Dimensionnement de problèmes géomécaniques quasistatiques grâce à un critère de stabilité matériel sous Cast3M

F. Prunier, B. Chomette, M. Brun, F. Darve

INSA de Lyon/LGCIE

28/11/2014

28/11/2014

1/23

Stabilité dans les matériaux élasto-plastiques

2 / 23

28/11/2014

Corpus théorique à l'échelle du VER I

Critère suffisant de stabilité de Hill [1] <u>hypothèse</u> : solide soumis à des charges mortes sur une partie de sa frontière et fixe sur le reste de sa frontière.

$$\int \left\{ \int \delta s_{ij} d\left(\frac{\partial u_j}{\partial X_i}\right) \right\} dV_0 > 0 \tag{1}$$

Sous hypothèse de petites déformations, sur un VER :

$$w_2 = \underline{d\sigma} : \underline{d\varepsilon} > 0 \tag{2}$$

Soit \underline{N}^t l'opérateur tangent tel que

$$\underline{d\varepsilon} = \underline{\underline{N}} \, \underline{d\sigma} \tag{3}$$

alors

28/11/2014

3 / 23

Corpus théorique à l'échelle du VER II

Figure : Solutions de l'équation : $w_2 = 0 \Leftrightarrow \lambda_1 X^2 + \lambda_2 Y^2 + \lambda_3 Z^2 = 0$, qui est une réduction de la quadrique $\underline{d\sigma} \ \underline{N_s} \ \underline{d\sigma} = 0$ [2]

28/11/2014

Illustration et signification physique à l'échelle du VER I

considérons un chemin de sollicitation proportionnel en contraintes :

$$\left(egin{array}{cccc} d\sigma_1 &= cst & cst \in \mathbb{R}^* \ d\sigma_1 + R \ d\sigma_3 &= 0 & R \in \mathbb{R}^* \ d\sigma_2 &= d\sigma_3 \end{array}
ight.$$

(5)

Figure : Réponses du chemin proportionnel en contraintes pour un sable 28/11/2014 5 / 23

Illustration et signification physique à l'échelle du VER II

Figure : Cônes d'instabilité pour ce sable lâche le long du trajet imposé, et domaine de bifurcation.

28/11/2014

6 / 23

Illustration et signification physique à l'échelle du VER III

Figure : Cônes d'instabilités et définition d'une règle d'écoulement généralisée [3]

28/11/2014

7 / 23

Illustration et signification physique à l'échelle du VER IV

Relation constitutive généralisée en variables mixtes :

$$\begin{bmatrix} d\varepsilon_1 - \frac{2d\varepsilon_3}{R} \\ d\sigma_1 + R \ d\sigma_3 \end{bmatrix} = \underline{\underline{S}} \begin{bmatrix} d\sigma_1 \\ 2\frac{d\varepsilon_3}{R} \end{bmatrix}$$
(6)

(7)

8 / 23

28/11/2014

au "pic" de $\varepsilon_1 - \frac{2\varepsilon_3}{R}$ on a :

$$\underline{\underline{S}} \begin{bmatrix} d\sigma_1 \\ 2\frac{d\varepsilon_3}{R} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Lien avec l'énergie cinétique

On peut montrer que [4] :

$$2E_{c}(t+\delta t) = -\int_{V_{0}} \delta s_{ij} \left(\frac{\partial(\delta u_{j})}{\partial X_{i}}\right) dV_{0}$$
(8)

28/11/2014

9 / 23

hypothèses :

- à *t* le solide est à l'équilibre
- le solide est soumis à des charges mortes sur une partie de son contour et fixe sur le reste
- $E_c(t)$ de classe C^1 au moins $\Rightarrow E_c(t) = \dot{E}_c(t) = 0$

Stabilité locale dans les problèmes aux limites

Normalisation de w_2 :

(9)

Figure : Isovaleurs de w_{2n}

intégration de w₂

après calcul "technique" d'intégration par éléments finis [5] :

$$W_2 = \int_{V} \underline{d\varepsilon} \ \underline{d\sigma} \ dV = \underline{dQ} \ \underline{K} \ \underline{dQ} = \underline{dQ} \ \underline{dF}$$
(10)

normalisation :

$$W_{2n} = \frac{W_2}{\int_V ||\underline{d\sigma}|| \cdot ||\underline{d\varepsilon}|| \ dV}$$
(11)

28/11/2014

11 / 23

 W_{2n} peut être utilisé comme un facteur de sécurité : positif la structure est stable sur le chemin imposé par les conditions limites, négatif ou nul la structure est instable.

Castem : utiliser la fonction *INTG* pour l'intégration du dénominateur. pour le numérateur on a le choix : *INTG* ou produit scalaire dQ dF

vérification sur un problème homogène l

Essais triaxial non drainé sur matériaux lâche.

Figure : Maillage et conditions limites pour l'essai non drainé (C.U.+u).

chemin de sollicitation et relation constitutive associée :

$$\underline{\underline{P}} \left\{ \begin{array}{c} d\varepsilon_z \\ d\sigma_r \end{array} \right\} = \left\{ \begin{array}{c} dq \\ d\varepsilon_v \end{array} \right\} \tag{12}$$

28/11/2014

12 / 23

vérification sur un problème homogène II

Figure : Réponse du modèle dans un plan d'invariants. Évolution de W_{2n} et w_{2n} pour les deux type de contrôles.

28/11/2014

13 / 23

vérification sur un problème homogène III

Castem : pour le pilotage en déviateur, on utilise les multiplicateurs de Lagrange pour imposer $\varepsilon_v = 0$ aux limites. Une condition *RELA* pour le bord haut et une deuxième condition *RELA* pour lier le bord haut et le bord droit cinématiquement.

28/11/2014

14 / 23

Calcul d'une paroi clouée l

28/11/2014

15 / 23

Figure : Principe de construction d'un mur cloué. Dimensions (en fin d'excavations) et conditions limites

Calcul d'une paroi clouée II

isovaleurs pour la phase de construction la plus critique.

Figure : ε_{eq}^{p} et w_{2n} à la dernière excavation juste avant d'insérer la dernière ligne de clous.

A B A A B A

28/11/2014

16 / 23

Calcul d'une paroi clouée III

Figure : Déformée du maillage sous chargement. Maximum atteint vers 500 kPa

17 / 23

(日) (同) (日) (日)

28/11/2014

Calcul d'une paroi clouée IV

Figure : ε_{eq}^{p} et w_{2n} à la divergence du calcul

18 / 23

(日) (周) (日) (日)

28/11/2014

Calcul d'une paroi clouée V

19 / 23

Calcul d'une paroi clouée VI

Castem : Calcul fait par succession de reprise de calcul. Les maillages excavés sont obtenus avec l'opérateur *DIFF*. Les modèles, et états de contraintes-déformations projetés avec l'opérateur *REDU*.

20 / 23

28/11/2014

Conclusions et perspectives

- w_{2n} et W_{2n} critères d'analyse de stabilités pertinents dans les problèmes élasto-plastiques non associés et plus généralement dans les problèmes de structure "sans viscosité" avec perte de symétrie majeure de l'opérateur tangent (exemple pendule de Ziegler avec force suiveuse [6]).
- critère facile à utiliser expérimentalement et facile à implémenter dans tout type de code de calcul.
- formulation physique du problème doit décrire la physique observée (formulation de la loi de comportement et schéma numérique doivent être adapté). Exemple : problème de description de la localisation au moment de la rupture.
- perspective : formulation d'un problème en dynamique pour décrire la transition de régime statique vers dynamique au moment de la perte de stabilité (à faire sur un problème de liquéfaction pour éviter les problèmes liés à la description de localisation des déformations)

28/11/2014

Références I

- R. Hill, A general theory of uniqueness and stability in elasto-plastic solids, Journal of the Mechanics and Physics of Solids 6 (1958) 236–249.
- F. Prunier, F. Nicot, F. Darve, F. Laouafa, S. Lignon, 3d multi scale bifurcation analysis of granular media, Journal of Engineering Mechanics (ASCE) 135(6) (2009) 493–509.
- F. Laouafa, F. Prunier, A. Daouadji, H. Al-Gali, F. Darve, Stability in geomechanics, experimental and numerical analyses, International Journal for Numerical and Analytical Methods in Geomechanics 35(2) (2011) 112–139.
- F. Nicot, F. Darve, A micro-mechanical investigation of bifurcation in granular materials, International Journal of Solids and Structures 44 (2007) 6630–6652.

28/11/2014

Références II

- F. Prunier, F. Laouafa, S. Lignon, F. Darve, Bifurcation modeling in geomaterials : from the second-order work criterion to spectral analyses, International Journal for Numerical and Analytical Methods in Geomechanics 33 (2009) 1169–1202.
- J. Lerbet, M. Aldowadji, N. Challamel, F. Nicot, F. Prunier, F. Darve, P-positive definite matrices and stability of nonconservative systems., Journal of Applied Mathematics and Mechanics (ZAMM) 92(5) (2012) 409–422.

28/11/2014