DE LA RECHERCHE À L'INDUSTRIE

ANALYSE MULTI-ÉCHELLE DE CÂBLES SUPRACONDUCTEURS

G. Lenoir, P. Manil, F. Nunio

CEA Paris-Saclay – IRFU, Université Paris-Saclay

Club Cast3m 2018 - Paris 04/02/2019

PARTICLE COLLIDER : THE NEED FOR HIGH FIELD MAGNETS

Circular particle accelerators magnet :

Dipole & Quadrupole LHc (NbTi) \rightarrow B_{max} < 9T

Principle of a circular accelerator, to ensure the collision of the 2 beams :

- accelerate the particles
- \rightarrow radiofrequency cavities : $\vec{F} = q\vec{E}$
- deviate the particules (bend the trajectory)
- \rightarrow dipolar magnets : $\vec{F} = q\vec{V} \wedge \vec{B}$
- focus the beam (concentrate the bunches)
- \rightarrow quadripolar magnets
- reduce aberrations
- \rightarrow multipolar magnets

Dipoles are used to bend the beam trajectory

The LHc today :

- ~ 1200 dipole magnets (L=14m)
- ~ 400 quadrupole magnets (L=3m)

The futur of LHc :

- HL-LHc (luminosity upgrade X 10) \rightarrow 2022
- HE-LHc (energy upgrade X 2,5) \rightarrow 2035

Detector magnet :

ATLAS (NbTi) \rightarrow ${\rm B_{max}}$ < 4T

Quadrupoles are used for beam focusing

04/02/2019

A MULTISCALE STRUCTURE ...

04/02/2019

Analyse multi-échelle de câbles supraconducteurs - G. Lenoir, P. Manil, F. Nunio

• GEOMETRIC MODEL (F. NUNIO)

- \hookrightarrow Rutherford cables considering bi-metallic model
- \mapsto impregnation region
- \hookrightarrow stack of conductors

OUTLINE

- MECHANICAL MODEL (G. LENOIR)
 - \rightarrow Bi-metallic strand model based on RVE at the μ -scale
 - ${}^{{}_{ \mbox{ }}}$ Inverse identification of material parameters
 - ightarrow Validation of the model

CABLING MODEL METHODOLOGY

□ Parametrization of the model :

- Strand parameters
- Cable parameters
 - Number of strands
 - Twist pitch P
 - Final size of the Rutherford shape W x H

Benefits :

- Cast3m script generates EPx input file
- Persistence of the model's hierarchical structure during all modeling steps

⇒ Adaptative tool for the prediction of the cable geometry

04/02/2019 Analyse multi-échelle de câbles supraconducteurs - G. Lenoir, P. Manil, F. Nunio

□ Matrix filler construction :

not fully successful with reverse engineering methods (surface reconstruction, Boolean operators ...)
 no improvements with direct Boolean cut at the level of the mesh

method : rebuild the skin of the matrix filler by a "sewing" technique, and mesh the volume

□ Model of impregnated Rutherford cable

mechanical model at the strand scale

04/02/2019

Bi-metallic model

Analyse multi-échelle de câbles supraconducteurs - G. Lenoir, P. Manil, F. Nunio

OUTLINE

• GEOMETRIC MODEL (F. NUNIO)

- → Rutherford cables considering bi-metallic model
- → impregnation region
- → stack of conductors

• MECHANICAL MODEL (G. LENOIR)

- \mapsto Bi-metallic strand model based on RVE at the μ -scale
- \rightarrow Inverse identification of material parameters
- ightarrow Validation of the model

Definition the composition of the bi-metallic model sets and their mechanical behavior

Nb

Nb₃Sn

Lenoir 17] G. Lenoir, PhD Thesis, Ecole CentraleSupélec, MSSMat laboratory, 2017

Analyse multi-échelle de câbles supraconducteurs - G. Lenoir, P. Manil, F. Nunio

Non-linear behavior of strands

- Adapted constitutive equation for elasto-plastic materials
- ➡ Predictibility of non-monotonic behavior
- Mechanical modeling [Lemaître 94]
 Von Mises yield criterion f(σ, X, R)
 - Elasticity with Hooke's law: $\sigma = E * \epsilon$
 - Elasto-plasticity with hardening [Armstrong 66] [Lemaître 94] Isotropic: $\dot{R} = b * (Q - R) * \dot{p}$ Kinematic: $\dot{X} = C * \varepsilon^{\dot{p}} - \gamma * X * \dot{p}$

3D-model based on internal variables of individual components

Hardening

Parameters

Plasticity

Observations

PIT	Indents number	E [GPa]	H [GPa]
Cu OL	18	133 ±5	1,25 ±0,08
Cu CO	15	125 ±4	1,14 ±0,07
Cu IF	92	132 ±6	1,33 ±0,13
Nb	13	125 ±13	1,69 ±0,43
$Nb_3Sn SG$	35	171 ±6	13,1 ±0,56

□ Results

Copper considered as homogeneous
 Niobium behavior close to copper's
 Nb₃Sn

- Small grain phase purely elastic
- Large grain phase not characterized
- **□** {Tin, porosities} not characterized

SUMMARY OF THE PIT BI-METALLIC MODEL

Composition & mechanical parameters

■ Strand Core, Outer-layer & Interfil. Matrix – Copper ⇒ Elasto-plastic with hardening - E_{Cu} , v_{Cu} , $\sigma_{y Cu}$, b_{Cu} , Q_{Cu} , C_{Cu} , γ_{Cu}

■ Supercond. – Nb₃Sn ⇒ Elastic - E_{SC} , ν_{SC} ■ Filament Core - Sn / Porosities ⇒ Elastic - E_{FC} , ν_{FC}

 □ Geometrical parameters from Image analysis using ImageJ software
 □ Strand: Ø_{str}, Ø_{sFR}, Ø_{core}
 □ RVE: Ø_{sc}, Ø_{FC}, D_f, α_f

Model parameters identify by direct measurements & inverse identification

04/02/2019

Analyse multi-échelle de câbles supraconducteurs - G. Lenoir, P. Manil, F. Nunio

⇒ Finding the parameters which minimize the error between a model response and experimental data

Optimization process

- Iteratively generate a set of parameters
- Compare the responses with a least square error
- Choose the set of parameters which minimize the error

Genetic & gradient-based algorithms

INVERSE IDENTIFICATION RESULTS OF PIT

Comparison with the tensile tests used to identify the parameters

- Definition of the geometry and the materials parameters from the identification process
- 2 Numerical tests in the different directions
- Integration of stress and strain in the total volume
- Plot of stress-strain curve in the total volume on the aimed direction
- Extraction of the bi-linear model in the different directions 3 Copper (X) E_{Cu}, v_{Cu} $\sigma_{y Cu}, C_{Cu}, \gamma_{Cu}$ Core E_{FC} , v_{FC} (Υ) 300 Supercond. 250 E_{SC} , v_{SC} 200 σ (MPa) 051 NELCI \bigcirc E_{zz}^{eff} NELSU K^{ef} Z-dir 100 NELCO *eff*⁵⁰ $\sigma_{v zz}$ ε(-) NELBA 0,001 0.002 0.003 0.005 Homogenized mechanical properties (bi-linear model in each direction)

⇒ Comparison of the bi-metallic model response, detailed strand models & experimental data

0.2

0.3

0.4

0.1

0

ε(%)

0.5

SUMMARY

- GEOMETRIC MODEL
 - ► Predictable definition of the geometry of Rutherford cables considering bi-metallic model
 - → Robust and automated creation of the impregnation region
 - └→ Mechanical modelling of a **representative stack** of conductors

- MECHANICAL MODEL
 - \rightarrow Bi-metallic strand model based on RVE at the μ -scale
 - └→ Elasto-plastic behavior with **internal variables**
 - └→ Can be used for **predictable modeling** of cables

PERSPECTIVES

- Tensile tests at cryogenic temperature (on-going)
- Nano-indentation at cryogenic temperature
- Enrichment of the experimental database with transverse tests and copper data (on-going)
- Validation of model prediction on experimental tests at strand scale & cable (stack) scale
- Add initial residual stress to account for strand heat treatment (experimental data needed)
- Improve the behavior law
- CoCaSCOPE platform

Gilles Lenoir @ gilles.lenoir@cea.fr R Gilles_Lenoir

lrfu

saclay

SPECIAL THANKS TO DEN/DM2S/SEMT/DYN (V. FAUCHER, O. JAMOND, T. LAPORTE)

Analyse multi-échelle de câbles supraconducteurs

G. Lenoir, P. Manil, F. Nunio

CEA Paris-Saclay – IRFU, Université Paris-Saclay

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex, FRANCE Direction de la Recherche Fondamentale Institut de recherche sur les lois fondamentales de l'Univers Département d'Ingénierie des Systèmes Laboratoire de Conception, d'études et d'Avant-Projets

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019

□ Principle [Oliver 04]

- Mark (indentation) on the material surface realized with a tip (indenter)
- Load and displacement measured during indentation
- Contact stiffness and indenter properties
 - ⇒ local elastic modulus and nano-hardness of the material

□ Procedure

- MTS-XP nano-indenter (MSSMat CentraleSupélec) (Continuous/Dynamic Stiffness Measurement technique)
- Dimension: Imposed depth 200nm Indents size ≈1,4µm
- Indents grid for statistical results
- Transverse cross-section of strands

- Validation of each indents
 - Contact stiffness and elastic modulus with penetration depth curves
 - SEM observations
- → Surface preparation by manual and vibratory polishing of epoxy impregnated strand [Bajas 11]

ELASTIC PROPERTIES DATABASE IN COMMUNITY

Material	E (GPa)	Reference	E _{Nano-ind.}	
Copper	80	[Bajas 11]		
	108	[Scheuerlein 17]		
	116	[Alknes 16]		
	118	[Sugano 16]	120CPa	
	128-137	[Mitchell 05]	12907a	
Nb₃Sn	124	[Dylla 16]		
	127	[Hojo 06]		
	132	[Bussiere 80]		
	135-100	[Mitchell 05]		
	136	[Scheuerlein 15]		
	137	[Keller 67]		
	144	[Poirier 84]		
	150-65	[Bray 97]		
	165	[Easton 80]	171GPa	
	179-168	[West 79]		
Niobium	92	[Alknes 16]		
	103	[Sugano 15]		
	105-110	[Mitchell 05]	-125GPa	

- Differences in
 - Manufacturing process
 - Of materials
 - Of strands
 - Measured object
 - Complete strand
 - Filaments bundles (w/o matrix)
 - Single filament
 - Tapes (ex: Nb₃Sn layers/ductile substrate)
 - Single cristal
 - Measurement methods
 - Axial extensometer and load cell
 - Optical extensometer
 - Resonant Ultrasound Spectroscopy
 - Cristallographic orientation
 - Direct measurement vs Mixture laws
- Based on literature values

 $(E_{Nb}, single cristal properties, ASM International)$

Collaboration with ENSAM Châlons

(R. Rotinat, R. Moulart, L. Fouilland, C. Person)

Digital Image Correlation during an *in-situ* transversal compression test

Objective

- Quantify anisotropy
- Include additional data for behavior laws identification

Compression device

Compression device inside the interferometric microscope

122.0 - 250 - 250

Planeity analysis of a copper wire and a strand