damping ratio.
The general conclusion already discussed in the literature and deduced from the identi�cation method
application is that viscous damping varies with the development of nonlinearities. So, the objective of
section 3.5 was to analyse the performances of damping models as functions of constitutive model in-
ternal variables to achieve nonlinear dynamic computations well. In addition to giving a more physical
representation of structural dissipations, using the proposed locally updated damping models allowed
better to characterise the extreme global responses of the beam. Nevertheless, the global errors along
time were in the same order of magnitude as the classical damping formulations, like Rayleigh damping.

Finally, the proposed updating damping models were applied to the multi-�bre model with the al-
gorithm developed in section 3.6. Two strategies of damping matrices were proposed: one diagonal
and one non-diagonal. The di�culty of developed damping models is due mainly to damping coe�-
cient function calibrations. However, the �rst parametric analyses have demonstrated that it is possible
to �nd function parameters leading to performative updating models. The global errors compared to
experimental data were in the same order of magnitude as the Rayleigh damping matrix. However,
improvements are still required to enhance the nonlinear dynamic computations.

The best results obtained with the locally updated damping models for the SDOF analyses and the
multi-�bre computations are the ones considering the damage (cracking) variables if the extreme dy-
namic responses are of interest and the friction variable if the global dynamic responses are of interest.
The damping coe�cient functions can be calibrated with the experimental data. Nevertheless, if no ex-
periment is available, a few time steps can be computed with a Rayleigh damping matrix to determine
the maximal and minimal damping values and the variable variations.

Table 3.17 synthesizes the best damping formulations to choose for the di�erent studied beam models
and the use of classical or locally updated damping matrices. For the equivalent SDOF system, only
Rayleigh damping was studied for the classical damping formulations. The selection of the viscous
damping ratio depends on the variable of interest and the choice of the variable used for the updates in
the proposed locally updated damping case. Similar conclusions are observed for the multi-�bre model:
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Table 3.17: Synthesis of the best damping formulations for the studied analysis

Beam model Constitutive
model

Damping
formulation Variable of interest Best damping model

Mean of all global dynamic responses RD 5%
Classical

Global acceleration RD 2%

Maximal displacement and largest
dissipations at the local scale

d variable with the inverse
function

Equivalent
SDOF

IDEFIX
(nonlinear)

Updated
Global dynamic responses uπ or η variables with

linear or inverse functions

Dynamic responses + energies RD_ACT 2%
Global acceleration WPD_ACT 5%Classical

Maximal accelerations SRD 5% / SKPD 1%

Maximal conservative acceleration
Non-diagonal damping

matrix with d variable and
the linear function

Multi-�ber
(Cast3M)

RICBET
(nonlinear)

Updated

Global acceleration
Non-diagonal damping

matrix with επ variable and
the linear function

the best formulations and damping ratios depend on the variable of interest with the classical damping
formulations. For the locally updated matrices, the non-diagonal formulation is the best with di�erent
variables again depending on the variable of interest.

3.7.2 Potential improvements
The objective of developing a new damping matrix formulation was to consider the local behaviour to
describe the dissipations occurring during seismic excitations more physically. Three variables have
mainly been studied: (i) the damage variable characterising the sti�ness loss d, (ii) the friction variable
characterising the dissipations between crack surfaces επ , and (iii) the steel stress σs because it could
represent a stable equivalence of nonlinearities. Each variable was studied independently, but combi-
nations, particularly of damage and friction variables, could be interesting because they characterise
coupled dissipative phenomena. However, the major challenge would be the function calibrations. The
more variables are considered, the more damping coe�cient function parameters must be calibrated,
leading to more complex parametric analyses. That is why strategies have to be developed to carry out
these calibrations. The idea in progress is to couple the identi�cation method developed in Matlabr
software with the multi-�bre computations in Cast3M to identify the damping coe�cient function pa-
rameters in an example test.

Finally, it is clear that the RC structure responses are also in�uenced by their environment. So, it
is impossible to model all dissipations with local parameters. However, the computations performed
with classical damping models in chapter 2 demonstrated a substantial lack of dissipations by hystere-
sis even with RICBET constitutive model characterising in�uential dissipative phenomena. That is why
the idea could be to use a tiny part of viscous Rayleigh damping, for example, and to add increments
of the proposed updated damping matrices. Thus, even if the nonlinear constitutive model is not dis-
sipating enough energy through hysteresis, the updated damping matrices would add an equivalent
hysteretic energy dissipation. By calibrating these dissipations to be equivalent to the lack between ex-
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perimental and numerical hysteresis loops, the constant viscous damping would only characterise the
environmental e�ects. So, the physical representation of dissipations would be improved.



Conclusions

Civil engineering structures uniqueness and size require the development of e�cient numerical models
to characterise structure safety under seismic excitations. The linear dynamic behaviour of structures
depends on structural properties like its mass, sti�ness and damping. The mass is easily described using
the knowledge of the structure geometry and the materials composing the structure. For the sti�ness,
the description is a bit more complicated. However, the notion of damping is far more complex to de�ne.
Suppose proposed de�nitions agree on the idea that "damping is produced by processes that dissipate
the energy stored in the oscillation" (Wikipedia, 2021). In that case, no consensus can be found in the
literature to characterise this property physically. Many sources are dissipating energy in the case of
structures submitted to earthquake excitations, whether they are phenomena inside the structure or
interactions with its external environment. It was in the 1960s that Jacobsen (1960) �rst proposed an
e�cient tool to model the structural damping by an equivalent damping ratio determined with exper-
imental tests. The idea of such equivalent damping is to consider a linear material behaviour and to
displace the dissipations at the global level through damping models. It has mainly been studied in the
literature with papers treating di�erent structural elements. With the development of Finite Element
(FE) numerical models and the improvement of computation facilities, more sophisticated models of
structures under seismic excitations began to appear. However, the idea of equivalent damping remains
widely used today because engineering software is generally considering linear material behaviour cou-
pled to viscous damping formulations. Globally, accurate numerical responses are obtained with such
formulations, and, above all, the computational times are adequate for engineers. However, to char-
acterise more local phenomena, like crack opening and sliding in reinforced concrete structures, using
e�cient mathematical tools instead of physical and realistic models becomes insu�cient.

Reinforced concrete structures, which are of interest in this PhD work, exhibit complex behaviours,
mainly when submitted to seismic excitations. For critical structures like nuclear power plants, sophisti-
cated simulations of their behaviour under seismic excitations are required to ensure their viability. Not
only the structures must remain standing in case of an earthquake event, but the operating equipment
must not be damaged. So, the numerical models must accurately characterise the maximal accelera-
tions at di�erent structural points to transfer the spectral acceleration to the equipment of interest. In
addition, in the case of nuclear structures, airtightness must be maintained. So, the numerical mod-
els must permit precise assessment of cracking damage and its development relative to the structural
displacement response. To reach those expected performances: (i) advanced numerical models are re-
quired, and (ii) the dissipations must be precisely characterised: global modelling of the dissipations
is no more su�cient. That is why nonlinear computational models must be further developed, and
the links between hysteretic dissipations and structural damping must be investigated and understood.
Thus, recommendations could be formulated to assist the engineers in performing nonlinear dynamic
computations.

177
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Synthesis
Full-scale tests are bene�cial for understanding reinforced concrete structures behaviour under earth-
quakes. However, they are costly, so strategies are required to develop models based on tests carried out
on structural elements. In this objective, Heitz (2017) developed an exhaustive experimental campaign,
during his PhD, on reinforced concrete beams (6 m× 20 cm× 40 cm). The campaign aimed to perform
dynamic and quasi-static tests to propose data for evaluating seismic energy dissipations depending on
structural, material and input excitation characteristics. The considerable amount of data provided has
been the primary resource for the works developed in this thesis and can still be used afterwards. Ta-
ble 3.18 synthesises the relevant information about the experimental campaign to understand carried out
studies. Table 3.19 indicates the constitutive models chosen in Cast3M to characterise the experimental
data and key input parameters.

Table 3.18: Experimental properties of the reinforced concrete structural elements studied

Length . . . . . . . . . . . . . . . . . . . . . . . . . 6 m
Concrete section . . . . . . . . . . . . . . . . 0.4× 0.2 m2

Steel rebars . . . . . . . . . . . . . . . . . . . . 8 HA of diameter 8 mm (2.01%)
Supports . . . . . . . . . . . . . . . . . . . . . . . Positioned at 0.05 m and 5.95 m
Additional masses . . . . . . . . . . . . . . 310 kg

Positioned at 1.52 m and 4.48 m

Beam HA16-C1A
geometry

On air cushion devices

Young’s modulus . . . . . . . . . . . . . . . 26.2 GPa
Compressive strength . . . . . . . . . . . 36.9 MPa
Tensile strength . . . . . . . . . . . . . . . . 2.09 MPa

Concrete properties
C25/30

(6 months)
Concrete fracture energy . . . . . . . . 84.9 J/m2

Young’s modulus . . . . . . . . . . . . . . . 217 GPaSteel properties*
Elastic limit . . . . . . . . . . . . . . . . . . . . 568 MPa

Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 7.24 Hz
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . 23.5 HzEigenfrequencies
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . 58.8 Hz

Hammer shock . . . . . . . . . . . . . . . . . characterisation of the three �rst
modes at di�erent damage level

Quasi-static . . . . . . . . . . . . . . . . . . . . On strong �oor with two actuators
Four-point bending
• QSC1→ mode 1
• QSC2→ mode 2

Dynamic* . . . . . . . . . . . . . . . . . . . . . . . On shake table
•WN = white-noise
• SC = band-passed white noise
• DSS = decreasing sinus sweep

Tests / Excitations

• SS1 = natural seismic signal
* The steel remains in the elastic range for all applied excitations
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Table 3.19: Characteristics of Cats3M constitutive models

Translational elastic supports . . . . KT = 1.10× 107 N/m
Positioned at 0.05 m and 5.95 m

Rotational elastic supports . . . . . . . KR = 1.00× 104 N.m/rad
Positioned at 0.05 m and 5.95 m

Additional masses . . . . . . . . . . . . . . Punctual
Positioned at 1.52 m and 4.48 m

Boundary conditions

No friction with the table

Models . . . . . . . . . . . . . . . . . . . . . . . . . BARFRA and RICBET
Behaviour . . . . . . . . . . . . . . . . . . . . . . Nonlinear (hysteretic dissipations)Concrete
Young’s modulus . . . . . . . . . . . . . . . 22 GPa

Model . . . . . . . . . . . . . . . . . . . . . . . . . ACIER_UNI
Behaviour . . . . . . . . . . . . . . . . . . . . . . LinearSteel
Young’s modulus . . . . . . . . . . . . . . . 208 GPa

Steel / concrete
bound Model . . . . . . . . . . . . . . . . . . . . . . . . . Perfect (no sliding)

Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 7.11 Hz
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . 23.1 HzEigenfrequencies
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . 58.2 Hz

Quasi-static(1). . . . . . . . . . . . . . . . . . . . ua,max = 80 mm
Dynamic(2). . . . . . . . . . . . . . . . . . . . . . . WN1→ üs,max = 0.65 m/s2

DSS2→ üs,max = 1.33 m/s2Maximal excitations

DSS3→ üs,max = 1.84 m/s2

(1) Maximal actuator displacement (2) Maximal shake table acceleration

The experimental campaign is used all along that thesis to answer three research questions de�ned
using a critical review of the literature performed in the �rst chapter (1):

In the framework of nonlinear dynamic computations, which local and global viscous
damping formulations best represent the experimental structural responses?

How are local and global damping energy dissipation mechanisms evolving during
nonlinear dynamic computations?

How could we improve the damping modelling at the local scale, on a physical basis,
to reduce the requirement of arbitrary equivalent viscous damping at the global scale?

The research problems are discussed with �ve original contributions developed in chapters 2 and 3:
X Correlations between measured and computed data,
X Comparison of damping models based on energy balance studies in nonlinear dynamic analyses,
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X Development of a methodology to identify the transient evolution of damping with respect to the
structural element damage,

X Evaluation of an approximate analytical eigenbasis of a complex system,
X Development of a new local model of damping based on nonlinear internal variables of the con-

crete constitutive models (d, επ , . . . ).

In chapter 2, a multi-�bre model of the reinforced concrete beams is developed using Cast3M software.
The model calibration is performed based on hammer shock and quasi-static tests. Then, exhaustive
numerical analyses are developed to compare sixteen damping formulations currently used in engi-
neering (classi�cation in table 2.11) with di�erent viscous damping ratios varying from 0.5% to 5%
and with or without sti�nessmatrix ormodal parameter updates. The experimental data are con-
sidered to validate the formulation performances and propose recommendations, particularly in terms
of acceleration, displacement, force responses, and the development of damage through the eigenfre-
quency evolutions. In all cases, the steel rebars remain in their elastic range along with computations, as
expected experimentally. The computations are performed with two nonlinear constitutive models
for concrete proposed in Cast3M: BARFRA and RICBET. The objective is to characterise the in�uence
of dissipative phenomena modelling because only a "classical" damage model is considered in BARFRA.
At the same time, the friction during crack opening and closing is added in dynamic computations with
RICBET. Energy balance computations are also implemented with both models. At the structural level,
information is deduced about the proportion of energy dissipated through viscous damping, that is
to say, through unknown and/or un-modelled dissipative phenomena. Then, using the thermodynamic
framework of the nonlinear constitutive models, energy dissipations through nonlinear dissipative phe-
nomena are analysed depending on the viscous damping models. The numerical computation represents
approximately 300 computations for more than 3, 000 hours of computational time on a supercomputer.8

Chapter 3 focuses on damping. The projection of the damping matrix on the modal basis is �rst studied
to evaluate the development of mode coupling with nonlinearities. Then, an equivalent viscous damping
identi�cation method is proposed to evaluate the transient evolution of damping compared to concrete
damage evolution. The method is based on an equivalent SDOF system, and the projection on the modal
basis is used to obtain the equivalent problem. Because the studied system does not exhibit a theoretical
modal basis, strategies to approximate the system modal properties are proposed and validated using
experimental data and a multi-�bre model. The identi�cation method considers a decomposition of
the signal with windows. On each window, the �rst hypothesis is that the behaviour of the equivalent
SDOF system is "linear" on the window, allowing the identi�cations of a viscous damping ratio and an
eigenfrequency. A damage index is computed from the evolution of the eigenfrequency, and the viscous
damping ratio is plotted as a function of the damage index. Then, a nonlinear constitutive model is used
to improve the energy dissipation description. It was initially developed by Heitz, Giry, et al. (2019). It
is representative of reinforced concrete behaviour. The observed dependency of viscous damping as a
function of nonlinear variables (d, επ , η, . . . ), �nally, leads to the proposition of a damping model updated
at the local scale. First, the model is developed for the equivalent SDOF system. Then, an adaptation
is proposed for the multi-�bre model in Cast3M. A parametric analysis is thus performed to evaluate
the best model parameters to match the experimental data and characterise the physical dissipations.
Comparisons are mainly performed with the commonly used viscous damping formulations studied in
chapter 2.

8This work was performed using HPC resources from the “Mésocentre” computing centre of CentraleSupélec and École Nor-
male Supérieure Paris-Saclay supported by CNRS and Région Île-de-France (http://mesocentre.centralesupelec.fr/).
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Conclusions
Major conclusions have been drawn at the end of each chapter. In the above synthesis, carried out works
have been reported and the associated conclusions are again discussed and re�ned here. Theymust be
carefully considered because they are deduced from tests on a particular isolated reinforced
concrete beam submitted to low amplitude dynamic signals.

First, the critical review of the literature leads to the following critical conclusions discussed in chapter 1:
X Damping models at the structural level

� They are commonly linked with the velocity leading to "viscous damping" models.
� They are classi�ed between classical and modal damping models. The computation of classical

models is performed from mass and sti�ness matrices. Modal analyses are performed for the
modal damping models, and the eigenmodes are used for the damping matrix computation.

� Classical and modal damping models are generally used for their simplicity, mainly because
they can dissipate energy without modelling dissipative phenomena. In addition, they rep-
resent an e�cient mathematical tool because they are decoupled using the undamped modal
basis.

� The Rayleigh damping formulation remains the most used. However, many di�culties are
shared by the scienti�c community about the use of this type of matrix in dynamic analyses.
That is why research focuses on improving this model. The most currently used adaptations
are:

∗ removing the mass proportional part to eliminate the spurious forces,
∗ updating the sti�ness matrix part to consider the structure degradation,
∗ updating the two proportionality parameters.

� Many papers focus on comparing classical and modal damping formulations on particular ex-
amples. Using the tangent sti�ness matrix is generally recommended because it is a way to
reduce the damping forces and obtain more conservative results. However, the recommenda-
tions must be carefully considered because they are strongly dependent on studied structural
elements and are seldom based on comparisons with experimental data. Remarkably, the choice
of viscous damping ratio appears to play a signi�cant role in the magnitude of the dynamic re-
sponse.

� A signi�cant di�culty with the classical and modal damping models is their lack of physical
basis. Very few physically-based energetic analyses are proposed in the literature to describe
the energy dissipations during dynamic computations.

� The literature proposes more complex damping models (than Rayleigh and modal damping).
However, they are few used in engineering due to their implementation complexity, high com-
putational time and because they are not signi�cantly increasing the representativeness of
physical behaviours.

X Damping models at the local scale
� To better characterise dissipative phenomena, papers focus on hysteretic damping at the ma-

terial level.
� For reinforced concrete, complex models are proposed. However, due to the number and lack

of knowledge of dissipative phenomena, it is impossible to model all of them precisely. So,
hysteretic damping models are seldom used in engineering. They are accompanied by a small
amount of viscous damping at the global scale when they are considered.

� Another strategy is to adapt the structural model at the local scale to consider the development
of nonlinearities. The di�culty here is due to the lack of experimental evidence validating that
strategy.9

9This aspect is at the heart of this thesis.
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X Damping identi�cation
� The objectives concerning damping modelling are multiple:

∗ identifying damping values to apply in numerical models,
∗ identifying damping evolution models as functions of damage index to update the damping

model in numerical computations,
∗ using damping as a damage index for existing structure evaluations.

� The majority of analyses presented in literature lead to equivalent viscous damping ratios be-
tween 1% and 6%, according to the 5% generally considered in linear dynamic computations
to assess the nonlinear demand in modern code for ductile elements. However, for cracked
structural reinforced concrete elements, values of 20% can be reached. It demonstrates that a
constant viscous damping ratio in nonlinear computations is inaccurate. The identi�ed values
must be carefully considered because of the identi�cation method bias and the considerable
dependency of the values with the studied structural elements.

� In the case of damage identi�cation, no consensus exists in the literature to use damping as an
indicator. Notably, even if it indicates the damaged state, it does not localise it. In addition, it is
generally required to use free or forced harmonic vibrations, which is challenging to apply in
existing structures. So, research still focuses on developing e�cient methodologies to identify
the damping based on free ambient vibrations.

In chapters 2 and 3, two hysteretic damping models dissipating energy at the local scale are studied
compared to classical and modal damping models at the structural level. Then, a viscous damping iden-
ti�cation method is proposed to evaluate the damping evolution with di�erent input signals and in
parallel to damage indices. Finally, a global damping matrix is proposed with local updates based on
identi�ed evolution of damping with respect to nonlinear variables.

Then, from chapter 2, it can be concluded that:
X Multi-�bre model

� Using a multi-�bre model is an appropriate choice to perform the nonlinear dynamic compu-
tation of the reinforced concrete beam because:

∗ the number of DOFs (22 beam elements, 16 concrete and 32 steel �bres for each section, 4
Gauss points for each �bre) is reduced, as well as the required memory and the computa-
tional time, compared to a 3D FE solid model,

∗ the material heterogeneity can be considered by applying one constitutive model for con-
crete elements and another for steel,

∗ the results are accessible because they are similar to beam models.
� It has been possible to accurately calibrate the numerical model natural frequencies using the

numerous experimental data: the supports elastic sti�nesses have been calibrated using the
undamaged beam eigenfrequencies and the concrete model parameters using the quasi-static
responses.

X Dynamic responses
� First, in terms of constitutive models, it is observed that RICBET provides a better correlation

with the experimental responses than BARFRA because it describes more physical dissipative
phenomena. So, to improve the nonlinear dynamic computations, a better representation of
physical dissipative phenomena is required.

� Between the classical Rayleigh and modal damping formulations, it is concluded that the ma-
trices proportional to the sti�ness matrix and the Rayleigh-type matrices give the best corre-
lation between experimental and numerical dynamic responses. The numerical responses are
improved by using the tangent sti�ness matrix or updating the proportionality parameters. It
is in adequacy with �ndings in the literature.

� A value of 0.5% is required for the viscous damping ratio when the beam concrete material stays
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in its elastic range. It has to be increased until 2% when low nonlinearities (cracking, friction)
developed and a little more for more substantial nonlinearities. The choice of this parameter is
therefore strongly dependent on the input signal. Nevertheless, these values demonstrate that
using nonlinear constitutive models, that is, models locally dissipating energy, allows reducing
the in�uence of arbitrary viscous damping. Indeed, if a linear model is considered, a viscous
damping ratio of 5% is generally recommended in the literature for seismic analysis.

X Energy analyses
� At the structural level, using the RICBET model, the signi�cant-conclusion regarding energy

analysis is that the viscous damping energy is generally dissipating more than 50% of all energy.
In contrast, the other 50% are dissipated by hysteretic behaviours. It demonstrates the strong
in�uence of the viscous damping even when locally nonlinear constitutive models are used to
obtain a good correlation between measured and computed response parameters. The sti�ness
proportional damping formulations have the lowest in�uence on viscous damping. So, they
should be preferred with the aim of a better characterisation of energies.

� The most dissipative local phenomenon appears to be the friction between crack surfaces at
the local scale. For cycles with constant amplitudes, the friction (and not the damage) between
the crack lips induces dissipations.

Table 3.20 synthesises the best damping formulations for di�erent variables of interest. It demonstrates
that, for nonlinear dynamic computations, compromises are required to choose the adequate viscous
damping model. In addition, using nonlinear constitutive models is a way to model the dissipative phe-
nomena physically. However, the development of nonlinearities (cracking, friction, unilateral contact,
. . . ) is in�uenced by choice of the viscous damping model. So it is not easy to evaluate the accuracy
of the models. A better understanding of dissipations is required to reduce the in�uence of arbitrary
viscous damping in nonlinear dynamic computations.

Table 3.20: Synthesis of the best damping formulations for the studied analysis (3.7)

Beam model Constitutive
model

Damping
formulation Variable of interest Best damping model

Mean of all global dynamic responses RD 5%
Classical

Global acceleration RD 2%

Maximal displacement and largest
dissipations at the local scale

d variable with the inverse
function

Equivalent
SDOF

IDEFIX
(nonlinear)

Updated*

Global dynamic responses uπ or η variables with
linear or inverse functions

Dynamic responses + energies RD_ACT 2%
Global acceleration WPD_ACT 5%Classical

Maximal accelerations SRD 5% / SKPD 1%

Maximal acceleration (safety range)
Non-diagonal damping

matrix with d variable and
the linear function

Multi-�bre
(Cast3M)

RICBET
(nonlinear)

Updated*

Global acceleration
Non-diagonal damping

matrix with επ variable and
the linear function

* New models proposed in this research.
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Finally, chapter 3 focuses on the modelling of damping. The transient evolution of the viscous damping
ratio ξ(t) is analysed, and a damage-dependent evolution is found ξ(t, d). Then, it led to the proposition
of an updated damping matrix Cupdated. The signi�cant conclusions of chapter 3 are:
X Projection of damping on the modal basis

� The projection of the updated damping matrices when nonlinearities occur shows no accen-
tuation of couplings between the modes. The system projection on the modal basis all along
nonlinear computations is accurate.

� The analytical eigenbasis of the complex studied system can be evaluated using the eigenprop-
erties of subsystems and strategies to combine these data.

X Viscous damping identi�cation
� The proposed identi�cation method has been calibrated using a three DOFs linear system

whose analytical response is known. Parameters, like the choice of window length, param-
eters to be identi�ed, their initial values, . . . must be chosen carefully at the beginning. In
addition, constraints can be added if they help for the convergence and can be physically jus-
ti�ed. For example, this is the case when the variation of parameters to be identi�ed is limited
from one window to another.

� The identi�cation application on experimental data demonstrates that the viscous damping
ratio follows an exponential function of the damage index d. Particularly under the value of
d = 0.6, a constant viscous damping ratio of 4% is adequate. Nevertheless, the viscous damping
ratio must evolve with the damage above that threshold.

� Adding a nonlinear constitutive model in the identi�cation method allows a better character-
isation of energy dissipations. Indeed, identi�ed viscous damping ratios are lower than the
linear model, representing only the un-modelled phenomena. This type of analysis could, so,
be used to evaluate the performances of more complex nonlinear constitutive models and the
signi�cant in�uence or not of each modelled dissipative phenomenon.

X Locally updated damping model
� The new proposed damping model presents the advantage of updating the damping depend-

ing on the development of nonlinearities and considering the damage state of the structural
element.

� When applied to the SDOF system, global dynamic errors of the same order of magnitude as
with a constant Rayleigh damping coe�cient are obtained, validating the ability of the pro-
posed model to perform nonlinear dynamic analyses. Using the friction variable is better when
the global response is studied compared to experimental data because it evolves along with
computation. On the contrary, if only the maximal displacement or accelerations are of in-
terest, the damage variable seems more e�cient because it leads to damping evolutions only
when more signi�cant input forces are applied. The damage variable in�uences the extreme
responses and leads to a lower number of required updating reducing the computation time.

� Two damping matrices have been studied for the multi-�bre model: with or without couplings.
As for the SDOF system, the damage and friction variables have been studied, in addition to the
steel stress that could be a stable indicator of nonlinearities. Again, the global errors are like
those obtained with a matrix of the Rayleigh type. The proposed matrices can be considered
in nonlinear dynamic computations. Again, the damage variable is better for studying extreme
dynamic responses. At the same time, the friction one must be chosen to obtain the numerical
response matching the best the experimental one along with computation. Work is in progress
to combine damping and friction.

� The di�culty with the proposed damping models is the calibration of evolution functions. If
experimental data are not existing, a computation with a Rayleigh damping matrix can be per-
formed to get a referenced solution. However, the consideration of experimental data improves
the calibration and consequently the dynamic response.
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As a global conclusion, table 3.20, already presented in chapter 3 conclusion (3.7.1), synthesises the
best damping models for the SDOF and multi-�bre models of the studied reinforced concrete beam
depending on the variable of interest. It demonstrates that the modelling of damping in reinforced
concrete nonlinear analyses must be done carefully.

Perspectives
Work performed during this thesis and conclusions previously developed present new research chal-
lenges, so few perspectives are outlined. First, some developments about the elemental updated damp-
ing matrices are already in progress. In particular, the signi�cant di�culty with the proposed updating
methodology is the calibration of evolution functions because an objective is that the models stay ex-
plicit to avoid requiring iterative computations. A coupling of the identi�cation method developed in
Matlab with the structural computations in Cast3M has been developed to improve the function pa-
rameter identi�cation. Then, the friction and damage variables are the most in�uential ones, but very
di�erent results are obtained with these two variables. So, improvements could be obtained by combin-
ing these two variables. In addition, the input signal amplitude was considered in SDOF analyses, so it
could also be used to improve the multi-�bre models. However, increasing the number of variables for
the damping matrix update increases the number of parameters to calibrate. That is why a performative
methodology to identify these parameters is �rst necessary. Finally, few analyses were performed with
the steel stress variable. These analyses should be enhanced because the steel stress in the linear range
could be a stable indicator of the nonlinear state in concrete. Indeed, few models are proposed in the
literature to link the steel stresses with the crack opening in reinforced concrete elements (Cheng, 1996;
Ziari and Reza Kianoush, 2009; Walraven and Bigaj-van Vliet, 2010a; Walraven and Bigaj-van Vliet,
2010b).

Works could be developed on rebars to further study energy dissipation in reinforced concrete el-
ements. During the experimental campaign, steel rebars stay linear, so that other experiments would
be required to perform experimental validations. But, �rst numerically, a description of energies could
be possible with nonlinear steel constitutive models and strong earthquake input signals. The steel/-
concrete interface could also be of interest. Papers proposed interface models for multi-�bre numerical
modelling (F. Wang et al., 2007; Combescure and F. Wang, 2007; Richard, 2010). These models are non-
linear, and energy is dissipated at the interface. So, the decomposition of energy dissipations between
rebars, concrete and steel/concrete interface could increase the understanding about dissipations in re-
inforced concrete elements under seismic excitations.

Finally, the amount of experimental data could be used for di�erent works. First, other beams could
be studied with classical damping formulations to characterise the dissipations depending on structural
parameters like the concrete strength or the steel rebar compositions. Especially, the beam HA16-C1A
was considered in all dynamic analyses presented in the thesis works, but two other beams had been
calibrated with the quasi-static data. They could also validate the proposed method of the updated
damping matrices. Finally, to improve the comparison between proposed updated damping matrices
and the classical and modal ones, other parameters could be studied for the classical damping formu-
lations (choice of modes with imposed frequencies, choice of viscous damping ratios, . . . ) and modal
formulations (damping evolution functions, internal variables used for updating, . . . ). Indeed, not all
damping model parameters have been studied in the numerical Benchmark, as discussed in chapter 2
conclusions (section 2.6.1).



186 CONCLUSIONS



Bibliography

A/S, S. V. S. (1999). ARTeMIS Modal Software for Operational Modal Analysis. NOVI Science Park.
Abbasi, M. and M. A. Moustafa (2019). “E�ect of Damping Modelling and Characteristics on Seismic

Vulnerability Assessment of Multi-Frame Bridges”. In: Journal of Earthquake Engineering 25.8, pp. 1–
28. issn: 1363-2469, 1559-808X. doi: 10.1080/13632469.2019.1592791.

Adelaide, L., B. Richard, and C. Cremona (2011). “Un modèle e�cace pour la prédiction du comportement
d’éléments de structure en béton armé corrodés : application aux poutres de Rance”. In: GC’ 2011,
Innovation dans le génie civil au service de la réhabilitation. Paris.

Adhikari, S. (2006). “Damping Modelling Using Generalized Proportional Damping”. In: Journal of Sound
and Vibration 293.1-2, pp. 156–170. issn: 0022460X. doi: 10.1016/j.jsv.2005.09.034.

Adhikari, S. and J. Woodhouse (2001a). “Identi�cation of Damping: Part 1, Viscous Damping”. In: Journal
of Sound and Vibration 243.1, pp. 43–61. issn: 0022460X. doi: 10.1006/jsvi.2000.3391.

Adhikari, S. and J. Woodhouse (2001b). “Identi�cation of Damping: Part 2, Non-Viscous Damping”. In:
Journal of Sound and Vibration 243.1, pp. 63–88. issn: 0022460X. doi: 10.1006/jsvi.2000.
3392.

Adhikari, S. and J. Woodhouse (2000). “Towards Identi�cation of a General Model of Damping”. In:
Proceedings of SPIE-The International Society for Optical Engineering 4062, pp. 377–383.

Adhikari, S. (2000). “Damping Models for Structural Vibration”. PhD thesis. Trinity College, Cambridge:
University of Cambridge.

Advanced Structural Concepts, I. (2004). Nonlin. Blacksburg, Virginia, United-States.
Alarcon, A. (2015).Code_Aster : Algorithmes d’intégration Temporelle de l’opérateur DYNA_TRAN_MODAL.

Manuel de Référence R5.06.04.
Amara, K. B. (1996). “Gri�th Energy Balance Model for Crack-Growth Prediction in Reinforced Con-

crete”. In: Journal of Engineering Mechanics 122.7, pp. 683–689. issn: 0733-9399, 1943-7889. doi: 10.
1061/(ASCE)0733-9399(1996)122:7(683).

Anaja�, H., R. A. Medina, and E. Santini-Bell (2019). “E�ects of the Improper Modelling of Viscous
Damping on the First-Mode and Higher-Mode Dominated Responses of Base-Isolated Buildings”. In:
Earthquake Engineering & Structural Dynamics 49.1, pp. 51–73. issn: 1096-9845. doi: 10.1002/
eqe.3223.

Arnold, C. (1985). Pounding Damage at Hotel De Carlo.
Baba-Hamed, F. Z. and L. Davenne (2020). “E�ect of the Viscous Damping on the Seismic Response of

Low-rise RC Frame Building”. In: Revista Facultad de Ingeniería Universidad de Antioquia 96, pp. 32–
43. issn: 2422-2844, 0120-6230. doi: 10.17533/udea.redin.20191045.

Basista, M. and D. Gross (1998). “The Sliding Crack Model of Brittle Deformation: An Internal Variable
Approach”. In: International Journal of Solids and Structures 35.5-6, pp. 487–509. issn: 00207683. doi:
10.1016/S0020-7683(97)00031-0.

Beredugo, Y. O. (1976). “Modal Analysis of Coupled Motion of Horizontally Excited Embedded Footings”.
In: Earthquake Engineering& Structural Dynamics 4.4, pp. 403–410. issn: 1096-9845. doi:10.1002/
eqe.4290040407.

187

https://doi.org/10.1080/13632469.2019.1592791
https://doi.org/10.1016/j.jsv.2005.09.034
https://doi.org/10.1006/jsvi.2000.3391
https://doi.org/10.1006/jsvi.2000.3392
https://doi.org/10.1006/jsvi.2000.3392
https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(683)
https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(683)
https://doi.org/10.1002/eqe.3223
https://doi.org/10.1002/eqe.3223
https://doi.org/10.17533/udea.redin.20191045
https://doi.org/10.1016/S0020-7683(97)00031-0
https://doi.org/10.1002/eqe.4290040407
https://doi.org/10.1002/eqe.4290040407


188 BIBLIOGRAPHY

Bernal, D. (1994). “Viscous Damping in Inelastic Structural Response”. In: Journal of Structural Engineer-
ing 120.4, pp. 1240–1254.

Bhattacharjee, S. S. and F. Ghrib (1995). “E�ects of Viscous Damping Models in Earthquake Stress Anal-
ysis of Concrete Dams”. In: 7th Canadian Conf. Earthquake Eng. Montreal, Canada, pp. 341–348.

Bhattacharjee, S. S. and P. Léger (1993). “Seismic Cracking and Energy Dissipation in Concrete Grav-
ity Dams”. In: Earthquake Engineering & Structural Dynamics 22.11, pp. 991–1007. issn: 00988847,
10969845. doi: 10.1002/eqe.4290221106.

Boyere, E. (2011).Code_Aster : Modélisation de l’amortissement en dynamique linéaire. Tech. rep. Fascicule
r5.05, p. 13.

BRGM (2019).Zonage Sismique de La France - Le Plan Séisme. http://www.planseisme.fr/Zonage-sismique-
de-la-France.html.

Caillerie, D., P. Kotronis, and R. Cybulski (2015). “A Timoshenko Finite Element Straight Beam with
Internal Degrees of Freedom: A Timoshenko Finite Element Straight Beam with Internal Degrees
of Freedom”. In: International Journal for Numerical and Analytical Methods in Geomechanics 39.16,
pp. 1753–1773. issn: 03639061. doi: 10.1002/nag.2367.

Cao, M. S. et al. (2017). “Structural Damage Identi�cation Using Damping: A Compendium of Uses and
Features”. In: Smart Materials and Structures 26.4, p. 043001. issn: 0964-1726, 1361-665X. doi: 10.
1088/1361-665X/aa550a.

Cao, Z. et al. (2020). “Evaluation Method of Damping Ratio Using Earthquake Records and Its Application
in Dam Engineering”. In: 17th WCorld Conference on Earthquake Engineering. Vol. 2f-0007. Sendai,
Japan.

Capdevielle, S. (2017). Comportement Des Grands Ouvrages de Génie Civil - Modélisation Par Éléments
Poutres Multi�bres. Giens, France.

Capdevielle, S. et al. (2016). “A Multi�ber Beam Model Coupling Torsional Warping and Damage for
Reinforced Concrete Structures”. In: European Journal of Environmental and Civil Engineering 20.8,
pp. 914–935. issn: 1964-8189. doi: 10.1080/19648189.2015.1084384.

Carneiro, J. et al. (2006). “The Use of Pseudo-Dynamic Method in the Evaluation of Damping Charac-
teristics in Reinforced Concrete Beams Having Variable Bending Sti�ness”. In: Mechanics Research
Communications 33.5, pp. 601–613. issn: 00936413. doi: 10.1016/j.mechrescom.2005.
05.010.

Carr, A. J. et al. (2017). “Damping Models for Inelastic Time History Analysis: A Proposed Modelling
Approach”. In: 16th World Conference on Earthquake, 16WCEE 2017. Santiago, Chile.

Casas, J. R. and A. C. Aparicio (1994). “Structural Damage Identi�cation from Dynamic-test Data”.
In: Journal of Structural Engineering 120.8, pp. 2437–2450. doi: 10.1061/(ASCE)0733-
9445(1994)120:8(2437).

Caughey, T. K. (1960). “Classical Normal Modes in Damped Linear Dynamic Systems”. In: Journal of
Applied Mechanics 27.2, pp. 269–271. issn: 0021-8936, 1528-9036. doi: 10.1115/1.3643949.

Caughey, T. K. and M. E. J. O’Kelly (1965a). “Classical Normal Modes in Damped Linear Dynamic Sys-
tems”. In: Journal of Applied Mechanics 32.3, pp. 583–588. issn: 0021-8936, 1528-9036. doi: 10.
1115/1.3627262.

Caughey, T. K. and M. E. J. O’Kelly (1965b). “Classical Normal Modes in Damped Linear Dynamic Sys-
tems”. In: Journal of Applied Mechanics 32.3, pp. 583–588. issn: 0021-8936, 1528-9036. doi: 10.
1115/1.3627262.

Caughey, T. and A. Vijayaraghavan (1970). “Free and Forced Oscillations of a Dynamic System with “Lin-
ear Hysteretic Damping” (Non-Linear Theory)”. In: International Journal of Non-Linear Mechanics
5.3, pp. 533–555. issn: 00207462. doi: 10.1016/0020-7462(70)90015-6.

Celebi, M. et al. (2020). “Response of the Tallest California Building during the Mw7.1 July 5, 2019 Ridge-
crest, California Earthquake”. In: 17th World Conference on Earthquake Engineering. Vol. 2c-0020.
Sendai, Japan.

https://doi.org/10.1002/eqe.4290221106
https://doi.org/10.1002/nag.2367
https://doi.org/10.1088/1361-665X/aa550a
https://doi.org/10.1088/1361-665X/aa550a
https://doi.org/10.1080/19648189.2015.1084384
https://doi.org/10.1016/j.mechrescom.2005.05.010
https://doi.org/10.1016/j.mechrescom.2005.05.010
https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2437)
https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2437)
https://doi.org/10.1115/1.3643949
https://doi.org/10.1115/1.3627262
https://doi.org/10.1115/1.3627262
https://doi.org/10.1115/1.3627262
https://doi.org/10.1115/1.3627262
https://doi.org/10.1016/0020-7462(70)90015-6


BIBLIOGRAPHY 189

Chambreuil, C. et al. (2021). “Seismic Energy Dissipation in Reinforced Concrete Beam: Investigating
Damping Formulations”. In: European Journal of Environmental and Civil Engineering, pp. 1–27. issn:
1964-8189, 2116-7214. doi: 10.1080/19648189.2021.2009380.

Charney, F. A. (2005). “Consequences of Using Rayleigh Damping in Inelastic Response History Analy-
sis”. In:Congreso Chileno de Sismología e Ingeniería Antisísmica IX Jornadas. Vol. A10-17. Concepción,
Chile.

Charney, F. A. (2008). “Unintended Consequences of Modelling Damping in Structures”. In: Journal of
Structural Engineering 134.4, pp. 581–592. issn: 0733-9445, 1943-541X. doi: 10.1061/(ASCE)
0733-9445(2008)134:4(581).

Charney, F. et al. (2017). “Modeling Inherent Damping in Nonlinear Dynamic Analysis”. In: 16th World
Conference on Earthquake Engineering. Santiago, Chile.

Cheng, R. (1996). Design of Concrete Structures for Retaining Aqueous Liquids - Design Tables to BS 8007.
Tech. rep. FIStructE.

Chopra, A. K. (1995).Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice
Hall. isbn: 0-13-855231-2.

Chopra, A. K. and F. McKenna (2017). “Modeling Viscous Damping in Nonlinear Response History Anal-
ysis of Buildings”. In: 16th World Conference on Earthquake Engineering. Santiago, Chile.

Chopra, A. K. and F. McKenna (2016). “Modeling Viscous Damping in Nonlinear Response History Anal-
ysis of Buildings for Earthquake Excitation: Modal Damping”. In: Earthquake Engineering & Struc-
tural Dynamics 45.2, pp. 193–211. issn: 00988847. doi: 10.1002/eqe.2622.

Chowdhury, S. H., Y. C. Loo, and S. Fragomeni (2000). “Damping Formulae for Reinforced and Partially
Prestressed Concrete Beams”. In: Advances in Structural Engineering 3.4, pp. 327–335. issn: 1369-
4332, 2048-4011. doi: 10.1260/1369433001502256.

Chrisp, D. J. (1980). Damping Models for Inelastic Structures. Master Thesis. University of Canterbury.
Clough, R. W. and S. Mojtahedi (1976). “Earthquake Response Analysis Considering Non-Proportional

Damping”. In: Earthquake Engineering& Structural Dynamics 4.5, pp. 489–496. issn: 00988847, 10969845.
doi: 10.1002/eqe.4290040506.

Combescure, D. and F. Wang (2007). Assessment of Existing RC Structures under Severe Dynamic Loading
Using Non Linear Modelling. CONSEC 07, Tours, France.

Correia, A. A., J. P. Almeida, and R. Pinho (2013). “Seismic Energy Dissipation in Inelastic Frames: Un-
derstanding State-of-the-Practice Damping Models”. In: Structural Engineering International 23.2,
pp. 148–158. issn: 1016-8664, 1683-0350. doi: 10.2749/101686613X13439149157001.

Crambuer, R., B. Richard, et al. (2012). “Experimental Characterization and Modeling of Energy Dissi-
pation in Reinforced Concrete Beams Subjected to Cyclic Loading”. In: 15th World Conference on
Earthquake Engineering. Lisboa, Portugal.

Crambuer, R., B. Richard, et al. (2013). “Experimental Characterization and Modeling of Energy Dissi-
pation in Reinforced Concrete Beams Subjected to Cyclic Loading”. In: Engineering Structures 56,
pp. 919–934. issn: 01410296. doi: 10.1016/j.engstruct.2013.06.024.

Crambuer, R. (2013). “Contribution à l’identi�cation de l’amortissement : approches expérimentales et
numériques”. PhD thesis. Cachan, France: École normale supérieure.

Crandall, S. H. (1991). “The Hysteretic Damping Model in Vibration Theory”. In: Proceedings of the Insti-
tution of Mechanical Engineers, Part C: Mechanical Engineering Science 205.1, pp. 23–28. issn: 0263-
7154, 2058-3397. doi: 10.1243/PIME_PROC_1991_205_086_02.

Crandall, S. (1970). “The Role of Damping in Vibration Theory”. In: Journal of Sound and Vibration 11.1,
pp. 3–18. issn: 0022460X. doi: 10.1016/S0022-460X(70)80105-5.

Crouse, C. B. and J. McGuire (2001). “Energy Dissipation in Soil-Structure Interaction”. In: Earthquake
Spectra 17.2, pp. 235–259. issn: 8755-2930. doi: 10.1193/1.1586174.

https://doi.org/10.1080/19648189.2021.2009380
https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(581)
https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(581)
https://doi.org/10.1002/eqe.2622
https://doi.org/10.1260/1369433001502256
https://doi.org/10.1002/eqe.4290040506
https://doi.org/10.2749/101686613X13439149157001
https://doi.org/10.1016/j.engstruct.2013.06.024
https://doi.org/10.1243/PIME_PROC_1991_205_086_02
https://doi.org/10.1016/S0022-460X(70)80105-5
https://doi.org/10.1193/1.1586174


190 BIBLIOGRAPHY

Cruz, C. and E. Miranda (2019). “Reliability of Damping Ratios Inferred from the Seismic Response
of Buildings”. In: Engineering Structures 184, pp. 355–368. issn: 01410296. doi: 10.1016/j.
engstruct.2019.01.056.

CSI (2011). User Guide PERFORM-3D - Nonlinear Analysis and Performance Assessment for 3D Structures.
User Guide ISO PER053111M1. Berkeley, California, USA: Computers & Structures inc.

Daneshjoo, F. and A. Gharighoran (2008). “Experimental and Theoretical Dynamic System Identi�cation
of Damaged RC Beams”. In: Electronic Journal of Structural Engineering 8, pp. 29–39.

Daneshjoo, F. and A. Gharighoran (2006). “Experimental Investigation of Damping in Cracked Con-
crete Beams Usable in Bridges (Beam-Slab)”. In: International Conference on Bridge Engineering. Hong
Kong, China. doi: 10.13140/RG.2.1.2997.2567.

Dao, N. D. and K. L. Ryan (2014). “Computational Simulation of a Full-Scale, Fixed-Base, and Isolated-
Base Steel Moment Frame Building Tested at E-Defense”. In: Journal of Structural Engineering 140.8.
issn: 0733-9445, 1943-541X. doi: 10.1061/(ASCE)ST.1943-541X.0000922.

Demarie, G. V. and D. Sabia (2011). “Non-Linear Damping and Frequency Identi�cation in a Progressively
Damaged R.C. Element”. In: Experimental Mechanics 51.2, pp. 229–245. issn: 0014-4851, 1741-2765.
doi: 10.1007/s11340-010-9360-4.

Desmorat, R., F. Ragueneau, and H. Pham (2007). “Continuum Damage Mechanics for Hysteresis and
Fatigue of Quasi-Brittle Materials and Structures”. In: International Journal for Numerical and Ana-
lytical Methods in Geomechanics 31.2, pp. 307–329. issn: 03639061, 10969853. doi: 10.1002/nag.
532.

Dhakal, R. P. and K. Maekawa (2001). “Post-Peak Cyclic Response Analysis and Energy Dissipation
Capacity of RC Columns.” In: Doboku Gakkai Ronbunshu 2001.676, pp. 117–133. issn: 1882-7187,
0289-7806. doi: 10.2208/jscej.2001.676_117.

Dolev, S. and (2008). The Tuned Mass Damper in Taipei 101.
Dragon, A., D. Halm, and T. Désoyer (1998). “Anisotropic Damage in Quasi-Brittle Solids: Modelling,

Computational Issues and Applications”. In:ComputerMethods in AppliedMechanics and Engineering
183.2000, pp. 331–352.

Dubé, J.-F. (1994). “Modélisation simpli�ée et comportement visco-endomageable des structures en bé-
ton : applications aux séismes et aux choc des ouvrages en béton armé”. PhD thesis. Cachan, France:
École normale supérieure.

Dubé, J.-F., G. Pijaudier-Cabot, and C. L. Borderie (1996). “Rate Dependent Damage Model for Concrete
in Dynamics”. In: Journal of Engineering Mechanics 122.10, pp. 939–947. issn: 0733-9399, 1943-7889.
doi: 10.1061/(ASCE)0733-9399(1996)122:10(939).

Dufour, F. (1998). Modélisation Du Comportement Dynamique d’une Structure à Murs Porteurs En Béton
Armé Renforcée à l’aide de Tissus à Fibres de Carbones. Master of Science. CEA Saclay, ENS Cachan.

Dunkerley, S. (1893). “On the Whirling and Vibration of Shafts.” In: Proceedings of the Royal Society of
London 54, pp. 365–370. issn: 0370-1662.

Dutta, S. C. and R. Roy (2002). “A Critical Review on Idealization and Modelling for Interaction among
Soil–Foundation–Structure System”. In:Computers & Structures 80.20-21, pp. 1579–1594. issn: 00457949.
doi: 10.1016/S0045-7949(02)00115-3.

Dwairi, H. M., M. J. Kowalsky, and J. M. Nau (2007). “Equivalent Damping in Support of Direct Displacement-
Based Design”. In: Journal of Earthquake Engineering 11.4, pp. 512–530. issn: 1363-2469, 1559-808X.
doi: 10.1080/13632460601033884.

Ele, C. (2017). Tremblement de Terre : L’impact Des Interactions Sol-Structure Sur Les Habitations et Ou-
vrages d’art.

Eligehausen, R., E. P. Popov, and V. V. Bertero (1982). “Local Bond Stress-Slip Relationships of Deformed
Bars under Generalized Excitations”. In: 7th European Conference on Earthquake Engineering. Vol. 4.
Athens, Greece. doi: http://dx.doi.org/10.18419/opus-415.

https://doi.org/10.1016/j.engstruct.2019.01.056
https://doi.org/10.1016/j.engstruct.2019.01.056
https://doi.org/10.13140/RG.2.1.2997.2567
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000922
https://doi.org/10.1007/s11340-010-9360-4
https://doi.org/10.1002/nag.532
https://doi.org/10.1002/nag.532
https://doi.org/10.2208/jscej.2001.676_117
https://doi.org/10.1061/(ASCE)0733-9399(1996)122:10(939)
https://doi.org/10.1016/S0045-7949(02)00115-3
https://doi.org/10.1080/13632460601033884
https://doi.org/http://dx.doi.org/10.18419/opus-415


BIBLIOGRAPHY 191

Elmenshawi, A. and T. Brown (2010). “Hysteretic Energy and Damping Capacity of Flexural Elements
Constructed with Di�erent Concrete Strengths”. In: Engineering Structures 32.1, pp. 297–305. issn:
01410296. doi: 10.1016/j.engstruct.2009.09.016.

Elmenshawi, A., M. Sorour, et al. (2010). “Damping Mechanisms and Damping Ratios in Vibrating Un-
reinforced Stone Masonry”. In: Engineering Structures 32.10, pp. 3269–3278. issn: 01410296. doi:
10.1016/j.engstruct.2010.06.016.

Enerzine.com (2011). France : 5 centrales nucléaires en zones sismiques 3.
Feng, M. Q. (2007). “Recent Advances in Structural Health Monitoring”. In: Journal of the Korean Society

for Nondestructive Testing 27.6, pp. 483–500. issn: 1225-7842.
Franchetti, P., C. Modena, and M. Feng (2009). “Nonlinear Damping Identi�cation in Precast Prestressed

Reinforced Concrete Beams”. In: Computer-Aided Civil and Infrastructure Engineering 24.8, pp. 577–
592. issn: 10939687, 14678667. doi: 10.1111/j.1467-8667.2009.00612.x.

Frazer, R. A., W. J. Duncan, and A. R. Collar (1938). Elementary Matrices and Some Applications to Dy-
namics and Di�erential Equations. Cambridge, England: Cambridge University Press.

Frizzarin, M. et al. (2008). “Damage Detection Based on Damping Analysis of Ambient Vibration Data”.
In: Structural Control and Health Monitoring 17.4, pp. 368–385. issn: 15452255, 15452263. doi: 10.
1002/stc.296.

Ghavamian, S. (1998). “Méthode simpli�ée pour la simulation du comportement sismique des structures
en béton armé : traitement des e�ets de l’élancement et estimateur d’erreurs”. PhD thesis. Cachan,
France: École normale supérieure.

Goel, R. K. (2001). “Simpli�ed Analysis of Asymmetric Structures with Supplemental Damping”. In:
Earthquake Engineering & Structural Dynamics 30.9, pp. 1399–1416. issn: 0098-8847, 1096-9845. doi:
10.1002/eqe.77.

Grammatikou, S., M. N. Fardis, and D. Biskinis (2019). “Energy Dissipation Models for RC Members and
Structures”. In: Earthquake Engineering & Structural Dynamics 48.3, pp. 287–305. issn: 0098-8847,
1096-9845. doi: 10.1002/eqe.3136.

Grange, S., J. Mazars, and P. Kotronis (2007). “Analyse sismique du comportement d’une structure de 7
étages à échelle 1 en béton armé : benchmark international NEES”. In: Congrès français de mécanique.
Courbevoie, France.

Guedes, J., P. Pegon, and A. Pinto (1994). A Fibre/Timoshenko Beam Element in Castem 2000. Rapport
Technique Nr. I.94.31. I-21020 ISPRA (VA) Italy: Applied Mechanics Unit, Institute for Safety Tech-
nology, Joint Research Centre, Commission of the European Communities, p. 55.

Gulkan, P. and M. A. Sozen (1974). “Inelastic Responses of Reinforced Concrete Structure to Earthquake
Motions”. In: Journal Proceedings 71.12, pp. 604–610. issn: 0002-8061. doi: 10.14359/7110.

Gutierrez Soto, M. and H. Adeli (2013). “Tuned Mass Dampers”. In: Archives of Computational Methods
in Engineering 20.4, pp. 419–431. issn: 1886-1784. doi: 10.1007/s11831-013-9091-7.

Hall, J. F. (1988). “The Dynamic and Earthquake Behaviour of Concrete Dams: Review of Experimental
Behaviour and Observational Evidence”. In: Soil Dynamics and Earthquake Engineering 7.2, pp. 58–
121. issn: 02677261. doi: 10.1016/S0267-7261(88)80001-0.

Hall, J. F. (2006). “Problems Encountered from the Use (or Misuse) of Rayleigh Damping”. In: Earthquake
Engineering & Structural Dynamics 35.5, pp. 525–545. issn: 0098-8847, 1096-9845. doi: 10.1002/
eqe.541.

Hall, J. F. (2018). “Performance of Viscous Damping in Inelastic Seismic Analysis of Moment-Frame
Buildings”. In: Earthquake Engineering & Structural Dynamics 47.14, pp. 2756–2776. issn: 00988847.
doi: 10.1002/eqe.3104.

Halm, D. and A. Dragon (1998). “An Anisotropic Model of Damage and Frictional Sliding for Brittle
Materials”. In: European Journal of Mechanics - A/Solids 17.3, pp. 439–460. issn: 09977538. doi: 10.
1016/S0997-7538(98)80054-5.

https://doi.org/10.1016/j.engstruct.2009.09.016
https://doi.org/10.1016/j.engstruct.2010.06.016
https://doi.org/10.1111/j.1467-8667.2009.00612.x
https://doi.org/10.1002/stc.296
https://doi.org/10.1002/stc.296
https://doi.org/10.1002/eqe.77
https://doi.org/10.1002/eqe.3136
https://doi.org/10.14359/7110
https://doi.org/10.1007/s11831-013-9091-7
https://doi.org/10.1016/S0267-7261(88)80001-0
https://doi.org/10.1002/eqe.541
https://doi.org/10.1002/eqe.541
https://doi.org/10.1002/eqe.3104
https://doi.org/10.1016/S0997-7538(98)80054-5
https://doi.org/10.1016/S0997-7538(98)80054-5


192 BIBLIOGRAPHY

Haquet, C. (2011).Cinq centrales nucléaires françaises sont dans des zones à risque. https://lexpansion.lexpress.fr/actualite-
economique/cinq-centrales-nucleaires-francaises-sont-dans-des-zones-a-risque_1432975.html.

Hasselman, T. K. (1976). “Modal Coupling in Lightly Damped Structures”. In:AIAA Journal 14.11, pp. 1627–
1628. issn: 0001-1452, 1533-385X. doi: 10.2514/3.7259.

Heitz, T., C. Giry, et al. (2019). “Identi�cation of an Equivalent Viscous Damping Function Depending
on Engineering Demand Parameters”. In: Engineering Structures 188, pp. 637–649. issn: 01410296.
doi: 10.1016/j.engstruct.2019.03.058.

Heitz, T., A. Le Maoult, et al. (2018). “Dissipations in Reinforced Concrete Components: Static and
Dynamic Experimental Identi�cation Strategy”. In: Engineering Structures 163, pp. 436–451. issn:
01410296. doi: 10.1016/j.engstruct.2018.02.065.

Heitz, T. (2017). “Nonlinear Local Behaviours and Numerical Modelling of Damping in Civil Engineer-
ing Structures in Dynamic”. PhD thesis. Cachan, France: Université Paris-Saclay, École Normale
Supérieure de Cachan.

Heitz, T., C. Giry, et al. (2017). “How Are the Equivalent Damping Ratios Modi�ed by Nonlinear Engi-
neering Demand Parameters?” In: 6th ECCOMAS Thematic Conference on Computational Methods in
Structural Dynamics and Earthquake Engineering (COMPDYN). Rhodes, Greece, pp. 15–17.

Heitz, T., B. Richard, et al. (2017). “Damping Identi�cation and Quanti�cation: Experimental Evidences
and First Numerical Results”. In: 16th World Conference on Earthquake Engineering. Santiago, Chile.

Hillerborg, A., M. Modéer, and P.-E. Petersson (1976). “Analysis of Crack Formation and Crack Growth
in Concrete by Means of Fracture Mechanics and Finite Elements”. In: Cement and Concrete Research
6.6, pp. 773–781. issn: 00088846. doi: 10.1016/0008-8846(76)90007-7.

Institut-Seism (2021). Interaction Sol-Structure et E�ets de Site. https://www.institut-seism.fr/recherche/interaction-
sol-structure-et-e�ets-de-site/. Intranet.

Iwan, W. D. and N. C. Gates (1979). “The E�ective Period and Damping of a Class of Hysteretic Struc-
tures”. In: Earthquake Engineering & Structural Dynamics 7.3, pp. 199–211. issn: 00988847, 10969845.
doi: 10.1002/eqe.4290070302.

Jacobsen, L. S. (1960). “Damping in Composite Structures”. In: II WCEE, Tokyo, 1960.
Jehel, P. (2009). “Modélisation numérique des phénomènes d’amortissement par dissipation d’énergie

matérielle dans les structures de type portique en béton armé sous séisme”. PhD thesis. Cachan,
France: École Normale Supérieure de Cachan.

Jehel, P., P. Léger, and A. Ibrahimbegovic (2014). “Initial versus Tangent Sti�ness-Based Rayleigh Damp-
ing in Inelastic Time History Seismic Analyses”. In: Earthquake Engineering & Structural Dynamics
43.3, pp. 467–484. issn: 1096-9845. doi: 10.1002/eqe.2357.

Jones, R. and G. B. Welch (1967). The Damping Properties of Plain Concrete: E�ect of Composition and
Relations with Elasticity and Strength. Tech. rep. 00212829. London, UK: Ministry of Transport.

Karaton, M., Ö. F. Osmanlı, and M. E. Gülşan (2021a). “Investigation of Uncertainties in Nonlinear Seismic
Analysis of the Reinforced Concrete Shear Walls”. In: International Journal of Civil Engineering 19.3,
pp. 301–318. issn: 1735-0522, 2383-3874. doi: 10.1007/s40999-020-00567-8.

Karaton, M., Ö. F. Osmanlı, and M. E. Gülşan (2021b). “Numerical Simulation of Reinforced Concrete
Shear Walls Using Force-Based Fiber Element Method: E�ect of Damping Type and Damping Ratio”.
In: Bulletin of Earthquake Engineering 19.14, pp. 6129–6156. issn: 1570-761X, 1573-1456. doi: 10.
1007/s10518-021-01221-x.

Kareem, A. and K. Gurley (1996). “Damping in Structures: Its Evaluation and Treatment of Uncertainty”.
In: Journal of wind engineering and industrial aerodynamics 59.2, pp. 131–157.

Kareem, A., T. Kijewski, and Y. Tamura (1999). “Mitigation of Motions of Tall Buildings with Speci�c
Examples of Recent Applications”. In: Wind and structures 2.3, pp. 201–251.

Karnovsky, I. A. and O. I. Lebed (2000). Formulas for Structural Dynamics: Tables, Graphs, and Solutions.
McGraw Hill Professional. McGraw Hill Professional.

https://doi.org/10.2514/3.7259
https://doi.org/10.1016/j.engstruct.2019.03.058
https://doi.org/10.1016/j.engstruct.2018.02.065
https://doi.org/10.1016/0008-8846(76)90007-7
https://doi.org/10.1002/eqe.4290070302
https://doi.org/10.1002/eqe.2357
https://doi.org/10.1007/s40999-020-00567-8
https://doi.org/10.1007/s10518-021-01221-x
https://doi.org/10.1007/s10518-021-01221-x


BIBLIOGRAPHY 193

Kelly, J. M., R. I. Skinner, and A. J. Heine (1972). “Mechanisms of Energy Absorption in Special Devices
for Use in Earthquake Resistant Structures”. In: Society for Earthquake Engineering 5.3, pp. 63–88.

Kimball, A. L. and D. E. Lovell (1927). “Internal Friction in Solids”. In: Physical Review 30.6, pp. 948–959.
issn: 0031-899X. doi: 10.1103/PhysRev.30.948.

Kotronis, P. (2000). “Cisaillement dynamique de murs en béton armé. Modèles simpli�és 2D et 3D”. PhD
thesis. Cachan, France: École Normale Supérieure de Cachan.

Kotronis, P. (2008). “Stratégies de modélisation de structures en béton soumises à des chargements
sévères”. PhD thesis. Grenoble, France: Université Joseph-Fourier, Grenoble I.

Kotronis, P., L. Davenne, and J. Mazars (2004). “Poutre 3D multi�bre Timoshenko pour la modélisation
des structures en béton armé soumises à des chargements sévères”. In: Revue française de génie civil
8.2/3, pp. 329–343.

Kowalsky, M. J., M. J. N. Priestley, and G. A. MacRae (1995). “Displacement-Based Design of RC Bridge
Columns in Seismic Regions”. In: Earthquake Engineering & Structural Dynamics 24.12, pp. 1623–
1643. issn: 00988847, 10969845. doi: 10.1002/eqe.4290241206.

Kumar, M. and A. S. Whittaker (2019). “Numerical Issues in Developing In-Structure Response Spectra
for Seismically Isolated Nuclear Structures”. In: 25th Conference on Structural Mechanics in Reactor
Technology. Charlotte, NC, USA, p. 13.

Kumar, S. and M. Kumar (2021). “Damping Implementation Issues for In-structure Response Estima-
tion of Seismically Isolated Nuclear Structures”. In: Earthquake Engineering & Structural Dynamics,
eqe.3436. issn: 0098-8847, 1096-9845. doi: 10.1002/eqe.3436.

La Borderie, C. (1991). “Phénomènes unilatéraux dans un matériau endommageable : Modélisation et
application à l’analyse de structures en béton.” PhD thesis. Paris, France: Université Paris 6.

Langlade, T. et al. (2021). “Modelling of Earthquake-Induced Pounding between Adjacent Structures with
a Non-Smooth Contact Dynamics Method”. In: Engineering Structures 241, p. 112426. issn: 01410296.
doi: 10.1016/j.engstruct.2021.112426.

Lanzi, A. and J. E. Luco (2018). “Elastic Velocity Damping Model for Inelastic Structures”. In: Journal of
Structural Engineering 144.6, p. 04018065. issn: 0733-9445, 1943-541X. doi: 10.1061/(ASCE)
ST.1943-541X.0002050.

Lázaro, M. (2016). “Eigensolutions of Non-Proportionally Damped Systems Based on Continuous Damp-
ing Sensitivity”. In: Journal of Sound and Vibration 363, pp. 532–544. issn: 0022460X. doi: 10.
1016/j.jsv.2015.10.014.

Le Corvec, V. (2012). “Nonlinear 3D Frame Element with Multi-Axial Coupling under Consideration of
Local E�ects”. PhD thesis. Berkeley, California, United States: University of California, Berkeley.

Lee, C.-L. (2019). “A Novel Damping Model for Earthquake Induced Structural Response Simulation”.
In: 2019 Paci�c Conference on Earthquake Engineering. Auckland/Wellington, New Zealand.

Lee, C.-L. (2020). “Proportional Viscous Damping Model for Matching Damping Ratios”. In: Engineering
Structures 207, p. 110178. issn: 01410296. doi: 10.1016/j.engstruct.2020.110178.

Lee, C.-L. (2022). “Type 4 Bell-Shaped Proportional Damping Model and Energy Dissipation for Struc-
tures with Inelastic and Softening Response”. In:Computers & Structures 258, p. 106663. issn: 00457949.
doi: 10.1016/j.compstruc.2021.106663.

Lee, S. et al. (2011). “Equivalent Modal Damping of Short-Span Bridges Subjected to Strong Motion”.
In: Journal of Bridge Engineering 16.2, pp. 316–323. issn: 1084-0702, 1943-5592. doi: 10.1061/
(ASCE)BE.1943-5592.0000149.

Léger, P. and S. Bhattacharjee (1994). “Energy Concepts in Seismic Fracture Analysis of Concrete Gravity
Dams”. In: International Workshop on Dam Fracture. Chambery, France, pp. 231–240.

Léger, P. and S. Dussault (1992). “Seismic-energy Dissipation in MDOF Structures”. In: Journal of Struc-
tural Engineering 118.5, pp. 1251–1269. issn: 0733-9445, 1943-541X. doi: 10.1061/(ASCE)
0733-9445(1992)118:5(1251).

https://doi.org/10.1103/PhysRev.30.948
https://doi.org/10.1002/eqe.4290241206
https://doi.org/10.1002/eqe.3436
https://doi.org/10.1016/j.engstruct.2021.112426
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002050
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002050
https://doi.org/10.1016/j.jsv.2015.10.014
https://doi.org/10.1016/j.jsv.2015.10.014
https://doi.org/10.1016/j.engstruct.2020.110178
https://doi.org/10.1016/j.compstruc.2021.106663
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000149
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000149
https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1251)
https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1251)


194 BIBLIOGRAPHY

Levy, C. (1991). “An Iterative Technique Based on the Dunkerley Method for Determining the Natu-
ral Frequencies of Vibrating Systems”. In: Journal of Sound and Vibration 150.1, pp. 111–118. issn:
0022460X. doi: 10.1016/0022-460X(91)90405-9.

Livaoğlu, R. and A. Doğangün (2006). “Simpli�ed Seismic Analysis Procedures for Elevated Tanks Con-
sidering Fluid–Structure–Soil Interaction”. In: Journal of Fluids and Structures 22.3, pp. 421–439. issn:
08899746. doi: 10.1016/j.jfluidstructs.2005.12.004.

Lou, M. et al. (2011). “Structure–Soil–Structure Interaction: Literature Review”. In: Soil Dynamics and
Earthquake Engineering 31.12, pp. 1724–1731. issn: 02677261. doi: 10.1016/j.soildyn.
2011.07.008.

Low, K. (2000). “A Modi�ed Dunkerley Formula for Eigenfrequencies of Beams Carrying Concentrated
Masses”. In: International Journal of Mechanical Sciences 42.7, pp. 1287–1305. issn: 00207403. doi:
10.1016/S0020-7403(99)00049-1.

Luco, J. E. (2008). “A Note on Classical Damping Matrices”. In: Earthquake Engineering & Structural
Dynamics 37.4, pp. 615–626. issn: 00988847, 10969845. doi: 10.1002/eqe.776.

Luco, J. E. and A. Lanzi (2017). “A New Inherent Damping Model for Inelastic Time-History Analyses”.
In: Earthquake Engineering & Structural Dynamics 46.12, pp. 1919–1939. issn: 00988847. doi: 10.
1002/eqe.2886.

Luco, J. E. and A. Lanzi (2019). “Numerical Artifacts Associated with Rayleigh and Modal Damping
Models of Inelastic Structures with Massless Coordinates”. In: Earthquake Engineering & Structural
Dynamics 48.13, pp. 1491–1507. issn: 0098-8847, 1096-9845. doi: 10.1002/eqe.3210.

Luu, H. Q. et al. (2011). “Structural Dynamics of Slender Ductile Reinforced Concrete Shear Walls”. In:
8th International Conference on Structural Dynamics, EURODYN. Leuven, Belgium, p. 8.

Luu, H. et al. (2013). “Numerical Modelling of Slender Reinforced Concrete Shear Wall Shaking Table
Tests under High-Frequency Ground Motions”. In: Journal of Earthquake Engineering 17.4, pp. 517–
542. issn: 1363-2469, 1559-808X. doi: 10.1080/13632469.2013.767759.

Mander, J. B., M. J. N. Priestley, and R. Park (1988). “Theoretical Stress-strain Model for Con�ned Con-
crete”. In: Journal of Structural Engineering 114.8, pp. 1804–1826. issn: 0733-9445, 1943-541X. doi:
10.1061/(ASCE)0733-9445(1988)114:8(1804).

Martinez, D. R. and M. J. Kowalsky (2020). “Impact of Viscous Damping Model Assumptions on the
Nonlinear Analysis of Multi-Span Bridges”. In: 17th World Conference on Earthquake Engineering.
Vol. 2d-0029. Sendai, Japan.

MathWorks (2021). Constrained Nonlinear Optimization Algorithms.
Mazars, J., P. Kotronis, et al. (2006). “Using Multi�ber Beams to Account for Shear and Torsion”. In:

Computer Methods in Applied Mechanics and Engineering 195.52, pp. 7264–7281. issn: 00457825. doi:
10.1016/j.cma.2005.05.053.

Mazars, J., X. H. Nguyen, et al. (2005). Étude Sur Le Fonctionnement Sismique de Structures à Murs à
Cellules Contreventées. Research Report Contrat N° 04 MGC 5 07, Org. Rapport �nal (Novembre) -
Contrat DRAST/ Mission Génie Civil, 2005. 3S-R.

Meirovitch, L. (1967). Analytical Methods in Vibrations. New York, United States: Macmillan.
Miranda, E. and C. Cruz (2020). “Towards Improved Modeling of Damping for Seismic Analysis of Build-

ings”. In: 17th World Conference on Earthquake Engineering. Vol. 2b-0148. Sendai, Japan.
Morzfeld, M., F. Ma, and N. Ajavakom (2008). “On the Decoupling Approximation in Damped Linear

Systems”. In: Journal of Vibration and Control 14.12, pp. 1869–1884. issn: 1077-5463, 1741-2986. doi:
10.1177/1077546308091212.

Moulin, S. (2010). Code_Aster : Élément de Poutre Multi�bre (Droite). Manuel de Référence R3.08.08.
Muravskii, G. (2004). “On Frequency Independent Damping”. In: Journal of Sound and Vibration 274.3-5,

pp. 653–668. issn: 0022460X. doi: 10.1016/j.jsv.2003.05.012.

https://doi.org/10.1016/0022-460X(91)90405-9
https://doi.org/10.1016/j.jfluidstructs.2005.12.004
https://doi.org/10.1016/j.soildyn.2011.07.008
https://doi.org/10.1016/j.soildyn.2011.07.008
https://doi.org/10.1016/S0020-7403(99)00049-1
https://doi.org/10.1002/eqe.776
https://doi.org/10.1002/eqe.2886
https://doi.org/10.1002/eqe.2886
https://doi.org/10.1002/eqe.3210
https://doi.org/10.1080/13632469.2013.767759
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
https://doi.org/10.1016/j.cma.2005.05.053
https://doi.org/10.1177/1077546308091212
https://doi.org/10.1016/j.jsv.2003.05.012


BIBLIOGRAPHY 195

Nakamura, N. (2017). “Time History Response Analysis Using Extended Rayleigh Damping Model”. In:
Procedia Engineering 199, pp. 1472–1477. issn: 18777058. doi: 10.1016/j.proeng.2017.
09.408.

Nakamura, N. (2019). “Application of Causal Hysteretic Damping Model to Nonlinear Seismic Response
Analysis of Super High-Rise Building: Substitution for Viscous Damping Including Tangent Sti�ness
Proportional Damping”. In: Journal of Structural and Construction Engineering (Transactions of AIJ)
84.759, pp. 597–607. issn: 1340-4202, 1881-8153. doi: 10.3130/aijs.84.597.

NF EN 1992-1-1 (2005). Eurocode 2 - Calcul des structures en béton - Partie 1.1 : Règles générales et règles
pour les bâtiments. Norme européenne - Norme française NF EN 1992-1-1. AFNOR, p. 211.

NF EN 1998-1 (2005). Eurocode 8 - Calcul des structures pour leur résistance aux séismes - Partie 1 : Règles
générales, actions sismiques et règles pour les bâtiments. Norme européenne - Norme française NF EN
1998-1. AFNOR, p. 186.

Ni, Y. et al. (2019). “Development of Practical Method for Incorporation of Elemental Damping in Inelas-
tic Dynamic Time History Analysis”. In: 2019 Paci�c Conference on Earthquake Engineering. Auck-
land/Wellington, New Zealand.

Nmai, C. K. and D. Darwin (1984). Cyclic Behavior of Lightly Reinforced Concrete Beams. Research Report
SM Report No.12. University of Kansas, Lawrence, Kansas: The National Science Foundation.

Ohno, T. and T. Nishioka (1984). “An Experimental Study on Energy Absorption Capacity of Columns
in Reinforced Concrete Structures.” In: Doboku Gakkai Ronbunshu 350, pp. 23–33. issn: 1882-7187,
0289-7806. doi: 10.2208/jscej.1984.350_23.

Olmos, B. A. and J. M. Roesset (2009). “Analytical Evaluation of the Accuracy of the Half-Power Band-
width Method to Estimate Damping Ratios in a Structure”. In: 4th International Conference on Struc-
tural Health Monitoring of Intelligent Infrastructure. Zurich, Switzerland.

Orak, S. (2000). “Investigation of Vibration Damping on Polymer Concrete with Polyester Resin”. In: Ce-
ment and Concrete Research 30.2, pp. 171–174. issn: 00088846. doi:10.1016/S0008-8846(99)
00225-2.

Ozdemir, Z., M. Souli, and Y. Fahjan (2010). “Application of Nonlinear Fluid–Structure Interaction Meth-
ods to Seismic Analysis of Anchored and Unanchored Tanks”. In: Engineering Structures 32.2, pp. 409–
423. issn: 01410296. doi: 10.1016/j.engstruct.2009.10.004.

Pant, D. R., A. C. Wijeyewickrema, and M. A. ElGawady (2013). “Appropriate Viscous Damping for Non-
linear Time-History Analysis of Base-Isolated Reinforced Concrete Buildings: Viscous Damping for
Time-History Analysis of Base-Isolated Buildings”. In: Earthquake Engineering & Structural Dynam-
ics 42.15, pp. 2321–2339. issn: 00988847. doi: 10.1002/eqe.2328.

Papagiannopoulos, G. A. and D. E. Beskos (2009). “On a Modal Damping Identi�cation Model for Non-
Classically Damped Linear Building Structures Subjected to Earthquakes”. In: Soil Dynamics and
Earthquake Engineering 29.3, pp. 583–589. issn: 02677261. doi: 10.1016/j.soildyn.2008.
10.005.

Papagiannopoulos, G. A. and G. D. Hatzigeorgiou (2011). “On the Use of the Half-Power Bandwidth
Method to Estimate Damping in Building Structures”. In: Soil Dynamics and Earthquake Engineering
31.7, pp. 1075–1079. issn: 02677261. doi: 10.1016/j.soildyn.2011.02.007.

Pegon, P. (1994). A Timoshenko Simple Beam Element in Castem 2000. Rapport Technique. I-21020 ISPRA
(VA) Italy: Applied Mechanics Unit, Institute for Safety Technology, Joint Research Centre, Commis-
sion of the European Communities, p. 19.

Penzien, J. (1964). “Damping Characteristics of Prestressed Concrete”. In: Journal Proceedings 61.9, pp. 1125–
1148. issn: 0002-8061. doi: 10.14359/7824.

Petrini, L. et al. (2008). “Experimental Veri�cation of Viscous Damping Modelling for Inelastic Time
History Analyzes”. In: Journal of Earthquake Engineering 12.1, pp. 125–145. issn: 1363-2469, 1559-
808X. doi: 10.1080/13632460801925822.

https://doi.org/10.1016/j.proeng.2017.09.408
https://doi.org/10.1016/j.proeng.2017.09.408
https://doi.org/10.3130/aijs.84.597
https://doi.org/10.2208/jscej.1984.350_23
https://doi.org/10.1016/S0008-8846(99)00225-2
https://doi.org/10.1016/S0008-8846(99)00225-2
https://doi.org/10.1016/j.engstruct.2009.10.004
https://doi.org/10.1002/eqe.2328
https://doi.org/10.1016/j.soildyn.2008.10.005
https://doi.org/10.1016/j.soildyn.2008.10.005
https://doi.org/10.1016/j.soildyn.2011.02.007
https://doi.org/10.14359/7824
https://doi.org/10.1080/13632460801925822


196 BIBLIOGRAPHY

Pipes, L. A. (1963).MatrixMethods for Engineering. Englewood Cli�s, New Jersey, United States: Prentice-
Hall.

Polycarpou, P. C. and P. Komodromos (2012). “A Methodology for an E�cient Three-Dimensional (3D)
Numerical Simulation of Earthquake-Induced Pounding of Buildings”. In: 15th World Conference on
Earthquake Engineering. Lisboa, Portugal.

Priestley, M. J. N., G. M. Calvi, and M. J. Kowalsky (2007). “Direct Displacement-Based Seismic Design of
Structures”. In: 2007 New-Zealand Society for Earthquake Engineering Conference. Palmerston North,
New Zealand.

Priestley, M. J. N. and D. N. Grant (2005). “Viscous Damping in Seismic Design and Analysis”. In: Journal
of Earthquake Engineering 09.2, pp. 229–255. issn: 1363-2469. doi:10.1142/S1363246905002365.

Puthanpurayil, A. M., A. J. Carr, and R. P. Dhakal (2018). “Application of Nonlocal Elasticity Contin-
uum Damping Models in Nonlinear Dynamic Analysis”. In: Bulletin of Earthquake Engineering 16.12,
pp. 6269–6297. issn: 1570-761X, 1573-1456. doi: 10.1007/s10518-018-0412-y.

Puthanpurayil, A. M., O. Lavan, et al. (2016). “Elemental Damping Formulation: An Alternative Mod-
elling of Inherent Damping in Nonlinear Dynamic Analysis”. In: Bulletin of Earthquake Engineering
14.8, pp. 2405–2434. issn: 1570-761X, 1573-1456. doi: 10.1007/s10518-016-9904-9.

Qian, X., A. K. Chopra, and F. McKenna (2020a). “Adequacy of Linear Viscous Damping Models for
Nonlinear Response History Analysis”. In: 17thWorld Conference on Earthquake Engineering. Vol. 2c-
0035. Sendai, Japan.

Qian, X., A. K. Chopra, and F. McKenna (2020b). “Modelling Viscous Damping in Nonlinear Response
History Analysis of Steel Moment-frame Buildings: Design-plus Ground Motions”. In: Earthquake
Engineering & Structural Dynamics. issn: 0098-8847, 1096-9845. doi: 10.1002/eqe.3358.

Ragueneau, F., C. La Borderie, and J. Mazars (2000). “Damage Model for Concrete-like Materials Coupling
Cracking and Friction, Contribution towards Structural Damping: First Uniaxial Applications”. In:
Mechanics of Cohesive-frictional Materials 5.8, pp. 607–625. issn: 1082-5010, 1099-1484. doi: 10.
1002/1099-1484(200011)5:8<607::AID-CFM108>3.0.CO;2-K.

Ragueneau, F., Q. T. Nguyen, and Y. Berthaud (2006). “Multi�ber Analysis of Reinforced Concrete Beams
A�ected by Corrosion”. In: Journal de Physique IV (Proceedings) 136, pp. 159–166. issn: 1155-4339,
1764-7177. doi: 10.1051/jp4:2006136017.

Rayleigh, J. W. S. B. (1877). The Theory of Sound - Volume I. Vol. 1. New York, United States: Macmillan.
Rayleigh, J. W. S. B. (1896). The Theory of Sound - Volume II. Vol. 2. New York, United States: Macmillan.
Reid, T. J. (1956). “Free Vibration and Hysteretic Damping”. In: The Journal of the Royal Aeronautical

Society 60.544, pp. 283–283. issn: 0368-3931, 2398-4600. doi: 10.1017/S0368393100135242.
Richard, B. (2010). “Comportement des éléments de structures en béton armé dégradés par corrosion - La

problématique de la modélisation de l’interface acier/béton en présence de corrosion”. PhD thesis.
Paris, France: Université Paris-Est.

Richard, B. and F. Ragueneau (2013). “Continuum Damage Mechanics Based Model for Quasi Brit-
tle Materials Subjected to Cyclic Loadings: Formulation, Numerical Implementation and Applica-
tions”. In: Engineering Fracture Mechanics 98, pp. 383–406. issn: 00137944. doi: 10.1016/j.
engfracmech.2012.11.013.

Richard, B., F. Ragueneau, et al. (2010). “Isotropic Continuum Damage Mechanics for Concrete under
Cyclic Loading: Sti�ness Recovery, Inelastic Strains and Frictional Sliding”. In: Engineering Fracture
Mechanics 77.8, pp. 1203–1223. issn: 00137944. doi: 10.1016/j.engfracmech.2010.02.
010.

Riggs, H. R. and G. H. Powell (1986). “Rough Crack Model for Analysis of Concrete”. In: Journal of
Engineering Mechanics 112.5, pp. 448–464. issn: 0733-9399, 1943-7889. doi: 10.1061/(ASCE)
0733-9399(1986)112:5(448).

https://doi.org/10.1142/S1363246905002365
https://doi.org/10.1007/s10518-018-0412-y
https://doi.org/10.1007/s10518-016-9904-9
https://doi.org/10.1002/eqe.3358
https://doi.org/10.1002/1099-1484(200011)5:8<607::AID-CFM108>3.0.CO;2-K
https://doi.org/10.1002/1099-1484(200011)5:8<607::AID-CFM108>3.0.CO;2-K
https://doi.org/10.1051/jp4:2006136017
https://doi.org/10.1017/S0368393100135242
https://doi.org/10.1016/j.engfracmech.2012.11.013
https://doi.org/10.1016/j.engfracmech.2012.11.013
https://doi.org/10.1016/j.engfracmech.2010.02.010
https://doi.org/10.1016/j.engfracmech.2010.02.010
https://doi.org/10.1061/(ASCE)0733-9399(1986)112:5(448)
https://doi.org/10.1061/(ASCE)0733-9399(1986)112:5(448)


BIBLIOGRAPHY 197

Rodrigues, H. et al. (2012). “A Comparative Analysis of Energy Dissipation and Equivalent Viscous
Damping of RC Columns Subjected to Uniaxial and Biaxial Loading”. In: Engineering Structures 35,
pp. 149–164. issn: 01410296. doi: 10.1016/j.engstruct.2011.11.014.

Rosenblueth, E. and I. Herrera (1964). “On a Kind of Hysteretic Damping”. In: Journal of Engineering
Mechanics Division ASCE 90, pp. 37–48.

Roth, S.-N., P. Léger, and A. Soulaïmani (2015). “A Combined XFEM–Damage Mechanics Approach
for Concrete Crack Propagation”. In: Computer Methods in Applied Mechanics and Engineering 283,
pp. 923–955. issn: 00457825. doi: 10.1016/j.cma.2014.10.043.

Ryan, K. L. and J. Polanco (2008). “Problems with Rayleigh Damping in Base-Isolated Buildings”. In: Jour-
nal of Structural Engineering 134.11, pp. 1780–1784. issn: 0733-9445, 1943-541X. doi: 10.1061/
(ASCE)0733-9445(2008)134:11(1780).

Sakamoto, T. et al. (2006). “Investigation into Crack Phenomena of Unreinforced Concrete Structures for
Aseismic Evaluation of Concrete Dams”. In: Notes. Vol. 38. US Department of Commerce, National
Bureau of Standards, Gaithersburg, Maryland, United States, p. 211.

Salane, H. J. and J. W. Baldwin (1990). “Identi�cation of Modal Properties of Bridges”. In: Journal of
Structural Engineering 116.7, pp. 2008–2021. doi: 10.1061/(ASCE)0733-9445(1990)
116:7(2008).

Salehi, M. and P. Sideris (2018). “An Enhanced Rayleigh Damping Model for Dynamic Analysis of In-
elastic Structures”. In: 2018 Structure Congress. Fort-Worth, Texas, United States.

Salzmann, A. (2003). “Damping Characteristics of Reinforced and Prestressed Normal-and High-Strength
Concrete Beams”. PhD thesis. Queensland, Australia: Gri�th University.

Samouh, H. and P. Kotronis (2011). “Modélisation simpli�ée des portiques avec remplissage en maçon-
nerie soumis à l’action sismique”. In: AFPS 2011. Marne-la-Valle, France: Unpublished. doi: 10.
13140/2.1.4756.1761.

Saouma, V. E. (2000). Lecture Notes in : Fracture Mechanics. Dept. of Civil Environmental and Architec-
tural Engineering University of Colorado, Boulder, CO 80309-0428.

Segal, F. and D. V. Val (2006). “Energy Evaluation for Ramberg–Osgood Hysteretic Model”. In: Journal
of Engineering Mechanics 132.9, pp. 907–913. issn: 0733-9399, 1943-7889. doi: 10.1061/(ASCE)
0733-9399(2006)132:9(907).

Seghir, A., A. Tahakourt, and G. Bonnet (2009). “Coupling FEM and Symmetric BEM for Dynamic Inter-
action of Dam–Reservoir Systems”. In: Engineering Analysis with Boundary Elements 33.10, pp. 1201–
1210. issn: 09557997. doi: 10.1016/j.enganabound.2009.04.011.

Semblat, J. (1997). “Rheological Interpretation of Rayleigh Damping”. In: Journal of Sound and Vibration
206.5, pp. 741–744. issn: 0022460X. doi: 10.1006/jsvi.1997.1067.

Seybert, A. (1981). “Estimation of Damping from Response Spectra”. In: Journal of Sound and Vibration
75.2, pp. 199–206. issn: 0022460X. doi: 10.1016/0022-460X(81)90339-4.

Skinner, R. I. et al. (1980). “Hysteretic Dampers for the Protection of Structures from Earthquakes”. In:
Bulletin of the New Zealand National Society for Earthquake Engineering 13.1, pp. 22–36.

Smyrou, E., M. J. N. Priestley, and A. J. Carr (2011). “Modelling of Elastic Damping in Nonlinear Time-
History Analyses of Cantilever RC Walls”. In: Bulletin of Earthquake Engineering 9.5, pp. 1559–1578.
issn: 1570-761X, 1573-1456. doi: 10.1007/s10518-011-9286-y.

Song, Z. and C. Su (2017). “Computation of Rayleigh Damping Coe�cients for the Seismic Analysis
of a Hydro-Powerhouse”. In: Shock and Vibration 2017, pp. 1–11. issn: 1070-9622, 1875-9203. doi:
10.1155/2017/2046345.

Souid, A. et al. (2009). “Pseudodynamic Testing and Nonlinear Substructuring of Damaging Structures
under Earthquake Loading”. In: Engineering Structures 31.5, pp. 1102–1110. issn: 01410296. doi: 10.
1016/j.engstruct.2009.01.007.

https://doi.org/10.1016/j.engstruct.2011.11.014
https://doi.org/10.1016/j.cma.2014.10.043
https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1780)
https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1780)
https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(2008)
https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(2008)
https://doi.org/10.13140/2.1.4756.1761
https://doi.org/10.13140/2.1.4756.1761
https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(907)
https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(907)
https://doi.org/10.1016/j.enganabound.2009.04.011
https://doi.org/10.1006/jsvi.1997.1067
https://doi.org/10.1016/0022-460X(81)90339-4
https://doi.org/10.1007/s10518-011-9286-y
https://doi.org/10.1155/2017/2046345
https://doi.org/10.1016/j.engstruct.2009.01.007
https://doi.org/10.1016/j.engstruct.2009.01.007


198 BIBLIOGRAPHY

Sousa, R. et al. (2020). “Shake Table Blind Prediction Tests: Contributions for Improved Fiber-Based
Frame Modelling”. In: Journal of Earthquake Engineering 24.9, pp. 1435–1476. issn: 1363-2469, 1559-
808X. doi: 10.1080/13632469.2018.1466743.

Spacone, E., F. C. Filippou, and F. F. Taucer (1996a). “Fibre Beam–Column Model for Non-linear Anal-
ysis of R/C Frames: Part I. Formulation”. In: Earthquake Engineering & Structural Dynamics 25.7,
pp. 711–725. issn: 0098-8847, 1096-9845. doi: 10.1002/(SICI)1096-9845(199607)25:
7<711::AID-EQE576>3.0.CO;2-9.

Spacone, E., F. C. Filippou, and F. F. Taucer (1996b). “Fibre Beam–Column Model for Non-linear Anal-
ysis of R/C Frames: Part II. Applications”. In: Earthquake Engineering & Structural Dynamics 25.7,
pp. 727–742. issn: 0098-8847, 1096-9845. doi: 10.1002/(SICI)1096-9845(199607)25:
7<727::AID-EQE577>3.0.CO;2-O.

Spacone, E. and S. El-Tawil (2004). “Nonlinear Analysis of Steel-Concrete Composite Structures: State
of the Art”. In: Journal of Structural Engineering 130.2, pp. 159–168. issn: 0733-9445, 1943-541X. doi:
10.1061/(ASCE)0733-9445(2004)130:2(159).

Spencer, R. A. (1969). “Sti�ness and Damping of Nine Cyclically Loaded Prestressed Concrete Members”.
In: PCI Journal 14.3, pp. 39–52. issn: 08879672. doi: 10.15554/pcij.06011969.39.52.

Stevenson, J. (1980). “Structural Damping Values as a Function of Dynamic Response Stress and De-
formation Levels”. In: Nuclear Engineering and Design 60.2, pp. 211–237. issn: 00295493. doi: 10.
1016/0029-5493(80)90238-1.

Stojadinovic, B. and C. R. Thewalt (1996). “Energy Balanced Hysteresis Models”. In: 11th World Confer-
ence on Earthquake Engineering. Earthquake Engineering Research at Berkeley, College of Engineer-
ing, University of California at Berkeley, California, United States.

Su, L. et al. (2019). “Experimental Identi�cation of Exponential Damping for Reinforced Concrete Can-
tilever Beams”. In: Engineering Structures 186, pp. 161–169. issn: 01410296. doi: 10.1016/j.
engstruct.2019.02.015.

Tanaka, H. (1990). “E�ect of Lateral Con�ning Reinforcement on the Ductile Behaviour of Reinforced
Concrete Columns”. PhD thesis. Christchurch, New Zealand: University of Canterbury.
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Appendix A

Damping model nomenclature

Nomenclature of the damping formulation acronyms used in the manuscript

Table A.1: De�nition of the damping formulation acronyms (alphabetic order)

Acronym Complete name

CKPD Sti�ness proportional damping with the commit sti�ness matrix
CRD Rayleigh damping with the commit sti�ness matrix

CWPD Wilson-Penzien damping with the commit sti�ness matrix
IKPD Sti�ness proportional damping with the initial sti�ness matrix
KPD Sti�ness proportional damping

KPD_ACT Sti�ness proportional damping with updated a0 and a1 parameters
MD Modal damping

MD_ACT Modal damping with updated parameters
MPD Mass proportional damping

MPD_ACT Mass proportional damping with updated a0 and a1 parameters
RD Rayleigh damping

RD_ACT Rayleigh damping with updated a0 and a1 parameters
SKPD Sti�ness proportional damping with the secant sti�ness matrix
SRD Rayleigh damping with the secant sti�ness matrix

SWPD Wilson-Penzien damping with the secant sti�ness matrix
TKPD Sti�ness proportional damping with the tangent sti�ness matrix
TRD Rayleigh damping with the tangent sti�ness matrix

TWPD Wilson-Penzien damping with the tangent sti�ness matrix
WPD Wilson-Penzien damping

WPD_ACT Wilson-Penzien damping with updated parameters
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A.1 Rayleigh damping and derivatives
RD Rayleigh damping (page 19)

C = a0 ·M + a1 ·K0 (A.1)

MPD Mass proportional damping (page 20)

C = a0 ·M (A.2)

IKPD Initial sti�ness proportional damping (page 20)

C = a1 ·K0 (A.3)

TKPD Tangent sti�ness proportional damping (page 20)

C = a1 ·KT (A.4)

CKPD Commit sti�ness proportional damping

C = a1 ·KC (A.5)

TRD Tangent Rayleigh damping (Rayleigh damping with tangent sti�ness matrix)

C = a0 ·M + a1 ·KT (A.6)

CRD Commit Rayleigh damping (Rayleigh damping with commit sti�ness matrix)

C = a0 ·M + a1 ·KC (A.7)

RDtdK Rayleigh damping with a time-dependent coe�cient applied to the sti�ness matrix

C = a0 ·M + a1(t) ·K0 (A.8)

RDtd Rayleigh damping with time-dependent coe�cients

C = a0(t) ·M + a1(t) ·K0 (A.9)

TRDtdK Tangent Rayleigh damping with a time-dependent coe�cient applied to the sti�ness matrix

C = a0 ·M + a1(t) ·KT (A.10)

TRDtd Tangent Rayleigh damping with time-dependent coe�cients

C = a0(t) ·M + a1(t) ·KT (A.11)

RDTKPDtdK Tangent Rayleigh damping + a tangent-sti�ness proportional part with a time-dependent
coe�cient

C = a0 ·M + a1 ·K0 + a1(t) ·KT (A.12)

QBD Quasi-brittle damping (page 30)
C = a1 ·Kel (A.13)

IKPDL Initial sti�ness proportional damping with a limit on the sti�ness matrix (page 20)

C = a1 ·K0 6 Clim (A.14)
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A.2 Classical damping formulations
CD Caughey damping (page 21)

C = M
∑

i

ai
[
M−1 ·K

]i (A.15)

BD Bernal damping (page 21)
C = M ·

∑

i

ai
[
M−1 ·K

]i
, ∀i 6 0 (A.16)

A.3 Modal damping
MD Modal damping (page 22)

C =
N∑

i=1

4π
Ti
ξi

(
Mφ

i

)(
Mφ

i

)T

φT
i
Mφ

i

(A.17)

WPD Wilson and Penzien damping (page 22)

C = M ·
[
N−1∑

i=1

2ξiωi
mi

φ
i
φT
i

]
·M (A.18)

NLMD Nonlinear modal damping: the modal damping matrix is updated for each time step using eigen-
values analysis with the tangent sti�ness matrix

A.4 Other damping formulations
NLVD Nonlinear viscous damping: bounded dampers are added to the model
ElVD Elastic velocity damping: inelastic damping forces are proportional only to elastic elements ve-

locities
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Appendix B

Material model parameters

B.1 Concrete models

B.1.1 BARFRA model
• YOUN = Young’s modulus
• NU = Poisson’s coe�cient
• RHO = density
• FC = compressive strength
• FC_R = residual compressive strength
• STRC = strain controlling softening in compression
• FT = tensile strength
• FT_R = residual tensile strength
• STRT = strain controlling softening in traction

B.1.2 RICBET model
• YOUN = Young’s modulus
• NU = Poisson’s coe�cient
• RHO = density
• FT = tensile equivalent strength
• ALDI = brittleness in uni-axial traction
• GAM1 = kinematic work hardening modulus 1
• A1 = kinematic work hardening modulus 2
• SIGF = cracks closure stress
• FC = compressive strength
• AF = plasticity surface modulus
• AG = plasticity potential modulus
• AC = plasticity work hardening 1
• BC = plasticity work hardening 2
• SIGU = asymptotic compressive stress
• HYST = indicator to choose the cracks closure criterion: cracks closure to zero stress (HYST = 1)

and cracks closure to zero strain (HYST = 2)
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B.2 Steel model - ACIER_UNI
• YOUN = Young’s modulus
• NU = Poisson’s coe�cient
• RHO = density
• STSY = plasticity stress
• EPSU = ultimate strain
• STSU = ultimate stress
• EPSH = strain at the beginning of work hardening
• BFAC = Ratio between the work hardening sti�ness and the elastic sti�ness
• R0FA = R0 coe�cient (�rst coe�cient governing Bauschinger e�ect)
• A1FA = A1 coe�cient (second coe�cient governing Bauschinger e�ect)
• A2FA = A2 coe�cient (third coe�cient governing Bauschinger e�ect)
• FALD = Ratio between the length between two shear rebars and the bending rebars diameter (to

deal with rebars buckling)
• AFAC = A coe�cient (to deal with rebars buckling)
• CFAC = C coe�cient (to deal with rebars buckling)
• A6FA = A6 coe�cient (to deal with rebars buckling)
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C.1 Damping formulation comparisons
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(a) RD

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Time [s]

Friction
Damage

0

10

20

30

40

50

60

70

80

90

100

Ratio of friction / total

(b) RD_ACT
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(d) SRD
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(f) KPD_ACT
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(i) MPD
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(j) MPD_ACT
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(k) MD
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(l) MD_ACT
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Figure C.1: DSS2 test - Dissipation proportions at material level - RICBET 2% - damping formulation
in�uence
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C.2 Damping ratio comparisons
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(a) RD - 1%
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(b) RD - 2%
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(c) RD - 3%
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(d) RD - 5%
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(e) CRD - 1%
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(f) CRD - 2%
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(g) CRD - 3%
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(h) CRD - 5%
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(i) CKPD - 1%
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(j) CKPD - 2%
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(k) CKPD - 3%
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(l) CKPD - 5%
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(m) WPD - 1%
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(n) WPD - 2%
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(o) WPD - 3%
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Figure C.2: DSS2 test - Dissipation proportions at material level - RICBET - damping ratio in�uence
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D.1 Beam displacement

(a) Time step 120 (b) Time step 121 (c) Time step 122

(d) Time step 123 (e) Time step 124 (f) Time step 125

(g) Time step 126 (h) Time step 127 (i) Time step 128

(j) Time step 129 (k) Time step 130

Figure D.1: DSS2 test - increment 4 - Beam displacement [m] - RICBET - RD 2%
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(a) RD - Time step 124 (b) RD - Time step 125 (c) RD - Time step 126

(d) CRD - Time step 124 (e) CRD - Time step 125 (f) CRD - Time step 126

(g) KPD - Time step 124 (h) KPD - Time step 125 (i) KPD - Time step 126

(j) CKPD - Time step 124 (k) CKPD - Time step 125 (l) CKPD - Time step 126

(m) MPD - Time step 124 (n) MPD - Time step 125 (o) MPD - Time step 126

Figure D.2: DSS2 test - increment 4 - Beam displacement [m] - damping formulation comparisons -
RICBET 2%
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D.2 Dissipative phenomena

D.2.1 Damage

(a) Increment 1 (b) Increment 2 (c) Increment 3

(d) Increment 4 (e) Increment 5 (f) Increment 6

(g) Increment 7

Figure D.3: DSS2 test - Damage variable evolution along the beam - RICBET - RD 2%

Remark: The seventh increment for the MPD formulation does not exist because of the computation
divergence.
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(a) RD - increment 1 (b) RD - increment 4 (c) RD - increment 7

(d) CRD - increment 1 (e) CRD - increment 4 (f) CRD - increment 7

(g) KPD - increment 1 (h) KPD - increment 4 (i) KPD - increment 7

(j) CKPD - increment 1 (k) CKPD - increment 4 (l) CKPD - increment 7

(m) MPD - increment 1 (n) MPD - increment 4

Figure D.4: DSS2 test - Damage variable evolution along the beam - damping formulation comparisons
- RICBET 2%
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D.2.2 Friction

(a) Increment 1 (b) Increment 2 (c) Increment 3

(d) Increment 4 (e) Increment 5 (f) Increment 6

(g) Increment 7

Figure D.5: DSS2 test - Friction deformation variable evolution along the beam - RICBET - RD 2%

Remark: The seventh increment for the MPD formulation does not exist because of the computation
divergence.
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(a) RD - increment 1 (b) RD - increment 4 (c) RD - increment 7

(d) CRD - increment 1 (e) CRD - increment 4 (f) CRD - increment 7

(g) KPD - increment 1 (h) KPD - increment 4 (i) KPD - increment 7

(j) CKPD - increment 1 (k) CKPD - increment 4 (l) CKPD - increment 7

(m) MPD - increment 1 (n) MPD - increment 4

Figure D.6: DSS2 test - Friction deformation variable evolution along the beam - damping formulation
comparisons - RICBET 2%
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Appendix E

Demonstration of the
analytical modal basis of

different systems

This appendix demonstrates the equations discussed in section 3.2 and particularly the analytical solu-
tions of di�erent subsystems proposed by Karnovsky and Lebed (2000).

E.1 Simply supported beam

The scheme of a simply supported beam is presented in �gure 3.4. Let us consider a section of length
dx of the beam (�g. E.1).

Ty(x)

Mfz(x) Ty(x + dx)

Mfz(x + dx)

dx

~x

~y

~z

Figure E.1: Equilibrium of a beam section
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E.1.1 Wave equation
The application of the fundamental principle of dynamics gives the following equations (eq. E.1):





Ty(x+ dx)− Ty(x) = ρc.Sh.dx.
∂2uy
∂t2

−Mfz (x) + Ty(x).dx+Mfz (x+ dx) = 0
(E.1)

where Ty = V is the shear force and Mfz = M the inertial momentum. Then, the system is rewritten
is equation (E.2): 




dTy
dx

= ρc.Sh.
∂2uy
∂t2

Ty(x) = −dMfz

dx

(E.2)

given equation (E.3):

− d2Mfz

dx2 = ρc.Sh.
∂2uy
∂t2

(E.3)

Finally, by applying the behaviour law in equation (E.4), the wave equation of the beam is deduced
(eq. E.5).

Mfz (x) = Ec.Ih
∂2uy
∂x2 (E.4)

Ec.Ih
∂4uy
∂x4 (x, t) + ρc.Sh

∂2uy
∂t2

(x, t) = 0 (E.5)

The equation can be solved by applying the separation of variables. The displacement is written in
equation (E.6):

uy(x, t) = X(x).T (t) (E.6)

So, equation (E.5) becomes equation (E.7):

Ec.Ih.
d4X(x)
dx4 .T (t) + ρc.Sh.X(x)d

2T (t)
dt2

= 0 (E.7)

X(x).T (t) is di�erent from 0 for all x and t since, otherwise, the beam would not vibrate. So, it is
possible to divide the equation (E.7) by X(x).T (t) given equations (E.8) or (E.9):

Ec.Ih.
d4X(x)
dx4 .

1
X(x) + ρc.Sh.

1
T (t)

d2T (t)
dt2

= 0 (E.8)

1
T (t)

d2T (t)
dt2

= −Ec.Ih
ρc.Sh

.
1

X(x)
d4X(x)
dx4 = −ω2 (E.9)

with ω2 a constant because 1
T (t)

d2T (t)
dt2 only depends on t and −Ec.Ihρc.Sh

. 1
X(x)

d4X(x)
dx4 only depends on x.

Finally, the system in equation (E.10) is deduced:




d2T (t)
dt2

+ ω2.T (t) = 0
d4X(x)
dx4 − λ4.X(x) = 0

(E.10)
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with λ4 = ρc.Sh
Ec.Ih

ω2. The general form of the time equation is given in equation (E.11), while the space
equation gives the solution in equation (E.12):

T (t) = At cos (ωt) +Bt sin (ωt) (E.11)

X(x) = Ax cos (λx) +Bx sin (λx) + Cx cosh (λx) +Dx sinh (λx) (E.12)

Finally, the wave equation solution is written in equation (E.13):

uy(x, t) = [cos (ωt) + sin (ωt)]× [A cos (λx) +B sin (λx) + C cosh (λx) +D sinh (λx)] (E.13)

E.1.2 Modal properties
The boundary conditions of the simply supported beam are null displacements and momenta at beam
ends (eq. E.14):





uy(0, t) = uy(L, t) = 0

Mfz (0, t) = Mfz (L, t) = 0 =⇒ ∂2uy
∂x2 (0, t) = ∂2uy

∂x2 (L, t) = 0
(E.14)

So, the system of four unknowns and four equations is expressed in equation (E.15):




A+ C = 0
A cos (λ.L) +B sin (λ.L) + C cosh (λ.L) +D sinh (λ.L) = 0
−A+ C = 0
−A cos (λ.L)−B sin (λ.L) + C cosh (λ.L) +D sinh (λ.L) = 0

(E.15)

From the �rst and third equations, it can be deduced that A = C = 0, so:
{

B sin (λ.L) +D sinh (λ.L) = 0
−B sin (λ.L) +D sinh (λ.L) = 0

(E.16)

Finally, the subtraction of both equations gives 2B. sin (λ.L) = 0. If B = 0, then D = 0 and the beam
does not vibrate. So, B 6= 0 and sin (λ.L) = 0, given λi = i.π

L
for all i ∈ N. The system can thus de�ne

the displacement space function in equation (E.17):





ϕi(x) = sin
(
iπx

L

)

λi = iπ

L

ωi =
(
iπ

L

)2√
Ec.Ih
ρc.Sh

, ∀ i ∈ N (E.17)

where {ϕi(x)}i∈N and {ωi}i∈N are respectively the mode shapes and eigenfrequencies.
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E.2 Beamon translational and rotational elastic sup-
ports
To solve the problem of the beam on translational and rotational elastic supports (�g. 3.5), only the
boundary conditions di�er from the simply supported beam. The translational support sti�nesses in-
duce non-null displacement, so the shear forces are linked to the displacements (eq. E.18). In addition,
the rotations are limited by the rotational support sti�nesses, so the momenta are linked to the rotations
at beam ends (eq. E.19). The boundary conditions correspond to table 3.1.

{
Ty(0, t) = −KT,1 × uy(0, t)
Ty(L, t) = KT,2 × uy(L, t)

(E.18)

{
Mfz (0, t) = KR,1 × θz(0, t)
Mfz (L, t) = −KR,2 × θz(L, t)

(E.19)

Based on the relations from section E.1.1, both systems can be rewritten in equations (E.20) and (E.21):




−Ec.Ih.
∂3uy
∂x3 (0, t) = −KT,1 × uy(0, t)

−Ec.Ih.
∂3uy
∂x3 (L, t) = KT,2 × uy(L, t)

(E.20)





Ec.Ih.
∂2uy
∂x2 (0, t) = KR,1 ×

∂uy
∂x

(0, t)

Ec.Ih.
∂2uy
∂x2 (L, t) = −KR,2 ×

∂uy
∂x

(L, t)
(E.21)

By considering the form of the displacement in equation (E.13), the four equations in systems E.20
and E.21 gives the relations in equation (E.22):




K∗T,1.A+ λ̄3.B +K∗T,1.C − λ̄3.D = 0
A.
[
λ̄3 sin

(
λ̄
)

+K∗T,2 cos
(
λ̄
)]
−B.

[
−λ̄3 cos

(
λ̄
)

+K∗T,2 sin
(
λ̄
)]

+
C.
[
λ̄3 sinh

(
λ̄
)

+K∗T,2 cosh
(
λ̄
)]

+D.
[
λ̄3 cosh

(
λ̄
)

+K∗T,2 sinh
(
λ̄
)]

= 0
λ̄.A+K∗R,1.B − λ̄.C +K∗R,1.D = 0
A.
[
−λ̄ cos

(
λ̄
)
−K∗R,2 sin

(
λ̄
)]

+B.
[
−λ̄ sin

(
λ̄
)

+K∗R,2 cos
(
λ̄
)]

+
C.
[
λ̄ cosh

(
λ̄
)

+K∗R,2 sinh
(
λ̄
)]

+D.
[
λ̄ sinh

(
λ̄
)

+K∗R,2 cosh
(
λ̄
)]

= 0

(E.22)

with λ̄ = L.λ, K∗T,i = KT,i.L
3

Ec.Ih
and K∗R,i = KR,i.L

Ec.Ih
. In the case of the studied beam, KT,1 =

KT,2 = KT and KR,1 = KR,2 = KR, so K∗T,1 = K∗T,2 = K∗T and K∗R,1 = K∗R,2 = K∗R. To solve the
system E.22, the determinant in equation (E.23) has to be null:
∣∣∣∣∣∣∣

K∗
T λ̄3 K∗

T −λ̄3

λ̄ K∗
R −λ̄ K∗

R

λ̄3 sin
(
λ̄
)

+K∗
T cos

(
λ̄
)
−λ̄3 cos

(
λ̄
)

+K∗
T sin

(
λ̄
)

λ̄3 sinh
(
λ̄
)

+K∗
T cosh

(
λ̄
)

λ̄3 cosh
(
λ̄
)

+K∗
T sinh

(
λ̄
)

−λ̄ cos
(
λ̄
)
−K∗

R sin
(
λ̄
)
−λ̄ sin

(
λ̄
)

+K∗
R cos

(
λ̄
)

λ̄ cosh
(
λ̄
)

+K∗
R sinh

(
λ̄
)

λ̄ sinh
(
λ̄
)

+K∗
R cosh

(
λ̄
)

∣∣∣∣∣∣∣
(E.23)
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E.3 Beam on translational elastic supports
If only translational elastic supports are considered, the system in equation (E.19) becomes equation (E.24):

{
Mfz (0, t) = 0
Mfz (L, t) = 0

(E.24)

E.3.1 Eigenfrequencies equation
The �rst equation of system E.24 leads to A = C , and the determinant to be annulled is given in equation (E.25):
∣∣∣∣∣∣

2.K∗
T λ̄3 −λ̄3

λ̄3
[
sin
(
λ̄
)

+ sinh
(
λ̄
)]

+K∗
T

[
cos
(
λ̄
)

+ [cosh
(
λ̄
)]

−λ̄3 cos
(
λ̄
)

+K∗
T sin

(
λ̄
)

λ̄3 cosh
(
λ̄
)

+K∗
T sinh

(
λ̄
)

− cos
(
λ̄
)

+ cosh
(
λ̄
)

− sin
(
λ̄
)

sinh
(
λ̄
)

∣∣∣∣∣∣
(E.25)

−
[
λ̄3
[
sin
(
λ̄
)

+ sinh
(
λ̄
)]

+K∗
T

[
cos
(
λ̄
)

+ [cosh
(
λ̄
)]]
×

∣∣∣∣
λ̄3 −λ̄3

− sin
(
λ̄
)

sinh
(
λ̄
)
∣∣∣∣

+
[
−λ̄3 cos

(
λ̄
)

+K∗
T sin

(
λ̄
)]
×

∣∣∣∣
2.K∗

T −λ̄3

− cos
(
λ̄
)

+ cosh
(
λ̄
)

sinh
(
λ̄
)
∣∣∣∣

−
[
λ̄3 cosh

(
λ̄
)

+K∗
T sinh

(
λ̄
)]
×

∣∣∣∣
2.K∗

T λ̄3

− cos
(
λ̄
)

+ cosh
(
λ̄
)
− sin

(
λ̄
)
∣∣∣∣ = 0 (E.26)

λ̄6 ×
[
2− 2 cos

(
λ̄
)

cosh
(
λ̄
)]

+K∗
T

2 ×
[
4 sin

(
λ̄
)

sinh
(
λ̄
)]

+K∗
T × λ̄

3 ×
[
−4 cos

(
λ̄
)

sinh
(
λ̄
)

+ 4 sin
(
λ̄
)

cosh
(
λ̄
)]

(E.27)

Finally, the eigenfrequencies of this problem can be deduced from equation (E.28):

K∗
T

2 + K∗
T ×

2λ̄3
[
sin
(
λ̄
)

cosh
(
λ̄
)
− cos

(
λ̄
)

sinh
(
λ̄
)]

2 sin
(
λ̄
)

sinh
(
λ̄
) +

λ̄6 ×
[
1− cos

(
λ̄
)

cosh
(
λ̄
)]

2 sin
(
λ̄
)

sinh
(
λ̄
) = 0 (E.28)

E.3.2 Eigenmode shapes
As in equation (E.12), the mode shapes can be de�ned by equation (E.29):

XT (x̄) = A cos
(
λ̄x̄
)

+B sin
(
λ̄x̄
)

+ C cosh
(
λ̄x̄
)

+D sinh
(
λ̄x̄
)

(E.29)

with x̄ = x/L. Let us consider B = 1. Because the momentum is null at beam ends, it can be deduced that A = C from the
equation in x̄ = 0. Then, from the equation in x̄ = 1, D can be de�ned as a function of A (eq. E.30):

D =
sin
(
λ̄
)

+A
[
cos
(
λ̄
)
− cosh

(
λ̄
)]

sinh
(
λ̄
) (E.30)

Finally, the boundary condition for x̄ = 0 in shear force leads to equation (E.31):

2A×K∗
T = λ̄3 [−1 +D] (E.31)

Then, by combining the equations (E.30) and (E.31), the expression of A can be deduced (eq. E.32):

A =
sinh

(
λ̄
)
− sin

(
λ̄
)

2
K∗
T

λ̄3 sinh
(
λ̄
)

+ cos
(
λ̄
)
− cosh

(
λ̄
) = γT (E.32)

C = A = γT (E.33)
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D =
sin
(
λ̄
)

sinh
(
λ̄
) + γT ×

cos
(
λ̄
)
− cosh

(
λ̄
)

sinh
(
λ̄
) =

sin
(
λ̄
)

sinh
(
λ̄
) + γT γT1 (E.34)

with γT1 =
cos
(
λ̄
)
− cosh

(
λ̄
)

sinh
(
λ̄
) . Finally, the eigenmodes are de�ned in equation (E.35):

XT (x̄) = sin
(
λ̄x̄
)

+
sin
(
λ̄
)

sinh
(
λ̄
) sinh

(
λ̄x̄
)

+ γT ×
[
cos
(
λ̄x̄
)

+ cosh
(
λ̄x̄
)

+ γT1 sinh
(
λ̄x̄
)]

(E.35)

E.4 Beam on rotational elastic supports
If only rotational elastic supports are considered, the system in equation (E.18) becomes equation (E.36):

{
uy(0, t) = 0
uy(L, t) = 0

(E.36)

E.4.1 Eigenfrequencies equation
The �rst equation of system E.36 leads to A = −C , and the determinant to be annulled is given in equation (E.37):
∣∣∣∣∣∣

2λ̄ K∗
R K∗

R

cos
(
λ̄
)
− cosh

(
λ̄
)

sin
(
λ̄
)

sinh
(
λ̄
)

−λ̄
[
cos
(
λ̄
)

+ cosh
(
λ̄
)]
−K∗

R

[
sin
(
λ̄
)

+ sinh
(
λ̄
)]

−λ̄ sin
(
λ̄
)

+K∗
R cos

(
λ̄
)

λ̄ sinh
(
λ̄
)

+K∗
R cosh

(
λ̄
)

∣∣∣∣∣∣
(E.37)

[
−λ̄
[
cos
(
λ̄
)

+ cosh
(
λ̄
)]
−K∗

R

[
sin
(
λ̄
)

+ sinh
(
λ̄
)]]
×

∣∣∣∣
K∗
R K∗

R

sin
(
λ̄
)

sinh
(
λ̄
)
∣∣∣∣

−
[
−λ̄ sin

(
λ̄
)

+K∗
R cos

(
λ̄
)]
×

∣∣∣∣
2λ̄ K∗

R

cos
(
λ̄
)
− cosh

(
λ̄
)

sinh
(
λ̄
)
∣∣∣∣

+
[
λ̄ sinh

(
λ̄
)

+K∗
R cosh

(
λ̄
)]
×

∣∣∣∣
2λ̄ K∗

R

cos
(
λ̄
)
− cosh

(
λ̄
)

sin
(
λ̄
)
∣∣∣∣ = 0 (E.38)

λ̄2 ×
[
4 sin

(
λ̄
)

sinh
(
λ̄
)]

+K∗
R

2 ×
[
2− 2 cos

(
λ̄
)

cosh
(
λ̄
)]

+K∗
R × λ̄×

[
−4 cos

(
λ̄
)

sinh
(
λ̄
)

+ 4 cosh
(
λ̄
)

sin
(
λ̄
)]

= 0 (E.39)

Finally, the eigenfrequencies of this problem can be deduced from equation (E.40):

K∗
R

2 + K∗
R ×

2λ̄
[
cosh

(
λ̄
)

sin
(
λ̄
)
− cos

(
λ̄
)

sinh
(
λ̄
)]

1− cos
(
λ̄
)

cosh
(
λ̄
) +

2λ̄2 ×
[
sin
(
λ̄
)

sinh
(
λ̄
)]

1− cos
(
λ̄
)

cosh
(
λ̄
) = 0 (E.40)

E.4.2 Eigenmode shapes
As in equation (E.12), the mode shapes can be de�ned by equation (E.41):

XR(x̄) = A cos
(
λ̄x̄
)

+B sin
(
λ̄x̄
)

+ C cosh
(
λ̄x̄
)

+D sinh
(
λ̄x̄
)

(E.41)

with x̄ = x/L. Let us consider B = 1. Because the displacement is null at beam ends, it can be deduced that A = −C from the
equation in x̄ = 0. Then, from the equation in x̄ = 1, D can be de�ned as a function of A (eq. E.42):

D = −
sin
(
λ̄
)

sinh
(
λ̄
) +A

cosh
(
λ̄
)
− cos

(
λ̄
)

sinh
(
λ̄
) (E.42)
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Finally, the boundary condition for x̄ = 0 in momentum leads to equation (E.43):

λ̄ [−A+ C] = K∗
R × [1 +D] (E.43)

Then, by combining the equations (E.42) and (E.43), the expression of A can be deduced (eq. E.44):

A =
sinh

(
λ̄
)
− sin

(
λ̄
)

cos
(
λ̄
)
− cosh

(
λ̄
)
− 2 λ̄

K∗
R

sinh
(
λ̄
) = γR (E.44)

C = −A = −γR (E.45)

D = −1− 2λ̄
K∗
R

× γR (E.46)

Finally, the eigenmodes are de�ned in equation (E.47):

XR(x̄) = sin
(
λ̄x̄
)
− sinh

(
λ̄x̄
)

+ γR ×
[

cos
(
λ̄x̄
)
− cosh

(
λ̄x̄
)
−

2λ̄
K∗
R

sinh
(
λ̄x̄
)]

(E.47)

E.5 Simply supported beamwith one additionalmass
Let us consider the system in �gure 3.6 with one additional mass.

The general form of the mode shapes when an additional mass is added on the beam is the same as for the systems previously
studied (eq. E.12, E.29 or E.41). However, the basis in equation (E.48) can be considered to evaluate the problem response:





X1(kx) = 1
2

[cosh(kx) + cos(kx)]

X2(kx) = 1
2

[sinh(kx) + sin(kx)]

X3(kx) = 1
2

[cosh(kx)− cos(kx)]

X4(kx) = 1
2

[sinh(kx)− sin(kx)]

(E.48)

So, the displacement can be written in equation (E.49) and the momentum in equation (E.50):

XM (x) = φ0
X2(kx)

k
+Q0

X4(kx)
k3.Ec.Ih

+ 1
k2.Ec.Ih

ω2

k
MaddXM (xmadd )×X4 (k(x− xmadd )) (E.49)

Mfz (x) = φ0X4(kx).Ec.Ih.k +Q0
X2(kx)

k
+ ω2

k
MaddXM (xmadd )×X2 (k(x− xmadd )) (E.50)

Then, the boundary conditions are given in equation (E.51):




XM (L) = 0

Mfz (L) = 0

XM (xmadd ) = φ0
X2(k.xmadd )

k
+Q0

X4(k.xmadd )
k3.Ec.Ih

(E.51)

With λ = k.L, n = ω2.Madd
k4.Ec.Ih.L

and b = L− xmadd , the matrix system in equation (E.52) is obtained.
[

X2(λ)
k

+ nλX4(k.b)X2(k.xmadd )
k

X4(λ)
k3.Ec.Ih

+ nλX4(k.b)X4(k.xmadd )
k3.Ec.Ih

X4(λ).Ec.Ih.k + ω2Madd
k2 X2(k.xmadd )X2(k.b) X2(λ)

k
+ nλ

k
X4(k.xmadd )X2(k.b)

]{
φO
Q0

}
=
{

0
0

}
(E.52)

By cancelling the determinant, equation (E.53) is deduced, determining the problem eigenfrequencies.

2 sinh (λ) sin (λ) + nλ [sin (λ) sinh (ξ1λ) sinh (ξ2λ)− sinh (λ) sin (ξ1λ) sin (ξ2λ)] = 0 (E.53)
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Appendix F

Algorithms used in the
identification method

F.1 Newmark’s algorithm for a linear system
Knowing the displacement, velocity and acceleration at the time step t−1, algorithm 3 gives the dynamic values at the next time
step (t).

Algorithm 3: Newmark’s algorithm
input : U(t− 1) , U̇(t− 1) , Ü(t− 1) , Üs(t) , ∆t , γ , β , m1 , c1 , k1 , κ1

output: U(t) , U̇(t) , Ü(t)

begin
A = m1

β.∆2
t

+ c1.
γ

β.∆t + k1

B = −m1 × κ1 × Üs(t) +
[
m1

β.∆t2 + c1.
γ

β.∆t

]
× U(t− 1) +

[
m1

β.∆t − c1.

(
1 − γ

β

)]
× U̇(t−

1) +
[
m1.

1/2 − β

β
− c1.∆t.

(
1 − γ.

(
1 +

1/2 − β

β

))]
× Ü(t− 1)

U(t) = B

A

U̇(t) =(
γ

β.∆t

)
×[U(t) − U(t− 1)]+

(
1 − γ

β

)
×U̇w(t−1)+∆t.

[
1 − γ.

(
1 +

1/2 − β

β

)]
×Ü(t−1)

Ü(t) =
(

1
β.∆t2

)
× [U(t) − U(t− 1)] +

(
1

β.∆t

)
× U̇(t− 1) +

(
1/2 − β

β

)
× Ü(t− 1)

end
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F.2 The "interior-point methods" for nonlinear op-
timization
The objective of the "interior-point method" implemented into Matlabr is to solve the problem in equation (F.1) using a sequence
of approximate minimization problems (eq. F.2) (MathWorks, 2021).

min
x
f(x), subjected to h(x) = 0 and g(x) ≤ 0 (F.1)

min
x,s

fµ(x, s) = min
x,s

f(x)− µ
∑

i

ln(si), subjected to s ≤ 0, h(x) = 0, g(x) + s = 0 (F.2)

The approximate problems in equation (F.2) are more accessible to solve than the initial problem because they are equally
constrained problems. The algorithm �rst applied a direct step corresponding to the Newton step for each iteration. Moreover, a
conjugate gradient step is used if the direct step can not be used.1

1More information about the algorithm is presented in MathWorks (2021) paper.



Appendix G

Parametric analysis of
updated damping matrices

G.1 Non-diagonal damping matrix formulation

G.1.1 p2 evolution
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Figure G.1: Parametric study of function parameters - non-diagonal damping matrix formulation - P2
evolution - global responses
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Figure G.2: Parametric study of function parameters - non-diagonal damping matrix formulation - P2
evolution - normalized maximal and minimal values of some variables
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Figure G.3: Parametric study of function parameters - non-diagonal damping matrix formulation - P2
evolution - energy analyses
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G.2 Diagonal damping matrix formulation

G.2.1 p1 evolution
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Figure G.4: Parametric study of function parameters - diagonal damping matrix formulation - P1
evolution - global responses
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Figure G.5: Parametric study of function parameters - diagonal damping matrix formulation - P1
evolution - normalized maximal and minimal values of some variables
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Figure G.6: Parametric study of function parameters - diagonal damping matrix formulation - P1
evolution - energy analyses
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G.2.2 p2 evolution
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Figure G.7: Parametric study of function parameters - diagonal damping matrix formulation - P2
evolution - global responses
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Figure G.8: Parametric study of function parameters - diagonal damping matrix formulation - P2
evolution - normalized maximal and minimal values of some variables
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Figure G.9: Parametric study of function parameters - diagonal damping matrix formulation - P2
evolution - energy analyses
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Résumé : En plus de la nouvelle réglementa-
tion sismique mise en place en 2011 sur le terri-
toire français, l’accident nucléaire de Fukushima la
même année a poussé le gouvernement français à
investir pour la sécurité des bâtiments nucléaires.
Pour assurer la viabilité de telles structures, des
modèles performants sont nécessaires et doivent
intégrer une description fine des phénomènes phy-
siques. Dans le cas de structures en béton armé, la
plus grande difficulté vient du manque de connais-
sances sur l’évolution de l’endommagement et la
capacité du béton à dissiper de l’énergie. Les dis-
sipations peuvent être modélisées à deux échelles :
à l’échelle globale pour caractériser les interac-

tions de la structure avec son environnement et à
l’échelle locale pour modéliser les dissipations dans
les matériaux. Grâce à des données expérimentales,
un modèle numérique non-linéaire de poutre en bé-
ton armé a été développé pour évaluer la capacité
de modèles classiques d’amortissement à représen-
ter les phénomènes physiques. Ensuite, une mé-
thode d’identification de l’amortissement est pro-
posée pour déterminer l’évolution de l’amortisse-
ment en fonction de l’endommagement du béton.
Enfin, en se basant sur l’étude des phénomènes
dissipatifs les plus influents dans le béton, un mo-
dèle d’actualisation de l’amortissement à l’échelle
locale est proposé.

Title : Modelling of damping in nonlinear dynamic analyses of reinforced concrete structures : consti-
tutive formulations and experimental identification
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Identification and updating

Abstract : In addition to the new seismic zoning
of the French territory in 2011, the Fukushima nu-
clear accident the same year prompted the French
government to focus on the safety of nuclear buil-
dings. To ensure the viability of such structures,
performative models are required, so they have to
integrate fine physical phenomena descriptions. In
the case of reinforced concrete structures, the si-
gnificant difficulty comes from the lack of know-
ledge about the damage evolution and the ability
of concrete to dissipate energy. Dissipations can
be described at two scales : at the global scale to

characterize the structure interaction with its en-
vironment and at the local scale to model material
dissipations. Based on experimental data, a rein-
forced concrete beam numerical nonlinear model is
developed to evaluate the ability of classical global
scale damping models to characterize physical phe-
nomena. Then, a damping identification method is
proposed to determine the transient evolution of
damping through concrete damage. Finally, a lo-
cal scale damping update model is proposed based
on the study of the most dissipative phenomena in
concrete.
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