# CLUB DES UTILISATEURS CAST3M

29 novembre 2019

## Analyse de la tenue des structures à la fatigue



Joël KICHENIN

LM2S, CEA



Institut des Sciences de la Mécanique et Applications Industrielles

Habibou MAITOURNAM

IMSIA, UMR 9219, ENSTA Paris – CNRS – CEA - EDF









## Phénomène de la fatigue



8 mai 1942 : accident du train Versailles-Paris



June 3, 1998 : failure of the tread of a wheel of an ICE 1 from Munich to Hamburg



the Management of the second sufficience (Safaty Les

http://www.iasa.com.au/folders/Safety\_Issue s/FAA\_Inaction/severityUnderstated.html



https://chargedevs.com/features/top-causesof-failure-in-power-semiconductors/

J. Kichenin & H. Maitournam, Club des Utilisateurs CAST3M 29/11/2019

## Sécurité - Impact sur l'économie

Fatigue : dégradations des propriétés mécaniques dues à des sollicitations répétées

- Environ 80% des ruptures sont liées à la fatigue
- Coût annuel (direct et indirect) : 5 milliards \$.
- 30% auraient pu être évités

J. Kichenin & H. Maitournam, Club des Utilisateurs CAST3M 29/11/2019

## Domaines de fatigue

basés sur l'état limite



## DÉMARCHE GLOBALE DE DIMENSIONNEMENT

#### Approche découplée



J. Kichenin & H. Maitournam, Club des Utilisateurs CAST3M 29/11/2019

## Domaines de fatigue

basés sur l'état limite



# Approche MULTI-ÉCHELLE EN FATIGUE (Dang Van)

J. Kichenin & H. Maitournam, Club des Utilisateurs CAST3M 29/11/2019

### High and Low Cycle Fatigue: multiscale approach



## Bases desmodèles de fatigue développés

(A. Constantinescu, K. Dang Van & H. Maitournam, FFEMS, 2003)

Concepts de base: multiéchelle, adaptation, énergie dissipée

À l'échelle macroscopique : le seuil est la limite d'adaptation

- En dessous de cette limite : le comportement à long terme est elastique = HCF
- Au dessus de cette limite : le comportement à long terme est dissipatif = LCF

Pour la fatigue à grand nombre de cycles (HCF) :

À l'échelle mésoscopique : le seuil est la limite d'adaptation méso

- En dessous de cette limite : endurance "illimitée"
- Au dessus de cette limite : endurance limitée

J. Kichenin & H. Maitournam, Club des Utilisateurs CAST3M 29/11/2019

## Principe de l'approche macro-meso en HCF

- **0.** Contraintes macroscopiques adaptées
- 1. Passage des contraintes macroscopiques aux contraintes mésoscopiques

Détermination des contraintes méso en tout point *m* du VER(*M*)

2. Hypothèse d'adaptation au niveau mésoscopique

Détermination des contraintes résiduelles mésoscopiques

#### 3. Postulat d'un critère d'endurance illimitée sur les contraintes méso

on peut choisir un critère de type plan critique

#### 4. Réécriture éventuelle du critère en fonction des contraintes macroscopiques

J. Kichenin & H. Maitournam, Club des Utilisateurs CAST3M 29/11/2019

### Relations de passage macro-méso



• Les contraintes macro  $\underline{\sigma}(M,t)$  agissent comme chargement du VER M

$$\underline{\tilde{\sigma}}(m,M,t) = \underline{\tilde{\sigma}}^{el}(m,M,t) + \underline{\tilde{\rho}}(m,M,t)$$

$$\underline{\tilde{\sigma}}(m,M,t) = \underline{A}(M,m) : \underline{\sigma}(M,t) + \underline{\tilde{\rho}}(m,M,t)$$
J. Nichemin & H. Mailoumani, Club des offisatedrs CAST3M 29/11/2019

## Relations de passage macro-méso en fatigue HCF

 $\underline{\tilde{\sigma}}(m,M,t) = \underline{\underline{A}}(M,m) : \underline{\underline{\sigma}}(M,t) + \underline{\tilde{\rho}}(m,M,t)$ 

#### Des hypothèses sont effectuées dans le cadre de l'endurance illimitée :

 Comme, le VER est macroscopiquement adapté, très peu de grains plastifient ; ces grains sont considérés comme des inclusions plastiques dans un milieu élastique, les deux milieux ayant le même comportement élastique

$$\underline{\tilde{\sigma}}(m,M,t) = \underline{\sigma}(M,t) + \underline{\tilde{\rho}}(m,M,t)$$

 Ces grains plastifiés doivent s'adapter pour qu'il y ait endurance illimitée : le champ des contraintes résiduelles méso tend vers une limite fixe tout comme le champ des déformations plastiques méso

$$\underline{\tilde{\sigma}}(m,M,t) = \underline{\sigma}(M,t) + \underline{\tilde{\rho}^{*}}(m,M)$$

En se plaçant à la limite d'adaptation,  $\tilde{\rho}^*$  peut être estimé comme l'opposé du centre  $\underline{\underline{s}}^*$  de la plus petite hypersphère circonscrite  $\overline{\underline{au}}$  trajet des déviateurs de  $\underline{\underline{\sigma}}(M,t)$ 

$$\underline{\underline{\tilde{\sigma}}}(m, M, t) = \underline{\underline{\sigma}}(M, t) - \underline{\underline{s}}^{*}(m, M)$$

$$\underline{\underline{s}}^{*}(M) = \operatorname{Arg}\min_{\underline{\underline{s}}}\left\{\max_{t}\left\|\underline{\underline{s}}^{el}(M, t) - \underline{\underline{s}}_{\underline{\underline{s}}}(M)\right\|\right\} \quad \operatorname{tr}\left(\underline{\tilde{\sigma}}(t)\right) = \operatorname{tr}\left(\underline{\underline{\sigma}}(t)\right)$$

Fatigue polycyclique - H. Maitournam

#### Postulat d'un critère de type plan critique à l'échelle méso

Il y a endurance illimitée si :

$$\forall \underline{n}, \forall t, \|\underline{\tau}(\underline{n},t)\| + ap(t) - b < 0$$

Si on pose :  $\tau(t) = \max_{\underline{n}} \|\underline{\tau}(\underline{n}, t)\|$  cisaillement max (sur toutes les facettes)

Alors la condition précédente s'écrit :

avec 
$$\tau(t) = \frac{1}{2} \left( \tilde{\sigma}_{I}(t) - \tilde{\sigma}_{III}(t) \right) \qquad p(t) = \frac{1}{3} \operatorname{tr} \left( \underline{\tilde{\varphi}}(t) \right) = \frac{1}{3} \operatorname{tr} \left( \underline{\tilde{\varphi}}(t) \right)$$
$$= \frac{1}{2} \left( \tilde{s}_{I}(t) - \tilde{s}_{III}(t) \right)$$

et  $\underline{\tilde{\sigma}}(M,t) = \underline{\sigma}(M,t) - \underline{\underline{s}}^{*}(m,M), \qquad \tilde{\sigma}_{I}(t) \ge \tilde{\sigma}_{II}(t) \ge \tilde{\sigma}_{III}(t)$ 

#### **Diagramme** *τ*-*p*

- C'est une représentation du critère dans le plan  $(\tau, p)$
- La droite d'équation :

$$\tau + ap = b$$

est la droite matériau « intrinsèque ».

• En tout point, lorsque le chargement décrit une période, on calcule  $(t(t), p(t)), t \hat{I} [0,T]$ 

définit le trajet de chargement au point considéré.



### **Application pratique**

On suppose connu en tout point M et à tout instant t du cycle, le tenseur des contraintes macroscopiques :  $\underline{\sigma}(M,t)$   $t \in [0,T]$ 

1. On commence par calculer la pression hydrostatique :

$$p(t) = \frac{1}{3} \operatorname{tr} \underline{\underline{\sigma}}(t)$$

2. Puis, le déviateur macroscopique des contraintes :

 $\underline{\underline{s}}(t) = \underline{\underline{\sigma}}(t) - p(t)\underline{\underline{I}}$ 

3. On détermine le centre  $\underline{\underline{s}}^*$  de la plus petite hypersphère circonscrite au trajet  $\underline{\underline{s}}(t)$  et les contraintes mésoscopiques :

$$\underline{\tilde{\sigma}}(t) = \underline{\sigma}(t) - \underline{\underline{s}}^* \quad \text{ou} \quad \underline{\tilde{\underline{s}}}(t) = \underline{\underline{s}}(t) - \underline{\underline{s}}^*$$

4. Calcul des contraintes méso principales et du cisaillement max :

$$t(t) = \frac{1}{2}(\Re(t) - \Re(t)) = \frac{1}{2}(\Re(t) - \Re(t))$$

5. Vérification du critère au point considéré, endurance illimitée si

 $\max_{t} \{t(t) + ap(t)\} \pounds b$ 

15

#### **Exemples d'application (SNCF) : maintenance des rails**



• Rail grade : 900A (260).

Loi de comportement obtenue à partir des tests d'indentation (elastoplastique de von Mises à écrouissage cinématique non linéaire)



- Configurations :
  - TGV, 300km/h, rail sans défaut

Inputs (contacts localisations et contraintes) fournis par INRETS.

- Initiation de fissures : critère de Dang Van
   Limites de fatigue fournies par Corus rail
- Loi de propagation : de type loi de Paris
   données obtenues à partir des essais BAM et IRSID

#### Exemple de train à 300km/h en alignement

1. Calcul direct de l'état stabilisé du rail sous roulement répété



Post-traitement Fatigue



#### **3. Propagation de la fissure**





Evolution numérique de  $\Delta K$  / longueur de fissure

### **Exemple : résistance à la fatigue des vilebrequins**



- **Pièce** : vilebrequin
- **Fonction** : transformation du mouvement des pistons en mouvement de rotation.
  - **Défaillance** : rupture par fatigue
  - Zones à risque : gorges car concentration de contrainte

#### **FATIGUE DES VILEBREQUINS GALETÉS**



# Endurance d'un ressort de suspension





## Prise en compte de différents effets

Effets du déphasage : Deperrois (1991), Papadoupoulous (1994-2001) Extension à l'endurance limitée

Effets du gradient de contraintes :



## Critère de Dang Van à gradient

1

$$\max_{t} \left\{ \widetilde{\tau(t)} + a_{g} \widetilde{P(t)} \right\} \leq b_{g}$$
$$\operatorname{avec} \quad \widetilde{\tau(t)} = \tau(t) \left[ 1 - \left( l_{\tau} \frac{\| \boldsymbol{Y}(t) \|}{\tau(t)} \right)^{n_{\tau}} \right]$$
$$\widetilde{P(t)} = P(t) \left[ 1 - \left\langle l_{\sigma} \frac{\| \boldsymbol{G}(t) \|}{P(t)} \right\rangle^{n_{\sigma}} \right]$$

 $Y = 
abla \sigma$  Tenseur du 3<sup>ème</sup> ordre avec des symétries mineures (18 composantes)G = 
abla P

Six paramètres du matériau  $[a_g, b_g, l_\tau, l_\sigma, n_\tau, n_\sigma)$  à identifier

#### **Tension-compression**

**Rotating bending** 













#### Résultats des essais de fatigue

| Type of the loading | kt | σ <sub>a</sub> MPa) | σ <sub>m</sub> MPa) |
|---------------------|----|---------------------|---------------------|
| tension-compression | 1  | 508                 | 0                   |
| tension-compression | 1  | 467.5               | 400                 |
| tension-compression | 2  | 252                 | 500                 |
| tension-compression | 3  | 220                 | 0                   |
| tension-compression | 3  | 165                 | 500                 |
| torsion             | 1  | 320                 | 0                   |
| Rotating bending    | 1  | 540                 | 0                   |
| Rotating bending    | 2  | 267                 | 0                   |
| Rotating bending    | 3  | 180                 | 0                   |

## **MATERIAL BEHAVIOUR**

Material: 42CrMo4 quenched and tempered

Re0.2 = 928 MPa, Rm = 1024 MPa





Déformation vraie (%)

## **MATERIAL BEHAVIOUR**



#### Two von Mises elastic-plastic models :

- Linear kinematic hardening
- Non-linear kinematic hardening (Armstrong-Frederick)

**NUMERICAL SIMULATIONS** 

### **Examples of meshes**



### SIMULATIONS



Contours of the axial stress in elasticity ( $\sigma_m$ =500MPa,  $\sigma_a$ =165MPa)



#### Elastic and elastoplastic axial stresses



# Stabilized axial plastic deformations along a radius



# Axial residual stresses after total unloading

Recall of the Dang Van criterion (1973,1995, ...)

$$\max_{t} \left\{ \tau(t) + ap(t) \right\} < b$$

$$p(t) = \frac{1}{3} \operatorname{tr}(\underline{\sigma}(t))$$

$$\underline{\tau}(t) = \operatorname{Tresca}(\underline{s}(t) - \underline{s}^{*})$$

$$\underline{s}^{*} = \operatorname{Arg} \min_{\underline{S}_{i}} \left\{ \max_{t} \left\| \underline{s}(t) - \underline{s}_{i} \right\| \right\}$$

$$a, b: material constants$$



These features are related to the REVf.

The material line is not known : our aim is to determine it



These features are related to the REV.

The material line is not known : our aim is to determine it

# For a given averaging volume (VER), critical loading paths are plotted for all the tests



Dang Van representation



#### The extreme points of all the critical loading paths are aligned on the material line

### **RESULTS** in $(\tau,p)$ diagrams



Each loading path represent the critical one for the corresponding test for a given critical volume

## **CRITICAL VOLUME**



Limits points for the different loading paths in the (p,t) diagram, for the

critical volume = 100 microns<sup>3</sup>

# MERCI DE VOTRE ATTENTION

J. Kichenin & H. Maitournam, Club des Utilisateurs CAST3M 29/11/2019