DE LA RECHERCHE À L'INDUSTRIE

A new structural behavior to perform efficient nonlinear SFR fuel bundle thermomechanical analysis

Atomic Energy Commission (CEA) DEN, DANS, DM2S, SEMT, Mechanics and Systems Simulation Laboratory (LM2S) F-91191, Gif sur Yvette, France

*Communication et Systèmes (CS-SI) Aerospace, Energy and Services BU 22 avenue Galilée, 92350 Le Plessis Robinson, France

B. LETURCQ, J.-B. MINNE*, F. DI PAOLA

CLUB CAST3M 2016

www.cea.fr

DE LA RECHERCHE À L'INDUSTRI

PHENIX SODIUM FAST REACTOR FUEL BUNDLE

Sodium flux through the bundle

DE LA RECHERCHE À L'INDUSTR

OBJECTIVE : FUEL BUNDLE BEHAVIOR PREDICTION

Phenomena

- Loadings : T°, Dose, FP gaz pressure
- Thermal expansion
- 。 Irradiation isotropic swelling
- Thermal creeping (low in normal conditions)
- 。 Irradiation creeping

Experimental results for severe irradiations

- Numerous contacts activated : wire vs pin or HT
- Pins swelling and creeping
- Pins helical bow
- Pins ovality after hard contacts (« phase 3 »)
- . Hot points if contact between claddings
- Potential cladding crack by thermal creeping
- Bumps on hexagonal box

2016 | PAGE 3

A NUMERICAL CHALLENGE

A multi-body problem

- 1 hexagonal box + 217 pins + 217 wires
- 7000 to 14000 contact areas
- Etc.

Materials are highly non linear

- Swelling
- Irradiation creeping
- Thermal creeping
- → T°, dose
 → T°, stress¹, dose
- \rightarrow T°, stress⁸, dose

Extreme precision required locally

Different scales to look at

- Contacts and helical bow
- Local damage by thermal creeping

assembly scale
cladding skin scale

A fully detailed mesh would

THE BUNDLE MODEL (LARGE SCALE)

Simplifications

- Wire tension neglected : fast relaxation
- UO2 pellet mechanical presence neglected : « soft contact with cladding»
- Cladding temperature and dose given by dedicated CEA codes

Hexagonal tube

Massive or Shell elements

Pins axial models

- Hollow beam model on the neutral fiber (TUYA element in Cast3M):
 - Stresses due to Internal pressure
 - Modified to access the diametre change

Contact and local pin model

. Modified barr element

THE EXTENDED BARR ELEMENT (LOCAL SCALE)

Connections : a new BARR element with strain localization

A 1D model to represent the 3D non linear pinching of a cladding portion under pressure

- On the base of a BARR element, enriched :
 - a) gap / contact function
 - b) internal pressure -> stress addition + ovality opposition
 - c) behavior : thermal elasticity + swelling + thermal & irradiation creepings
 - d) damage evaluation \rightarrow 3D strain tensor localization on the inner skin

F

THE EXTENDED BARR ELEMENT

PAGE 7

CEA | Novemb

ieu (un

THE EXTENDED BARR ELEMENT

Strain concentration at the hot point (going local)

- Free strain already known (everything but ovality)
- Strain concentration due to ovalisation only (stamping δ <0)
- δ is an internal variable of the barr , similar to plastification
- 2D strain tensor required for precision (+ pressure axial stress)

$$d\varepsilon_{\theta\theta}(R_i) = d\varepsilon_{\theta\theta}^{\text{libre}}(R_i) - \lambda_{\theta\theta}(\delta) \cdot \frac{d\delta}{R_e}$$
$$d\varepsilon_{zz}(R_i) = d\varepsilon_{zz}^{\text{libre}}(R_i) - \lambda_{zz}(\delta) \cdot \frac{d\delta}{R_e}$$

• $\lambda_{\theta\theta}(\delta)$ and $\lambda_{zz}(\delta)$ identified on an elastic detailed cladding crushing calculation

Complete behavior integration at the hot point only $ightarrow \sigma_{ heta heta}$, σ_{zz}

- Contact force in the barr (going back global)
 - Both local stresses computed $F_{barr} = \frac{S_{eq}}{k_{\theta\theta}} \left(\sigma_{\theta\theta} - \sigma_{\theta\theta}^{free} \right)$

• S_{eq} similar to a barr section, but non linear due to ovality change (stiffness decrease)

$$S_{eq}(\delta) = S_{eq}(0) \left(1 + S_1 \frac{\delta}{D_e} + S_2 \left(\frac{\delta}{D_e} \right)^2 \right)$$

• $k_{\theta\theta}(\delta)$: stress concentration factor, related to $\lambda_{\theta\theta}$ and λ_{zz}

$$\lambda_{\theta\theta} = k_{\theta\theta} - \nu k_{zz}$$
. $\lambda_{zz} = k_{zz} - \nu k_{\theta\theta}$. $\nu = 0,5$ (isochore

THE EXTENDED BARR ELEMENT Anti ovality effect of inside pressure $F_{barr} = \frac{S_{eq}}{k_{\theta\theta}} \left(\sigma_{\theta\theta} - \sigma_{\theta\theta}^{free} \right) - F_{CO}$ Absolutely not neglectable 180 160 Internal opposition force : 140 120 100 $F_{CO}(N)$ 80 60 $F_{CO} = -P.\,\delta.\,L_{eq(\delta)}$ 40

- The vertical extension of the ovality shape depends on δ (elastic characterisation)

20 0 -20

60

90 100 1100

$$L_{eq} = \frac{wire_pitch}{6} \left(L_0 + L_1 \frac{\delta}{R_e} \right)$$

Ρ>0 & δ>0

F_{barr}

• Non linear effect of pressure and creeping on the shape not taken into account

Ecrasement/De

THE EXTENDED BARR ELEMENT

BARR VALIDATION

1 of the Validation tests on a severe cladding pinching (Ref. = detailed 3D simulation)

+ Whole model validation on 3 PHENIX integral experiments \rightarrow OK

DE LA RECHERCHE À L'INDUSTRI

SIMPLIFIED BUNDLE LOADINGS

- **Inside sodium pressure:** Profil axial constant 4 bar -> 1,79 bar au sommet
- **Outside sodium pressure** : 1,85 bar bottom -> 1,66 bar top
- **FP pressure**: from 10 to 40 bar
- Matérials : 1515 Ti E variants and EM10(TH)

TYPICAL ASSEMBLY RESULTS AT THE END OF LIFE

	VDIA		OVAL		SIVM
a all all and a second s	< 2.13E-04		< 2.28E-04		< 5.83E+07
	> 4.35E-06		> 8.34E-06		> 2.78E+07
	2.12E-04		2.26E-04		5.81E+07
No. AN	2.02E-04	print and a	2.16E-04	(Internet)	5.66E+07
			2.05E-04		5.52E+07
and the	1.82E-04	and the second	1.95E-04		5.37E+07
	1.72E-04		1.84E-04		5.23E+07
	1.62E-04		1.74E-04		5.08E+07
The second s	1.52E-04	http://www.colum	1.63E-04	1	4.94E+07
	1.42E-04	Carl Brown C.	1.53E-04	and the second se	4.79E+07
	1.32E-04		1.42E-04	and the second	4.64E+07
	1.22E-04		1.32E-04	a contraction of the second	4.50E+07
altan.	1.12E-04		1.21E-04	940 - C.	4.35E+07
	1.02E-04		1.11E-04	Sec. 1	4.21E+07
	9.22E-05		1.01E-04	and the second	4.06E+07
	8.23E-05		9.02E-05	i de la companya de l	3.92E+07
	7.23E-05		7.97E-05	1	3.77E+07
	6.24E-05		6.93E-05	and the second	3.63E+07
	5.24E-05		5.88E-05	and the second	3.48E+07
	4.25E-05		4.84E-05	1	3.34E+07
	3.25E-05		3.79E-05	and the second	3.19E+07
	2.26E-05		2.75E-05	and the second	3.05E+07
	1.26E-05		1.70E-05	5 m m	2.90E+07
			-		
Δ Diametre (m) Ovality (m) $\sigma_{}$					
Von mises					
			×		PAGE 14
			V		

DE LA RECHERCHE À L'INDUSTR

TYPICAL RESULTS AT THE END OF LIFE

Gap indicator in the diagonal versus altitude (time animation)

Jeu avant phase 2 vs. hauteur a t = 0.00000E+00 s (0%)

DE LA RECHERCHE À L'INDUSTRIE

APPENDICES

Elastic 3D detailed calcuation + stiffness / pressure loading actualisations

Parametres S, $k_{\theta\theta}$, k_{zz} depending on crushing δ

$$S_{eq}(\delta) = S_0 \left(1 + a_1 \frac{\delta}{D_e} + a_2 \left(\frac{\delta}{D_e} \right)^2 \right) \qquad k_{\theta\theta}(\delta) = k_0 \left(1 + k_1 \frac{\delta}{D_e} + k_2 \left(\frac{\delta}{D_e} \right)^2 \right)$$

Counter-ovalisation force $F_{CO} = P. \delta. L_{eq} \qquad L_{eq} = \frac{wire_pitch}{6} \left(L_0 + L_1 \frac{\delta}{R_e} \right)$

Relation ovalisation / crushing

 $\omega \sim 1$, 6 × δ in 3D

GAP COMPUTATION (OPEN CONTACT)

- Géométrie à jeu ouvert

Sous l'effet combiné de la pression interne des gaz de fission, de la température et de l'irradiation, l'incrément de rayon externe est donné par : $dR_e = R_e d\varepsilon_{\theta\theta}^{\text{libre}}(R_e)$ avec $d\varepsilon_{\theta\theta}^{\text{libre}}(R_e) = d\varepsilon_{\theta\theta}^e(R_e) + d\varepsilon_{\theta\theta}^{fl}\left(\sigma_{eq}(R_e)\right) + d\varepsilon^{th} + d\varepsilon^g$

L'état de contrainte est imposé par la pression interne, supposée uniforme dans la gaine fermée à ses extrémités (effet de fond) :

$$\sigma_{rr}(r) = \frac{PR_i^2}{R_e^2 - R_i^2} \left(1 - \left(\frac{R_e}{r}\right)^2 \right) \qquad \sigma_{\theta\theta}(r) = \frac{PR_i^2}{R_e^2 - R_i^2} \left(1 + \left(\frac{R_e}{r}\right)^2 \right) \qquad \sigma_{zz} = \frac{PR_i^2}{R_e^2 - R_i^2}$$

L'état de contrainte permet de calculer directement l'incrément de déformation par fluage $d\varepsilon_{ii}^{fl}(\underline{\sigma})$ ainsi que la déformation élastique : $\varepsilon_{rr}^{e}(r) = \frac{\sigma_{rr}(r)}{E} - \frac{v}{E}(\sigma_{\theta\theta}(r) + \sigma_{zz}) \qquad \varepsilon_{\theta\theta}^{e}(r) = \frac{\sigma_{\theta\theta}(r)}{E} - \frac{v}{E}(\sigma_{rr}(r) + \sigma_{zz}) \qquad \varepsilon_{zz}^{e}(r) = \frac{\sigma_{zz}}{E} - \frac{v}{E}(\sigma_{rr}(r) + \sigma_{\theta\theta}(r))$

On calcule aussi l'incrément d'épaisseur de gaine :

$$de_g = e_g d\varepsilon_{rr}^{libre}(R_{moy}) \quad \text{avec } d\varepsilon_{rr}^{libre}(R_{moy}) = d\varepsilon_{rr}^e(R_{moy}) + d\varepsilon_{rr}^{fl}(\sigma_{eq}(R_{moy})) + d\varepsilon^{th} + d\varepsilon^g$$

j

De la même manière, l'incrément de rayon interne de la gaine est calculé : $dR_i = R_i d\varepsilon_{\theta\theta}^{\text{libre}}(R_i)$

L'incrément de diamètre du fil est calculé en ne considérant que la dilatation thermique et le gonflement :

$$\mathrm{d}D_{fil} = D_{fil} (\mathrm{d}\varepsilon^{th} + \mathrm{d}\varepsilon^g)$$

Incrément du jeu prédit

$$djeu = dL - n_R dR_e - n_D dD_{fil}$$

Jeu en fin de pas de temps

$$jeu(t + dt) = jeu(t) + djeu$$

avec $dL = Ld\varepsilon_b$ l'incrément de longueur de la barre, n_R le nombre de rayon considéré dans la liaison (1 ou 2) et n_D le nombre de diamètre de fil considéré (0 ou 1).

Si jeu(t + dt) > 0, le jeu est ouvert, sinon, il est fermé.

Ζ

TYPICAL RESULTS AT THE END OF LIFE

