

Thermodynamic Aspects of Interaction Between Premixed Hydrogen Flame and Water Droplets

GAI Guodong Sergey KUDRIAKOV

DEN/DANS/DM2S/STMF/LATF

Saclay, France 24-11-2017

www.cea.fr

Contents

- ➤ Introduction
- Lumped-parameter Approach
- ➤ CREBCOM CFD model
- Conclusions and Perspectives

Introduction

- \checkmark The course of a serious accident
- \checkmark Spray system of the PWR
- \checkmark Interaction between flame and spray

www.cea.fr

CONTRACTOR THE COURSE OF A SEVERE ACCIDENT

We must estimate the consequences of an hydrogen explosion !!!

SPRAY SYSTEM OF THE PWR

Spray system (PWR 900 MWe)

<u>In order to:</u>

 $D_{32} \sim 500 \mu m$

- Limit the pressure inside the containment via steam condensation
- Capture the fission products to prevent radioactive release
- Mix gaseous species Source: [Foissac 2011]

The mixture can be ignited during the spray phase!!

1. Overpressure Mitigation

or, on the contrary,

2. Flame Acceleration

Source: [Wingerden 1995], [Gupta, 2014]

Investigation on *Thermodynamic* aspects of the interaction flame-spray, behind the flame front, with the *Lumped-parameter* and *CFD model*

Analysis of real *Experimental* works by applying the CREBCOM model with Evaporation process

www.cea.fr

Lumped-parameter Approach

- \checkmark Main hypothesis and definitions
- ✓ Governing equations
- ✓ Test cases

MAIN HYPOTHESIS AND DEFINITIONS

- Ideal gas mixture
- ➢ One irreversible chemical reaction $H_2 + \frac{1}{2}O_2 → H_2O$
- $\succ T_{ini} and P_{ini} \text{ constant, } m_0 \text{ change}$ with X_{H_2}
- > The system is *closed* and *adiabatic* Volume fraction of liquide phase: $\alpha = \frac{V_{liq}}{V_{tot}}$

$$\widetilde{m}_{0} = \widetilde{m}_{f} \quad \widetilde{m}_{f} = \sum_{j=1}^{4} n_{j}^{fin} M_{j} + m_{H_{2}0}^{liq \rightarrow vap}$$

$$\tilde{e}_0 = \tilde{e}_f$$

$$\tilde{e}_0 = \sum_i Y_i^{ini} h_i^0 + \int_0^{T_0} \left\{ \sum_i Y_i^{ini} c_{\nu,i}(T') \right\} dT' + Y_{H_20}^{liq} u_{H_20}^{liq}$$

SEVERAL CASES CONSIDERED

Case	P_{ini} (bar)	T_{ini}^{gas} (K)	T_{ini}^{liq} (K)	$X_{H_2}^{ini}$ (-)	$X_{H_2O}^{vap,ini}(-)$	α (-)
Ι	1.0134	300.0	-	[0.04, 0.75]	0.0	0.0
II	1.0134	300.0	298.15	[0.04, 0.75]	0.0	$[0.0, 2.0 \times 10^{-3}]$
III	1.0134	293.15	293.15	[0.04, 0.75]	0.0	$(2.0, 3.0, 4.0) \times 10^{-4}$
IV	2.4	393.15	293.15	[0.09, 0.30]	0.45	$(2.0, 3.0, 4.0) \times 10^{-4}$

Table: Initial conditions for different cases

- □ Case I: Comparison with CHEMKIN code
- □ Case II: Limiting liquid volume fraction (α_{lim})
- \Box Case III: Influence of liquid volume fraction (α)
- □ Case IV: « Accidental » initial conditions*

*Source: [Malet 2008]

CASE I: COMPARISON WITH CHEMKIN

Cea

CASE III: INFLUENCE OF LIQUID FRACTION

	$T_{max}(K)$	$P^*_{max}(bar)$
lpha=0	3022	8.72
$\alpha = 2 \times 10^{-4}$	2000	7.68
$\alpha = 3 \times 10^{-4}$	1710	7.29
$\alpha = 4 \times 10^{-4}$	1460	6.9

*Pressure for stoichiometric initial hydrogen-air mixture

Mitigation of the flame *Effective* depressurization effect

CREBCOM CFD model

- \checkmark Numerical model and main hypothesis
- ✓ Validation of the model and pressure transient
- ✓ Experimental investigation

www.cea.fr

NUMERICAL COMBUSTION MODEL

CREBCOM model:

 $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = 0$ Mass conservation: $\frac{\partial \rho Y_k}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u} Y_k) = \rho \dot{\omega}_k$ Species transport: $\frac{\partial \rho \vec{u}}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u} \otimes \vec{u} + P \mathbf{I}) = \rho \vec{g}$ Momentum conservation: Energy conservation: $\frac{\partial \rho e_t}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u} h_t) = \rho \vec{g} \cdot \vec{u} - \rho \sum_i \Delta h_{f,j} \dot{\omega}_j + S_{cr}$ $\dot{\omega}_{\xi} = \frac{K_0}{\Lambda x} \cdot \{ criterion \ function \} \}$ Combustion rate: $S_{cr} = +H(T - T_0)$ Thermal source term: Progress variable: $\xi(\vec{r},t) = \frac{Y_{H_2}(\vec{r},t) - Y_{H_2,ini}}{Y_{H_2,fin} - Y_{H_2,ini}} \begin{cases} \xi = 0 & \text{fresh gas} \\ \xi = 1 & \text{burnt gas} \end{cases}$

Source: [Efimenko 2001]

MAIN HYPOTHESIS OF EVAPORATION

Preliminary assumptions:

- Stationary droplets in fresh gas : $\vec{v}_{drop}^{u} = \mathbf{0}$
- No interaction between droplets and fresh gas
- Droplets evaporate *totally* and *immediately* across the flame if criteria satisfied
- Evaporation takes place in a *closed adiabatic* cell

Criteria for evaporation:

1.
$$\xi(\vec{r},t) = \frac{Y_{H_2}(\vec{r},t) - Y_{H_2,ini}}{Y_{H_2,fin} - Y_{H_2,ini}} > \xi_{threshold}$$

2. Sufficient volumetric internal energy for the complete evaporation of the liquid phase (heat-up of droplets and latent heat)

DE LA RECHERCHE À L'INDUSTRIE

PRESSURE TRANSIENT

Source: [Carlson 1973]

Fig. Important test cases

Test No.	X_{H_2} (dry)	Q_{spray} (l/s)	P_0 (atm)	P_{max} (atm)
4	12.0	0.0	1.0	1.97
5	12.0	4.7	1.0	1.36
7	16.0	0.0	1.0	3.32
8	16.0	4.6	1.0	1.94
10	12.0	0.0	1.5	3.67
11	12.0	4.5	1.5	2.7
12	16.0	0.0	1.5	4.76
13	16.0	4.5	1.5	3.13

Important heat loss

Mitigation effect of spray

Continuous spray and evaporation

Source: [Carlson 1973]

FLAME VELOCITY DETERMINATION

SIMULATION RESULTS

*Experimental geometry with 13 transducers of pressure

Suitable choices for H, K_0 and $\dot{\alpha}$ Effective mitigation effect of spray system

ENERGY BALANCE

DE LA RECHERCHE À L'INDUSTRIE

FLAME VELOCITY EVOLUTION

Heat loss : $\Delta v \approx 5 m/s$

Spray effect : $\Delta v \approx 10 \ m/s$

Flame Front Sketch

Conclusions and Perspectives

www.cea.fr

CONSLUSIONS AND PERSPECTIVES

HIGHTLIGHTS:

- The lumped-parameter and CFD code can give reliable results for isochore and adiabatic combustion, with or without water spray;
- The depressurization and mitigation effect of spray droplets is demonstrated, with increase of the liquid volume fraction;
- The transient evolution of pressure and flame velocity can be simulated by choosing suitable parameters for the combustion, heat loss and evaporation process.

PERSPECTIVES:

- ✤ A more sophisticated model for the parameter K₀ can be proposed, taking into account flame-spray interaction;
- A more sophisticated model for evaporation rate can be proposed, taking into account the diameter of droplets.

OPERATORS IN CAST3M

- DETO
- PRIM KONV PENT
- VARI CALLM CALMU
- MODELISER DOMA DIFF
- PROG CHPO EVOL

More *Miracles* with Cast3M...

[Carlson 1973] L.W.CARLSON, R.M.KNIGHT and J.O.HENRIE *Flame and detonation initiation and propagation in various hydrogen-air mixtures, with and without spray,* Atomics International Division Rockwell International. May 11, 1973.

[Foissac 2011] A. Foissac, J. Malet, M.R. Vetrano, J.M. Buchlin, S. Mimouni, F. Feuillebois, O. Simonin, *Droplet size and velocity measurements at the outlet of a hollow cone spray nozzle*, Trans Atomization and Spraysto deal with hydrogen hazards in large scale facilities. 21(11), pp. 893-905, 2011.

[Zhao 2011] H. Zhao, H.F. Liu, J.L. Xu and W.F. LI, *Experiment study of drop size distribution in the bag breakup regime*, Industrial and Engineering Chemistry Research, 50, pp. 9767-9773, 2011.

[Efimenko 2001] Efimenko A.A., Dorofeev S.B., *CREBCOM Code System For Description of Gaseous Combustion*, J.Numer.Methods Fluids 76, pp. 662-696, 2001.

[Gupta 2014] S. Gupta et al, *Hydrogen Combustion During Spray Operations Tests HD30 to HD35*, OECD-NEA THAI-2 Project, Report No.1501420-TR-HD-30-35, 2014.

[Kuznetsov 1999] M. Kuznetsov, V. Alekseev, A. Bezmelnitsyn, W. Breigung, S. Dorofeev, I. Matsukov, A. Veser, Yu. Yankin *Effect of Obstacle Geometry on Behavior of Turbulent Flames* Institut fur Kern-und Engergietechnik July, 1999.

[Dorofeev 2009] Dorofeev, S.B., *Hydrogen flames in tubes: Critical run-up distances* International Journal of Hydrogen Energy, 34, pp. 5832-5837, 2009.

[Malet 2008] J.Malet et al. *Sprays in Containment: Final Results of the SARNET Spray benchmark* Nuclear Engineering & design 25 Sept, 2008.

MESH EFFECT

1000		10(0000)	- 114 ()				
7	298	1.0	-	0.05	7.0	1700	-
8	298	1.0	298	0.05	7.0	1700	6.2×10^{-4}

*Experimental geometry with 13 transducers of pressure

DE LA RECHERCHE À L'INDUSTRIE

CFD MODEL VALIDATION

Mean values of pressure and temperature are calculated in CREBCOM

Initial conditions	Pressure	Gas temperature	Droplets temperature	Steam concentration	H ₂ combustion limit	Volume fraction of droplets
	1.0 atm	293.15 K	293.15 K	0.0	0.4-0.75	2×10^{-4}
Geometry : Ignition					ve error = $\frac{CRE}{creater}$	$\frac{BCOM - 0D}{0D} \times 10^{-1}$
Go param	od coinci eter code	dence with t for the asyn	he lumped- nptotic <i>P</i> an	d T		CEA Saclay PAGE 30

OSCILLATIONS IN PRESSURE EVOLUTION

 $6.75 T_{oscillation} = 0.2 s$

 $T_{osscillation} = 2.96 \times 10^{-2} s$

$$T_{acoustic \,wave} = \frac{2 \times L}{C_{sp}} \approx 3.1 \times 10^{-2} \, s$$

 $T_{oscillation} = T_{acoustic \, wave}$

The oscillations are due to the **propagation** of the **Acoustic Wave**

RUN-UP DISTANCE

Far from the *Run-up Distance Smooth tube* in Carlson's experiment

CASE 2: LIMITING VOLUME FRACTION

CASE 4 : « ACCIDENTAL » CONDITIONS

Accidental scenario:

Source: [Carlson 1973]

VOLUMETRIC ENERGY EVOLUTION

