

NUMERICAL IMPLEMENTATION OF THE ARBITRARY CRACK FRONT FOR THREE DIMENSIONAL PROBLEMS

EL KABIR Soliman¹, MOUTOU PITTI Rostand^{2,3}, DUBOIS Frederic¹, LAPUSTA Yuri⁴, RECHO Naman^{2,5},

¹Université de Limoges, Centre du génie Civil, GC2D, 19300 Egletons, France ²Université Clermont Auvergne, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France ³CENAREST, IRT, BP 14070, Libreville, Gabon ⁴SIGMA, Institut Pascal, 63171 Aubière, France ⁵EPF, Engineering school, 2 rue Fernand Sastre, Troyes, France

24/11/2017

Club Cast3M 2017 Paris 24 novembre 2017

Scientific context

□ Predicting the behavior of structures under mixed mode loading

Developing specific tools for three-dimensional configurations

Consider thickness effect under variable environments

□ Need for applications related to the inspection and diagnosis of structures

Scientific context

□ Part I : three dimensional contour integral generalizations

- Analytical formulation (J^{3D} and G_{θ}^{3D} -integral)
- Numerical implementation

Part II : mixed mode three dimensional contour integral

- Analytical formulation $(M_{\theta}^{3D}$ -integral)
- Mixed mode Numerical implementation
- Conclusions and outlooks

J-integral in 3D configurations

Rice's integral

$$J^{2D} = \int_{\Gamma} \left(W. n_1 - \left(\sigma_{ij}. n_j. u_{i,1} \right) \right). d\Gamma$$

The main advance of this form is the presence of an arbitrary crack front line enclosed by a 3D surface

J^{3D} and G_{θ}^{3D} -integral description

The J-integral formulation is based on the Noether's theorem application (Noether 1918) :

$$\delta L = \iint_{V} \int_{t} \delta W. dV. dt = 0$$
A Gauss-Ostrogradski transformation allows us writing the Lagrangian's invariance in the form:

$$\int_{S} \left(W. n_{k} - (\sigma_{ij}. n_{j}. u_{i,k}) \right). dS + \int_{V} \left(\sigma_{ij}. (\varepsilon_{ij})_{,k} - W_{,k} \right). dV = 0$$
the J^{3D} -integral is defined as below:

$$J^{3D} = \int_{S_{\Gamma_{out}}} \left(W. n_{1} - (\sigma_{ij}. n_{j}. u_{i,1}) \right). dS - \int_{S_{cr}} \sigma_{ij}. u_{i,1}. n_{j}. dS - \int_{V_{\Gamma_{out}}} \left(W. n_{1} - \sigma_{ij}. (\varepsilon_{ij})_{,1} \right). dV$$

$$(1)$$

$$G_{\theta} = \int_{V} \left(P_{kj}. \theta_{k,j} \right). n_{j}. dV + \int_{S_{CF}} \sigma_{ij}. u_{i,k}. n_{j}. \theta_{k}. dS - \int_{V_{\Gamma_{2}}} \left(W_{,k} - \sigma_{ij}. (\varepsilon_{ij})_{,k} \right). \theta_{k}. dV$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(3)$$

G(M) integral

 $\vec{\theta} = \vec{0}$ Definition of $\vec{\theta}$ around a close crown

$$\vec{\theta} = 0 \text{ on } S_{\Gamma_{out}}, \vec{\theta} = \frac{\vec{c}}{|\vec{c}|.dw} \text{ on } C \cap S_{\Gamma_{out}} \text{ and } \vec{\theta} = 0 \text{ on } S_{\Gamma_{in}}$$

The average energy release rate can be calculated with an integration of along the crack front line divided by the crack width

The finite element implementation is based on a Double Cantilever Beam loaded in an open mode.

Crack front line

Algorithm for crack growth process

We can shows the variations of the energy release rate versus R_c :

Numerical results validate the non-dependence of the integration domain with an average value of 30.3kJ/m²

Physical interpretation

Surface integration domains for the Bui's integral :

$$J_{Am} = \underbrace{\int_{\Gamma} \left(W. n_1 - \left(\sigma_{ij}. n_j. u_{i,1} \right) \right). d\Gamma}_{J^{2D}} - \int_{A(\Gamma)} \frac{d}{dx_3} \left(\sigma_{i3}. u_{i,1} \right). dA(\Gamma)$$

Integration domains

 $R_c = 22mm$ Integration domain size for 2D model

Physical interpretation

Surface integration domains for the Bui's integral :

$$J_{Am} = \int_{\Gamma} \left(W. n_1 - \left(\sigma_{ij}. n_j. u_{i,1} \right) \right) . d\Gamma - \int_{A(\Gamma)} \frac{d}{dx_3} \left(\sigma_{i3}. u_{i,1} \right) . dA(\Gamma)$$
$$J^{2D}$$

Comparison between J^{2D} and J^{3D} approaches

Crack front line

Layer	Average crack length (mm)	J^{3D}	J^{2D}	JA
1	61.8	42394	37646	30065
2	65	21687	31710	22148
3	67.4	14523	28034	19118
4	69	12025	25835	17417
5	69.8	11041	24835	16673

Using CAD software we can define our specimen as :

DCBVI specimen (a), two dimensional crack tip (b) and three-dimensional elliptical crack front (c)

Algorithm for crack growth process

Post traitement :

- ✓ Calcul de G à partir du l'intégrale G_teta_3D
- ✓ Vérification de l' indépendance du chemin d'intégration
- ✓ Tracer l'évolution de K1 le long du cfl

DCB Mesh with theta field : Typical FE meshes of the ½ half DCBVI specimen

Boundary conditions

La deformée(Castem)

Vue filiaire des segments

Scientific context

Part I : three dimensional contour integral generalizations

- Analytical formulation (J^{3D} and G^{3D}_{θ} -integral)
- Numerical implementation

Part II : mixed mode three dimensional contour integral

- Analytical formulation $(M_{\theta}^{3D}$ -integral)
- Mixed mode Numerical implementation
- Conclusions and outlooks

M^{3D} Integral

The M-integral formulation is based on the Noether's theorem application :

$$\delta L = \int_{V} \int_{t} \delta W. \, dV. \, dt = 0$$
A Gauss-Ostrogradski transformation allows us writing the Lagrangian's invariance in the form:

$$\int_{S} \left(W^{*}. n_{k} - \left(\frac{\partial W^{*}}{\partial u_{i,j}}. n_{j}. u_{i,k} \right) - \left(\frac{\partial W^{*}}{\partial v_{i,j}}. n_{j}. v_{i,k} \right) \right). \, dS$$

$$+ \int_{V} \left(\left(\frac{\partial W^{*}}{\partial u_{i,\alpha}}. \delta u_{i,k} \right)_{,\alpha} + \left(\frac{\partial W^{*}}{\partial v_{i,\alpha}}. \delta v_{i,k} \right)_{,\alpha} - W^{*}_{,k}(u) - W^{*}_{,k}(v) \right) \right). \, dV = 0$$

$$M^{3D}\text{-integral}$$

$$M^{3D} = \int_{S_{\Gamma_{1}}} \left(\sigma_{ij}^{v}. u_{i,j}. n_{k} - \frac{1}{2} \left(\sigma_{ij}^{v}. u_{i,k} + \sigma_{ij}^{u}. v_{i,k} \right). n_{j} \right). \, dS$$

$$+ \int_{S_{CF}} \left(\sigma_{ij}^{v}. u_{i,j}. n_{k} - \frac{1}{2} \left(\sigma_{ij}^{v}. u_{i,k} + \sigma_{ij}^{u}. v_{i,k} \right). n_{j} \right). \, dS$$

$$+ \frac{1}{2} \int_{V_{\Gamma_{1}}} \left(\left(\sigma_{ij}^{v}. (\varepsilon_{ij}^{u})_{,k} + \sigma_{ij}^{u}. (\varepsilon_{ij}^{v})_{,k} \right) - \left(\left(\sigma_{ij}^{v}. \varepsilon_{ij}^{u} \right)_{,k} + \left(\sigma_{ij}^{u}. \varepsilon_{ij}^{v} \right)_{,k} \right) \right). \, dV$$

$$= 21$$

M_{θ}^{3D} Integral

The finite element implementation is based on a Double Cantilever Beam loaded in an open mode.

We can shows the variations of the energy release rate versus R_c :

Numerical results validate the non-dependence of the integration domain with an average value.

Numerical results validate the non-dependence of the integration domain with an average value.

Conclusions and outlook

- Numerical development of the contour integral concept for 3D problems
 The generalization toward its G₀^{3D} and M₀^{3D} implementation form
 Several numerical applications are proposed
 Toward implementation three dimensional mixed mode crack problem
 Elliptical crack front
- □ Numerical development of the contour integral concept for 3D problems.
- Generalization of the local mechanical fields
- New integral taking into account climatic effect
- □ 3D fractures coupling hygrothermal with mechanics effects
- Coupled 3D fracture mechanic probabilistic methodology
- Confrontation FE / Experimental results