

CLUB CAST3M Paris 29-11-2012

Conceptual design of concrete thermal energy storage system for small size concentration solar plants.

(Overview on CAST3M application for the analysis of components for solar plants employing molten salts)

Giannuzzi Giuseppe Mauro ENEA-UTRINN-PCI R.C. Casaccia (Rome, Italy) E-mail: giannuzzi@enea.it

Objectives of the SOLTECA project

- Sensible heat storage in a specially developed concrete mix
- Modular storage system, not cast in situ, reduction in the degassing time at start up.
- Working temperature between 120 e 300 °C, able to operate a ORC power block
- Cost containment (between 20-30 € / kWh_th), (not expensive O&M costs).
- Small plants with peak power (0.5 to 5 MWe), more placeable in the territory

The project is funded by the Cassa di Risparmio di Trento E Rovereto (CARITRO)

Scheme of the available solar plant with concrete TES

General scheme

with kind permission of DLR

Element-Module-System Scheme

Economic and Physical Features of Solid Storage Media

Storage medium	Temperature		Average	Average heat	Average heat	Volume specific	Media costs	Media costs
	Cold (°C)	Hot (°C)	density (kg/m ³)	conductivity (W/m K)	capacity (kJ/kg K)	heat capacity (kWh _e /m ³)	per kg (US\$/kWh _e)	per kWh _t (US\$/kWh _t)
Sand-rock-mineral oil	200	300	1700	1.0	1.30	60	0.15	42
Reinforced concrete	200	400	2200	15	0.85	100	0.05	1.0
NaCl (solid)	200	500	2160	7.0	0.85	150	0.15	15
Cast iron	200	400	7200	37.0	0.56	160	1.00	32,0
Cast steel	200	700	7800	40.0	0.60	450	5.00	60.0
Silica fire bricks	200	700	1820	1.5	1.00	150	1.00	7.0
Magnesia fire bricks	200	1200	3000	5,0	1.15	600	2,00	6.0

Mat eria I	High temperature concrete		
Density at 200 °C [kg/m ³]	2700		
Specific heat capacity at 200 °C [J/kg K] Thermal conductivity at 200 °C [W/m K]	910		
Coefficient thermal expansion at 200 °C [10 ⁻⁶ /K] Capacity [kWh/m ³ K]	9.3 0.68		

TES: Physical Model

$$\rho c_p V A \cdot \frac{d-f}{\partial z} - h \cdot 2\pi r_i \, \P_f - T_{s,w} = \rho c_p A \cdot \frac{d-f}{\partial t}$$

Nonstationary Model

$$T_{f,j}\Big|_{t} = V \frac{\Delta t}{\Delta z} \cdot \left. \mathbf{T}_{f,j-1} - T_{f,j} \right]_{t-1} - 2\pi \cdot r_{i} \Delta z \frac{h \cdot \Delta t}{\rho c_{p} A \Delta z} \left. \mathbf{T}_{f,j} - T_{w,j} \right]_{t-1} + T_{f,j}\Big|_{t-1}$$

Semi – Steady State Model

Fengwu Bai

Nonstationary Model: Charging Phase

Profili di T fluido e parete

Nonstationary Model: Discharging Phase

Avanzamento fronte freddo

Effect of Thermal Conductivity on the Charge Time

T(t) corner freddo

NON-STATIONARY MODEL: application to a realistic case

0

t(s)

Schematic of the storage modulus HTCTRAN simulation with thermo-hygrometric boundary condictions

Radial Temperature at various time steps

temperatura

Radial vapour pressure (MPa) at various time steps.

pressione

Radial water content (Kg/m3) at various time steps.

HTCTRAN - mechanical elastic coupling

HTCTRAN – non-linear coupling

GIBI FECIT

Concrete TES Test Apparatus

ENEL ARCHIMEDE Plant : Parabolic Trough Loop

with kind permission of ENEL

Free Thermal deformation in Priolo Receiver Line

Receiver Line Supports

with kind permission of ENEL

Receiver Support Kinematics

Receiver line schematic, mesh, deformation profile, reactions

Receiver line contraction and deflection

Reservices (FT - P-

.

Mass flow and tracking stop accident

with kind permission of ENEL

Flux distribution on receiver surface

tempo 299,00

Heat released in the glass

tempo 299.00

Maxi-mini temperature evolution in receiver

acciaio

Maxi-mini temperature evolution in glass

vetro

von Mises in receiver and glass at maxi-Dt

<u>anim</u>

Receiver Vibration

- -Circulating fluid and defocused trough -Trough focusing
- -Vibration amplitude-stabilized after about 2 min.
- -Oscillation amplitude 2.6-3 mm

-Frequency 5.5-6 Hz

- The vibration stops after a minute from the defocusing

Governing Equation of Piping with Moving Fluid

$$\operatorname{EI}\frac{\partial^{4} y}{\partial x^{4}} + \operatorname{A}_{f}\left(\operatorname{P}_{0} + \rho_{f}\operatorname{V}_{0}^{2}\right)\frac{\partial^{2} y}{\partial x^{2}} + 2\rho_{f}\operatorname{A}_{f}\operatorname{V}_{0}\frac{\partial y}{\partial x\partial t} + \oint_{f}\operatorname{A}_{f} + \rho_{p}\operatorname{A}_{p}\frac{\partial^{2} y}{\partial t^{2}} = 0$$

Physical interpretation of each term:

- 1- flexural restoring forces
- 2- centrifugal force of moving fluid and pressure force associated with radius of curvature
- 3- Coriolis force
- 4- inertia force of tube and fluid

$$\Rightarrow r = \langle q^2 y / \partial x^2 \rangle^{-1}$$

$$M_{T} \, \bigstar, t = E\alpha \, \int_{A} \, \Im - T_{env} \, y \, dA = EI\alpha \, \Delta T/D$$
$$M = -EI \, \frac{\partial^{2} y}{\partial x^{2}} - M_{T}$$

- T_{env} environment temperature
- E modulus of elasticity
- M_{T} thermal bending moment
- y moment arm
- x position along x-axis
- α coefficient of thermal expansion

Mechanical effect of thermal-axial gradient in storage tank

-Fatigue damage

(double tank)

-Thermal Ratcheting (stratified tank)

Thermal Ratcheting due to axial gradient –MATTER Project

•Axial moving thermal gradient at sodium-free

•Null-primary-stress

THERMAL RATCHETING FACILITY REALIZATION

P91 hollow cylinder

NaNO₃60%-KNO₃40% Thermal conductivity Specific heat Density Viscosity Melting Point

0,56 W/m K 1550 J/kg K 1700 kg/m³ 1 mPa sec 221°C

- Specimen speed during immersion
- Heat transfer coefficient
- •Molten salts temperature (up to 600°C)
- Cylinder diameter and thickness

Performed Numerical Analysis

1.00

-....

4.000

9.64

4.8-1

GIBI FECTS

FIRST CYCLE 13-11-2012

Fatigue due to level variation (ASME III NH T-1400)

Critical strain range

CLUB CAST3M Paris 29-11-2012

THANK YOU FOR YOUR KIND ATTENTION