

Convection naturelle du mélange air-vapeur dans une cavité carrée 2D en présence de la condensation

Présentation Club Cast3M 2017

Nan JIANG Encadrant : Etienne STUDER

CEA/DANS/DM2S/STMF/LATF

24 novembre 2017

www.cea.fr

Introduction

Modèle physique et analyse

Équations de contrôle Modèle bas-Mach Modèle de Boussinesq

Calcul numérique

Convections thermiques Convections thermo-solutales Application : mélange air-vapor

Conclusions and perspectives

Section 1

Introduction

Position du problème

FIGURE – Intégrité du Bâtiment réacteur en situation accidentelle

Pression dans l'enceinte ${\cal P}(t)$ dépend :

- de la source de vapeur
- du transport de la vapeur
- de la condensation en paroi

Forte disparité d'échelle :

- Écoulements dans le BR : 40×60 m
- Couches limites : qqs cm
- Film liquide : 0,1 à 0,2 mm

Challenge

les **outils de simulation CFD** utilisés pour la conception et les analyses de sûreté

Cavité carrée 2D

- Film liquide négligé
- Air : gaz parfait, $\gamma = 1, 4$
- Vapeur : gaz parfait, $\gamma = 1, 29$
- effet de couplage : inter-diffusion

Rappel

Qu'est-ce qui sont déjà faits en problème cavité carrée 2D?

- Cavité différentiellement chauffée 2D d'une gaz avec le modèle de Boussinesq (de Vahl Davis) et avec le modèle bas-Mach (Vierendeels)
- Solution thermosolutale 2D en utilisant le modèle de Boussinesq double-diffusif (Weaver)
- Solution thermosolutale 2D avec le modèle bas-Mach double-diffusif (Sun)

Modèle (physique) double-diffusif

- A l'origine de la simulation d'une solution diluée
- Hypothèse : petit gradient de concentration $\Rightarrow c_p$ constant
- Conservation des flux de chaleur non garantie sous un grand gradient de concentration

Section 2

Modèle physique et analyse

Interdiffusion

Équations dimensionnelles en forme conservative

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) &= 0 \\ \frac{\partial}{\partial t} (\rho Y_v) + \nabla \cdot (\rho Y_v \vec{u}) &= \nabla \cdot (\rho D \nabla Y_v) \\ \frac{\partial}{\partial t} (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) &= -\nabla p + \nabla \cdot \bar{\tau} + \rho \vec{g} \\ \frac{\partial}{\partial t} (\rho e_t) + \nabla \cdot (\rho h_t \vec{u}) &= \nabla \cdot (\lambda \nabla T) + \nabla \cdot (\bar{\tau} \vec{u}) + \rho \vec{g} \cdot \vec{u} \\ + \nabla \cdot \left(\sum_{i \in \{a,v\}} \rho D_i h_i \nabla Y_i\right) \end{aligned}$$
Loi de Fick

Équations dimensionnelles en forme conservative

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) &= 0\\ \frac{\partial}{\partial t} (\rho Y_v) + \nabla \cdot (\rho Y_v \vec{u}) &= \nabla \cdot (\rho D \nabla Y_v)\\ \frac{\partial}{\partial t} (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) &= -\nabla p + \nabla \cdot \bar{\tau} + \rho \vec{g}\\ \frac{\partial}{\partial t} \left(\begin{array}{c} \rho e_t \end{array} \right) + \nabla \cdot \left(\begin{array}{c} \rho h_t \ \vec{u} \end{array} \right) &= \nabla \cdot (\lambda \nabla T) + \nabla \cdot (\bar{\tau} \vec{u}) + \rho \vec{g} \cdot \vec{u}\\ + \nabla \cdot \left(\sum_{i \in \{a,v\}} \rho D_i h_i \nabla Y_i \right) \end{split}$$

 Loi de Fick

- ► Loi de Fourier
- Interdiffusion

Équations dimensionnelles en forme conservative

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) &= 0\\ \frac{\partial}{\partial t} (\rho Y_v) + \nabla \cdot (\rho Y_v \vec{u}) &= \nabla \cdot (\rho D \nabla Y_v)\\ \frac{\partial}{\partial t} (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) &= -\nabla p + \nabla \cdot \overline{\tau} + \rho \vec{g}\\ \frac{\partial}{\partial t} \left(\begin{array}{c} \rho e_t \end{array} \right) + \nabla \cdot \left(\begin{array}{c} \rho h_t \ \vec{u} \end{array} \right) &= \nabla \cdot (\lambda \nabla T) + \nabla \cdot (\overline{\tau} \vec{u}) + \rho \vec{g} \cdot \vec{u}\\ + \nabla \cdot \left(\sum_{i \in \{a,v\}} \rho D_i h_i \nabla Y_i \right) \end{split}$$

 $\blacktriangleright \text{ Loi de Fick} \end{split}$

- Loi de Fourier
- Interdiffusion -

Nombres adimensionnels

$$\theta = rac{T - T_0}{T_H - T_C}, \quad \xi = rac{Y_v - Y_{v,0}}{Y_{v,H} - Y_{v,C}}$$

 $s^* = s/s_0$ (·* omit dans la suite ...)

Nombre de Reynolds Nombre de Prandtl Nombre de Schmidt Facteurs non-Boussinesq de la température de la masse Nombre de Rayleigh Nombre de Froude Nombre de Mach $\begin{aligned} \mathbf{Re} &= (U_{\text{ref}} L_{\text{ref}}) / \nu_0 \\ \mathbf{Pr} &= \nu_0 / \alpha_0 \\ \mathbf{Sc} &= \nu_0 / D_0 \end{aligned}$

$$\begin{split} \varepsilon_T &= (T_H - T_C)/T_0\\ \varepsilon_m &= (r_H - r_C)/r_0\\ \text{Ra} &= [g(\varepsilon_T + \varepsilon_m)L_{\text{ref}}^3]/(\nu_0\alpha_0)\\ \text{Fr} &= U_{\text{ref}}/\sqrt{g_0L_{\text{ref}}}\\ \text{Ma} &= U_{\text{ref}}/c_0 \end{split}$$

$$U_{\text{ref}} = \sqrt{(\varepsilon_T + \varepsilon_m)gL_{\text{ref}}}$$
 et $c_0 = \sqrt{\gamma_0 \frac{p_0}{\rho_0}}$

Т

Ir

Équations adimensionnelles en forme non-conservative

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$

$$\rho \frac{\partial \xi}{\partial t} + \rho \vec{u} \cdot \nabla \xi = \frac{1}{\operatorname{Sc} \cdot \operatorname{Re}} \nabla \cdot (\rho D \nabla \xi)$$

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho \vec{u} \cdot \nabla \vec{u} = -\frac{1}{\gamma_0 \operatorname{Ma}^2} \nabla p + \frac{1}{\operatorname{Re}} \nabla \cdot \bar{\tau} + \frac{1}{\operatorname{Fr}} \rho \vec{g}^*$$

$$\varepsilon_T \rho c_p \left(\frac{\partial \theta}{\partial t} + \vec{u} \cdot \nabla \theta\right) = \frac{\gamma_0 - 1}{\gamma_0} \left(\frac{\partial p}{\partial t} + \vec{u} \cdot \nabla p\right)$$
Formes liés à la pression
forme en facteur Ma²

$$+ \varepsilon_T \frac{1}{\operatorname{Re} \cdot \operatorname{Pr}} \nabla \cdot (\lambda \nabla \theta)$$

$$+ (\gamma_0 - 1) \frac{\operatorname{Ma}^2}{\operatorname{Re}} \bar{\tau} : \nabla \vec{u}$$

$$+ \frac{\Delta c_p}{c_{p,0}} \frac{1}{\operatorname{Re} \cdot \operatorname{Sc}} \rho D \varepsilon_T \nabla \theta \cdot \nabla \xi$$

Hypothèse du bas nombre de Mach

- Nombre de Mach : $Ma = U_{ref}/c_0$
- Convection naturelle : vitesse environ 1 m/s
- Vitesse du son : $c_0 \simeq$ 340 m/s
- Résultat : $Ma^2 \ll 1$

Par analyse asymptotique, on sépare la pression adimensionnelle en trois parties :

$$p = \frac{P(t)}{P(t)} + \left(\frac{p_g(t, \vec{x})}{p_d(t, \vec{x})} \right) \operatorname{Ma}^2,$$

where

$$P(t)$$

$$p_g(t, \vec{x})$$

$$p_d(t, \vec{x})$$

la pression thermodynamique adimensionnelle la pression hydrostatique $p_g = \frac{\gamma_0}{\text{Fr}} \vec{g}^* \cdot \vec{x}$ la pression d'entraînement

Modèle bas-Mach (numérique)

$$\begin{aligned} -\nabla \cdot \vec{u} &= \frac{1}{\rho} \left(\frac{\partial \rho}{\partial t} + \vec{u} \cdot \nabla \rho \right) \\ \rho \frac{\partial \vec{u}}{\partial t} + \rho \vec{u} \cdot \nabla \vec{u} &= -\frac{1}{\gamma_0} \nabla p_d + \frac{1}{\mathsf{Re}} \nabla \cdot \bar{\tau} + \frac{1}{\mathsf{Fr}} (\rho - 1) \vec{g}^* \\ \rho \frac{\partial \xi}{\partial t} + \rho \vec{u} \cdot \nabla \xi &= \frac{1}{\mathsf{Re} \cdot \mathsf{Sc}} \nabla \cdot (\rho D \nabla \xi) \\ \rho \varepsilon_T c_p \left(\frac{\partial \theta}{\partial t} + \vec{u} \cdot \nabla \theta \right) &= \frac{\gamma_0 - 1}{\gamma_0} \frac{dP}{dt} + \varepsilon_T \frac{1}{\mathsf{Re} \cdot \mathsf{Pr}} \nabla \cdot (\lambda \nabla \theta) \\ &+ \frac{\Delta c_p}{c_{p,0}} \frac{1}{\mathsf{Re} \cdot \mathsf{Sc}} \varepsilon_T \nabla \theta \cdot \nabla \xi \end{aligned}$$

et puisque la masse de l'air (incondensable) conserve,

$$P = \int_{\Omega} \frac{(1 - Y_{v,\text{ini}})}{(1 + \varepsilon_T \theta_{\text{ini}})(1 + \varepsilon_m \xi_{\text{ini}})} \, dV / \int_{\Omega} \left(\frac{1 - Y_v}{rT}\right) \, dV$$

Conditions aux bords

Vitesse de Stefan aux bords

- Pas de flux de l'air
- Propriétés constantes du gaz (T et Y_v)

$$\rho u Y_a - \rho D \frac{\partial Y_a}{\partial x} = 0 \quad \Rightarrow \quad u = -\frac{D}{1 - Y_v} \frac{\partial Y_v}{\partial x}$$

Modèle de Boussinesq (numérique)

- Gradients petits : $\varepsilon_T \simeq 0$ et $\varepsilon_m \simeq 0$
- Variation de la pression thermodynamique négligeable
- Variations de ρ et de c_p négligeables
- Inter-diffusion effective négligeable

$$\nabla \cdot \vec{u} = 0$$

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} = -\nabla p_d + \frac{1}{\mathsf{Re}} \nabla \cdot \bar{\tau} + (\rho - 1) \vec{g}^*$$

$$\frac{\partial \xi}{\partial t} + \vec{u} \cdot \nabla \xi = \frac{1}{\mathsf{Re} \cdot \mathsf{Sc}} \nabla^2 \xi$$

$$\frac{\partial \theta}{\partial t} + \vec{u} \cdot \nabla \theta = \frac{1}{\mathsf{Re} \cdot \mathsf{Pr}} \nabla^2 \theta$$

• Anti-symétrie : flottabilité $(\rho - 1)\vec{g}^*$

Analogie des transferts de chaleur et de masse

Nombres de Nusselt et de Sherwood

$$\mathsf{Nu} = \frac{1}{\mathsf{Re} \cdot \mathsf{Pr}} \frac{\partial \theta}{\partial x} + \frac{\Delta c_p}{c_{p,0}} \frac{\rho(1 + \varepsilon_T \theta)}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho c_p (1 + \varepsilon_T \theta) u}{\rho c_p (1 + \varepsilon_T \theta) u}$$

- Diffusion de Fourier Nu_d
- Inter-diffusion Nu_i
- Convection (vitesse de Stefan) Nu_c

$$\mathsf{Sh} = \frac{\rho}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho \xi u}{\rho \xi u}$$

- Diffusion de Fick Sh_d
- Convection (vitesse de Stefan) Sh_c

$$\mathsf{Nu} = \frac{1}{\mathsf{Re} \cdot \mathsf{Pr}} \frac{\partial \theta}{\partial x} + \frac{\Delta c_p}{c_{p,0}} \frac{\rho(1 + \varepsilon_T \theta)}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho c_p(1 + \varepsilon_T \theta)u}{\varepsilon_p(1 + \varepsilon_T \theta)u}$$

- Diffusion de Fourier Nu_d
- Inter-diffusion Nu_i -
- Convection (vitesse de Stefan) Nu_c

$$\mathsf{Sh} = \frac{\rho}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho \xi u}{\rho \xi u}$$

- Diffusion de Fick Sh_d
- Convection (vitesse de Stefan) Sh_c

$$\mathsf{Nu} = \frac{1}{\mathsf{Re} \cdot \mathsf{Pr}} \frac{\partial \theta}{\partial x} + \frac{\Delta c_p}{c_{p,0}} \frac{\rho(1 + \varepsilon_T \theta)}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho c_p(1 + \varepsilon_T \theta)u}{\int}$$

$$\Rightarrow \mathsf{Diffusion} \mathsf{de} \mathsf{Fourier} \mathsf{Nu}_d$$

- Inter-diffusion Nu_i
- Convection (vitesse de Stefan) Nu_c -

$$\mathsf{Sh} = \frac{\rho}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho \xi u}{\rho \xi u}$$

- Diffusion de Fick Sh_d
- Convection (vitesse de Stefan) Sh_c

$$\mathsf{Nu} = \frac{1}{\mathsf{Re} \cdot \mathsf{Pr}} \frac{\partial \theta}{\partial x} + \frac{\Delta c_p}{c_{p,0}} \frac{\rho(1 + \varepsilon_T \theta)}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho c_p(1 + \varepsilon_T \theta)u}{\varepsilon_p(1 + \varepsilon_T \theta)u}$$

- Diffusion de Fourier Nu_d
- Inter-diffusion Nu_i
- ► Convection (vitesse de Stefan) Nu_c

$$Sh = \frac{\rho}{\operatorname{Re} \cdot \operatorname{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho \xi u}{\rho \xi u}$$

- Diffusion de Fick Sh_d —
- Convection (vitesse de Stefan) Sh_c

$$\mathsf{Nu} = \frac{1}{\mathsf{Re} \cdot \mathsf{Pr}} \frac{\partial \theta}{\partial x} + \frac{\Delta c_p}{c_{p,0}} \frac{\rho(1 + \varepsilon_T \theta)}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho c_p(1 + \varepsilon_T \theta)u}{\varepsilon_p(1 + \varepsilon_T \theta)u}$$

- Diffusion de Fourier Nu_d
- Inter-diffusion Nu_i
- ► Convection (vitesse de Stefan) Nu_c

$$\mathsf{Sh} = \frac{\rho}{\mathsf{Re} \cdot \mathsf{Sc}} \frac{\partial \xi}{\partial x} + \frac{\rho \xi u}{\uparrow}$$

- Diffusion de Fick Sh_d
- Convection (vitesse de Stefan) Sh_c -

Section 3

Calcul numérique

- Plateforme : Cast3M, outil : NLIN
- Méthode des éléments finis

FIGURE – QUAF pour u, v, θ, ξ **FIGURE** – LINM pour p_d

- Termes non-linéaires : résolus par itération interne
- Solutions stationnaires : obtenues par comportement asymptotique des calculs transitoires

FIGURE – Modèle de validations sans inter-diffusion

Critères de validation

- Cohérence avec les références
- Conservation de la masse et de la chaleur (les flux total_{gauche} = total_{droite} en stationnaire)

Approximation de Boussinesq Résultat cavité 2D

FIGURE – Distribution de θ , Ra = 10^3 **FIGURE** – Distribution de θ , Ra = 10^6

- ► $Ra = 10^3$: diffusion dominante, $Ra = 10^6$: convection dominante
- Épaisseurs des couches limites thermiques
- Anti-symétrie des champs de température

Nu pour les différents Ra

	Nu
10×10	4,5362
16×16	4,5265
24×24	4,5235
40×40	4,5220
64×64	4,5217
102×102	4,5217

 $\label{eq:TABLE} \begin{array}{l} \mbox{TABLE} - \mbox{Vérification de sensitivité} \\ \mbox{maillage : } \mbox{Ra} = 10^5 \end{array}$

	Nu	Numax	Nu _{min}
$Ra = 10^{3}$			
de Vahl Davis	1,118	1,505	0,692
16×16	1,118	1,506	0,691
$Ra = 10^4$			
de Vahl Davis	2,243	3.528	0,586
40×40	2,245	3.531	0,585
$Ra = 10^{5}$			
de Vahl Davis	4,519	7,717	0,729
102×102	4,522	7,720	0,728
$Ra = 10^{6}$			
de Vahl Davis	8,800	17,925	0,989
166×166	8,825	17,536	0,980

TABLE – Nombres de Nusselt comparés avec les résultats de Vahl Davis

- Modèle non sensitif au maillage
- Modèle validé en cas de la convection thermique Boussinesq 2D

DE LA RECHERCHE À C'HOUSTRI

Approximation bas-Mach Résultat cavité 2D

FIGURE – θ en Ra = 10⁶ : gauche - $\varepsilon_T = 3.36 \times 10^{-6}$, droite - $\varepsilon_T = 1, 2$

Grand gradient : non antisymétrique

	Vierendeels	Résultat présent
Type de maillage	2048×2048	100×100
$\overline{Nu}(h)$	8,8598	8,8602
$\overline{Nu}(c)$	8,8598	8,8609
P/P_0	0,85634	0,85634

Comparaison de la courbe Nu

- petit gradient : validé avec de Vahl Davis
- grand gradient : validé avec Vierendeels

DE LA RECHERDRE À UNIQUETRI

Solution thermo-solutale 2D : Boussinesq

Weaver Modèle de Boussinesq, pas de terme inter-diffusion : $\varepsilon_T = 0,125$ et $\varepsilon_m = -0,273$

Ra	Sc	Pr	M_a	M_v	γ_a	γ_v
10^5	1,0	1,0	20 g/mol	100 g/mol	1,4	1,4
$Y_{v,C}$	$Y_{v,H}$	T_C	T_H	ξ_{ini}	$ heta_{ini}$	
0,0	0,3	10 °C	47,7 °C	0,0	0,0	

 - 5	008	-0
٥.	49	
٥.	44	
٥.	40	
٥.	25	
٥.	20	
٥.	25	
٥.	21	
٥.	16	
٥.	11	
6.	258	-02
1.	59E-	-02
-2.	178	-02
-7.	948	-02
-0.	13	
40.	17	
-0.	22	
	22	
	22	
-0.	37	
-0.	41	
	44	

FRACTION DE VAPEUR NORMALIS

TEMPERATURE

FIGURE – Champ θ

FIGURE – Champ ξ

		Weaver	Double-diffusif	Avec interdiff.
	\overline{Nu}_d	3.97	3.91	4,46
	\overline{Nu}_c	14,45-		12,40
gauche	\overline{Nu}_i	—	-	-9,12
	Nu	18,42	16,36	7,74
	\overline{Sh}_d	3.97	3.95	3.93
	\overline{Nu}_d	5,69	5,57	4,83
	\overline{Nu}_c	12,81-		14,28
droite	\overline{Nu}_i	—	—	-11,45
	Nu	18,51	19,90	7,66
	\overline{Sh}_d	5,69	5,61	5,59

- \blacktriangleright \bigtriangleup Erreurs dans les flux de chaleur de Weaver
- Double-diffusif : Nu non conservatif
- Influence de l'inter-diffusion sur flux diffusif (+12% / -13%)
- ▶ Flux d'inter-diffusion négatif (car M_v > M_a) important
- Conservation des flux de chaleur nécessairement avec inter-diffusion

		Weaver	Double-diffusif	Avec interdiff.
	\overline{Nu}_d	3.97	3.91	4,46
	\overline{Nu}_c	14,45	12,45	12,40
gauche	\overline{Nu}_i	_ `	\	-9,12
	Nu	18,42		7,74
	\overline{Sh}_d	3.97	3.95	3.93
	\overline{Nu}_d	5,69	5,57	4,83
	\overline{Nu}_c	12,81	+ 14,34	14,28
droite	\overline{Nu}_i	—	\ _	-11,45
	Nu	18,51	19,90	7,66
	\overline{Sh}_d	5,69	5,61	5,59

- \blacktriangleright \bigtriangleup Erreurs dans les flux de chaleur de Weaver
- Double-diffusif : Nu non conservatif
- Influence de l'inter-diffusion sur flux diffusif (+12% / -13%)
- ▶ Flux d'inter-diffusion négatif (car M_v > M_a) important
- Conservation des flux de chaleur nécessairement avec inter-diffusion

		Weaver	Double-diffusif	Avec interdiff.
	\overline{Nu}_d	3.97	3.91	△ 4,46
	\overline{Nu}_c	14,45	12,45	12,40
gauche	\overline{Nu}_i	_ `	\	-9,12
	Nu	18,42	-16,36	7,74
	\overline{Sh}_d	3.97	3.95	3.93
	\overline{Nu}_d	5,69	5,57	△ 4,83
	\overline{Nu}_c	12,81	⁺ 14,34	14,28
droite	\overline{Nu}_i	—	\ _	-11,45
	Nu	18,51	19,90	7,66
	\overline{Sh}_d	5,69	5,61	5,59

- ► △ Erreurs dans les flux de chaleur de Weaver
- Double-diffusif : Nu non conservatif
- Influence de l'inter-diffusion sur flux diffusif (+12% / -13%)
- Flux d'inter-diffusion négatif (car $M_v > M_a$) important
- Conservation des flux de chaleur nécessairement avec inter-diffusion

		Weaver	Double-diffusif	Avec interdiff.
	\overline{Nu}_d	3.97	3.91	4,46
	\overline{Nu}_c	14,45	12,45	12,40
gauche	\overline{Nu}_i	_ `	\ _	△ -9,12
	Nu	18,42	-16,36	7,74
	\overline{Sh}_d	3.97	3.95	3.93
	\overline{Nu}_d	5,69	5,57	4,83
	\overline{Nu}_c	12,81	⁺ 14,34	14,28
droite	\overline{Nu}_i	—	\ _	△ -11,45
	Nu	18,51	19,90	7,66
	\overline{Sh}_d	5,69	5,61	5,59

- ► △ Erreurs dans les flux de chaleur de Weaver
- Double-diffusif : Nu non conservatif
- Influence de l'inter-diffusion sur flux diffusif (+12% / -13%)
- Flux d'inter-diffusion négatif (car $M_v > M_a$) important
- Conservation des flux de chaleur nécessairement avec inter-diffusion

		Weaver	Double-diffusif	Avec interdiff.
	\overline{Nu}_d	3.97	3.91	4,46
	\overline{Nu}_c	14,45<	12,45	12,40
gauche	\overline{Nu}_i		\ _	△ -9,12
	Nu	18,42	-16,36	7,74
	\overline{Sh}_d	3.97	3.95	3.93
	\overline{Nu}_d	5,69	5,57	4,83
	\overline{Nu}_c	12,81↔	⁺ 14,34	14,28
droite	\overline{Nu}_i	—	\ _	🛆 -11,45
	Nu	18,51	19,90	7,66
	\overline{Sh}_d	5,69	5,61	5,59

- ► △ Erreurs dans les flux de chaleur de Weaver
- Double-diffusif : Nu non conservatif
- ► Influence de l'inter-diffusion sur flux diffusif (+12% / -13%)
- ► Flux d'inter-diffusion négatif (car M_v > M_a) important
- Conservation des flux de chaleur nécessairement avec inter-diffusion

Solution 2D thermo-solutale : bas-Mach

Sun modèle bas-Mach, pas d'inter-diffusion, définition du Nusselt convectif non physique : $Nu_c = \rho c_p (1 \neq \varepsilon_T \theta) u$, $\varepsilon_T = 0, 2$ et $\varepsilon_m = 0, 2$

Ra	Sc	Pr	M_a	M_v	γ_a	γ_v
$5,\!63 imes10^6$	0,71	0,71	29 g/mol	7,25 g/mol	1,4	1,4
$Y_{v,C}$	$Y_{v,H}$	T_C	T_H	ξini	$ heta_{ini}$	
0,0	0,074	288 K	352 K	-0,5	-0,5	

		Sun	Sans interdiff.	Avec interdiff.
NILL	gauche	16.24	16,60	35,52
INU	droite	10,34	16,23	35,54
	gauche	10 /0	18,40	18,41
50	droite	10,40	18,40	18,41
P		1,255	1,256	1,262

Solution thermosolutale 2D Mélange air-vapor

Ra	Sc	Pr	M_a	M_v	γ_a
10 ⁶	0,71	0,71	29 g/mol	18 g/mol	1,4
$Y_{v,C}$	$Y_{v,H}$	T_C	T_H	ξini	$ heta_{ini}$
0,0	0,3	10 °C	0° 08	0,5	0,5

$\varepsilon_T = 0,220$ et $\varepsilon_m = 0,168$

 $\begin{array}{ll} \mbox{référence} & \gamma_v = 1,4 \mbox{ double-diffusif} \\ \mbox{interdiff.} & \gamma_v = 1,4 \mbox{ avec inter-diffusion} \\ \mbox{var. } \gamma & \gamma_v = 1,29 \mbox{ double-diffusif} \\ \gamma \mbox{ + int. } & \gamma_v = 1,29 \mbox{ avec inter-diffusion} \end{array}$

FIGURE – θ , γ + int.

FIGURE – ξ , γ + int.

	gauche			droite		
	\overline{Nu}_d	\overline{Nu}_c	\overline{Nu}_i	\overline{Nu}_d	\overline{Nu}_c	\overline{Nu}_i
référence	5,87	10,65		7,86	7,25	
interdiff.	5,53	10,65	3.86	8,34	7,25	4,41

Discusion

- P : différence très petite (+0,15%)
- ► Sh_d, Sh_c : pas de différence en 3 chiffres effectifs
- Sh : conservatif dans tous les deux cas
- Nu_d: différence visible (-5,8% / +6,1%), influence sur le champ de température
- ► Nu_c : pas de différence en 4 chiffres effectifs
- Nu_i: non négligeable (19% / 22% du Nu total)
- ► Nu : non conservatif (référence : 16,52 / 15,11) v.s. conservative (interdiff. : 20,04 / 20,00)

	gauche			droite		
	\overline{Nu}_d	\overline{Nu}_c	\overline{Nu}_i	\overline{Nu}_d	\overline{Nu}_c	\overline{Nu}_i
référence	5,87	10,65	—	7,86	7,25	
var. γ	5,82	11,16	—	7,87	6,84	

Discusion

- P : pas de différence en 3 chiffres effectifs
- ► Sh_d, Sh_c : pas de différence en 3 chiffres effectifs
- Sh : conservative dans tous les deux cas
- ► Nu_d : différence petite (-0,85% / +0,13%)
- ► Nu_c : différence visible (+4,8% / -5,7%)
- Nu : non conservatif (reference : 16,52 / 15,11 ; var. γ : 16,99 / 14,71)

	gauche			droite		
	\overline{Nu}_d	\overline{Nu}_c	\overline{Nu}_i	\overline{Nu}_d	\overline{Nu}_c	\overline{Nu}_i
interdiff.	5,53	10,65	3.86	8,34	7,25	4,41
γ + int.	5,27	11,17	6,25	8,66	6,85	7,13

Discusion

- P : différence très petite (+0,15%, +0,30% à la référence)
- ► Sh_d, Sh_c : pas de différence en 3 chiffres effectifs
- ► Sh : conservative dans tous les deux cas
- \overline{Nu}_d : différence visible (-4,7% / +3.8%)
- ► Nu_c : différence visible (+4,9% / -5,5%)
- ► Nu_i : différence importante (+62% / +62%)
- Nu : conservatif (interdiff. : 20,04 / 20,00 ; γ + int. : 22,70 / 22,62)

Section 4

Conclusions and perspectives

- On a mis en place sur Cast3M le modèle bas-Mach avec l'inter-diffusion et la variation de l'indice adiabatique pour calculer l'écoulement d'un mélange air-vapeur dans une cavité carrée 2D et
 - les cas thermiques sont validés par les résultats de Vahl Davis et de Vierendeels
 - les cas thermosolutaux sont comparés avec les résultats de Weaver et de Sun
- On conclut des cas du mélange air-vapeur en état stationnaire que
 - l'inter-diffusion n'est pas négligeable et elle est nécessaire à compter pour avoir la conservation de l'énergie
 - ► l'inter-diffusion a une influence sur le transfert de chaleur
 - γ a une influence surtout sur le flux de chaleur inter-diffusion
- On pourrait aussi prolonger cette étude par
 - rajouter la variation des coefficients μ , λ et D
 - rajouter les effets de Soret et de Dufour

Merci pour votre attention !

References

[VahlDavis : 1983] DE VAHL DAVIS, G. Natural Convection in a Square Cavity : A Comparison Exercise. International Journal for Numerical Methods in Fluids. 3 :227-248, 1983

[Paillere : 2005] PAILLERE, H. — VIERENDEELS, J. ET AL. Modelling of Natural Convection Flows with Large Temperature Differences : A Benchmark Problem for Low Mach Number Solvers. Part 2, Contributions to the June 2004 conference. ESAIM : Mathematical Modelling and Numerical Analysis. 39(3) :617-621, 2005

[Sun : 2010] SUN, H. ET AL. *Transient double-diffusive convection in an enclosure with large density variations* Int. J. Heat Mass Transfer. 53 :615-625, 2010

[Weaver : 1991] WEAVER, J. A. — VISKANTA, R. Natural convection due to horizontal temperature and concentration gradients — 1, Variable thermophysical property effects. Int. J. Heat Mass Transfer. 34(12) :3107-3120, 1991

Coupling of heat and mass transfers

inter-diffusion

$$\sum_{i} \rho_{i} h_{i} \vec{u}_{i} = \sum_{i} \left(\vec{u} - \frac{1}{Y_{i}} D_{i} \nabla Y_{i} \right) = \rho h \vec{u} - \sum_{i} \rho D_{i} h_{i} \nabla Y_{i}$$

variation of c_p

$$\frac{\partial}{\partial t}(\rho e) + \nabla \cdot (\rho h \vec{u}) = \left(\frac{\partial c_p}{\partial t} + \vec{u} \cdot \nabla c_p\right) T + c_p \left(\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T\right) - \frac{\partial p}{\partial t}$$
$$\left(\frac{\partial c_p}{\partial t} + \vec{u} \cdot \nabla c_p\right) T = \left(\frac{\partial Y_v}{\partial t} + \vec{u} \cdot \nabla Y_v\right) (c_{p,v} - c_{p,a}) T = \nabla \cdot (\rho D \nabla Y_v)$$

Asymptotic analysis (low Mach number)

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho \vec{u} \cdot \nabla \vec{u} = - \frac{1}{\gamma_0 \mathsf{Ma}^2} \nabla p + \frac{1}{\mathsf{Re}} \nabla \cdot \bar{\tau} + \frac{1}{\mathsf{Fr}} \rho \vec{g}^*$$

Let

$$p = p_0 + p_1 \mathsf{Ma}^2 + O(\mathsf{Ma}^4),$$

so that

$$-\frac{1}{\gamma}\nabla p_0 = 0, \, \forall \vec{x} \in \Omega.$$

We separate the dimensionless pressure into three parts :

$$p = \frac{P(t)}{P(t)} + \left(\frac{p_g(t, \vec{x})}{p_d(t, \vec{x})} \right) \operatorname{Ma}^2,$$

where

P(t)the dimensionless thermodynamic pressure $p_g(t, \vec{x})$ the gravity pressure $p_g = \frac{\gamma_0}{\mathsf{Fr}} \vec{g}^* \cdot \vec{x}$ $p_d(t, \vec{x})$ the driving pressure

DE LA RECHERDRE À UNIQUETR

low-Mach model at small differences

•
$$\varepsilon_T \to 0$$
 and $\varepsilon_m \to 0$

$$ho \rightarrow 1 \text{ and } c_p \rightarrow 1$$

Several terms are negligible

$$\begin{split} -\nabla \cdot \vec{u} &= \left[\frac{1}{\rho} \left(\frac{\partial \rho}{\partial t} + \vec{u} \cdot \nabla \rho \right) \right] \\ \rho \left[\frac{\partial \vec{u}}{\partial t} + \rho \vec{u} \cdot \nabla \vec{u} = -\frac{1}{\gamma_0} \nabla p_d + \frac{1}{\mathsf{Re}} \nabla \cdot \bar{\tau} + \frac{1}{\mathsf{Fr}} (\rho - 1) \vec{g}^* \right] \\ \rho \left[\frac{\partial \xi}{\partial t} + \rho \vec{u} \cdot \nabla \xi \right] &= \left[\frac{1}{\mathsf{Re} \cdot \mathsf{Sc}} \nabla \cdot (\rho D \nabla \xi) \right] \\ \rho \left[\varepsilon_T c_p \left(\frac{\partial \theta}{\partial t} + \vec{u} \cdot \nabla \theta \right) \right] &= \left[\frac{\gamma_0 - 1}{\gamma_0} \frac{dP}{dt} \right] + \varepsilon_T \frac{1}{\mathsf{Re} \cdot \mathsf{Pr}} \nabla \cdot (\lambda \nabla \theta) \\ &+ \left[\frac{\Delta c_p}{c_{p,0}} \frac{1}{\mathsf{Re} \cdot \mathsf{Sc}} \varepsilon_T \nabla \theta \cdot \nabla \xi \right] \end{split}$$

Analogy of mass and heat transfer

$$\frac{\partial \xi}{\partial t} + \vec{u} \cdot \nabla \xi = \frac{1}{\operatorname{Re} \cdot \operatorname{Sc}} \nabla^2 \xi$$
$$\frac{\partial \theta}{\partial t} + \vec{u} \cdot \nabla \theta = \frac{1}{\operatorname{Re} \cdot \operatorname{Pr}} \nabla^2 \theta$$

Conditions

• $\Delta Y_v \simeq 0$ and Y_v not close to 1,

$$u = -D\frac{\Delta Y_v}{1 - Y_v}\frac{\partial \xi}{\partial x} \simeq 0$$

- Sc = Pr
- No coupling ($\xi = 0$ or $\theta = 0$)

Result

$$\xi_{\theta=0} = \theta_{\xi=0}$$

Résultat comparaison avec Weaver

		Weaver	Sans interdiff.	Avec interdiff.
left	\overline{Nu}_d	3.97	3.91	4,46
	\overline{Nu}_c	14,45	12,45	12,40
	\overline{Nu}_i			-9,12
	Nu	18,42	16,36	7,74
	\overline{Sh}_d	3.97	3.95	3.93
	\overline{Sh}_c	_	0,847	0,84
	Sh	3.97	4,79	4,78
right	\overline{Nu}_d	5,69	5,57	4,83
	\overline{Nu}_c	12,81	14,34	14,28
	\overline{Nu}_i	—		-11,45
	Nu	18,51	19,90	7,66
	\overline{Sh}_d	5,69	5,61	5,59
	\overline{Sh}_c	_	-0,84	-0,84
	Sh	5,69	4,77	4,75

Résultat de l'application

		référence	var. γ	interdiff.	γ + int.
	\overline{Nu}_d	5,87	5,82	5,53	5,27
	\overline{Nu}_c	10,65	11,16	10,65	11,17
	\overline{Nu}_i			3.86	6,25
gauche	Nu	16,52	16,99	20,04	22,70
	\overline{Sh}_d	4,57	4,57	4,57	4,57
	\overline{Sh}_c	0,95	0,95	0,95	0,95
	Sh	5,52	5,52	5,52	5,52
	\overline{Nu}_d	7,86	7,87	8,34	8,66
	\overline{Nu}_c	7,25	6,84	7,25	6,85
	\overline{Nu}_i			4,41	7,13
droite	Nu	15,11	14,71	20,00	22,62
	\overline{Sh}_d	6,47	6,47	6,48	6,47
	\overline{Sh}_c	-0,95	-0,95	-0,95	-0,95
	Sh	5,51	5,52	5,52	5,52
	P	0,668	0,668	0,669	0,670
-					