Benchmark solution for a three-dimensional mixed convection flow

Xavier NICOLAS¹, Marc MEDALE², Stéphane GLOCKNER³, Stéphane GOUNAND⁴

¹Université Paris-Est, Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France (xavier.nicolas@univ-paris-est.fr)

²IUSTI, UMR 6595 CNRS, 5 rue Enrico Fermi, Technopôle de Château-Gombert, 13453 Marseille Cedex 13, France (marc.medale@polytech.univ-mrs.fr)

³Université de Bordeaux, IPB ENSCBP, CNRS UMR 5295, Institut I2M, 16 av. Pey-Berland, 33 607 Pessac Cedex, France (glockner@enscbp.fr)

⁴CEA-Saclay, DEN, DM2S, SFME, LTMF, F-91191 Gif-sur-Yvette, France (stephane.gounand@cea.fr)

November 14, 2011

Objectifs

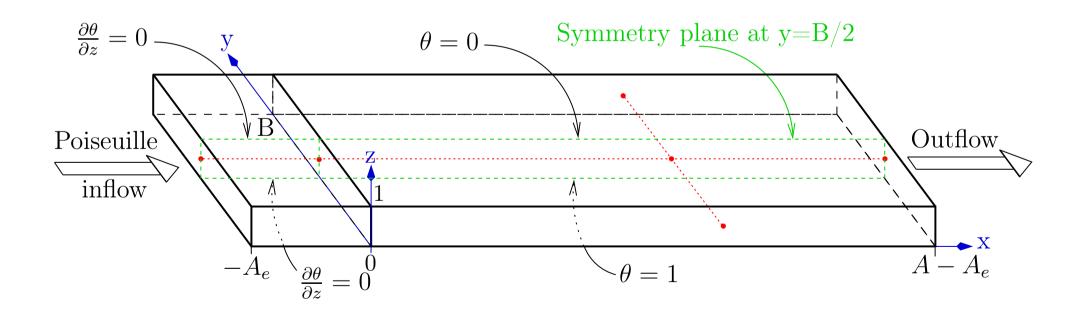
- Obtention d'une solution de référence pour un écoulement de convection mixte 3D ;
- Utilisation systématique de l'**extrapolation de Richardson** : quantifier l'erreur et obtenir une solution plus précise ;
- Appel à contributions [Medale and Nicolas, 2006];
- Publications [Nicolas et al., 2011c], [Nicolas et al., 2011a] Rapport technique [Nicolas et al., 2011b].

Plan

- 1. Problème et démarche de résolution ;
- 2. Résultats obtenus ;
- 3. Explication des résultats : Singularité ;
- 4. Explication des résultats : Comportement de l'extrapolation de Richardson ;
- 5. Perspectives.

Démarche : Problème à résoudre (1)

Écoulement de convection mixte (Poiseuille-Rayleigh-Bénard) en cavité (ex. refroidissement de circuits intégrés)



Démarche : Équations (II)

Navier-Stokes incompressible + Boussinesq

$$\begin{cases} \nabla . \overrightarrow{v} = 0 \\ \frac{\partial \overrightarrow{v}}{\partial t} + (\overrightarrow{v}.\nabla)\overrightarrow{v} = -\nabla p + \frac{1}{Re}\nabla^2 \overrightarrow{v} + \frac{Ra}{PrRe^2}\theta \overrightarrow{k} \\ \frac{\partial \theta}{\partial t} + \overrightarrow{v}.\nabla\theta = \frac{1}{PrRe}\nabla^2\theta \end{cases}$$

Paramètres adimensionnés

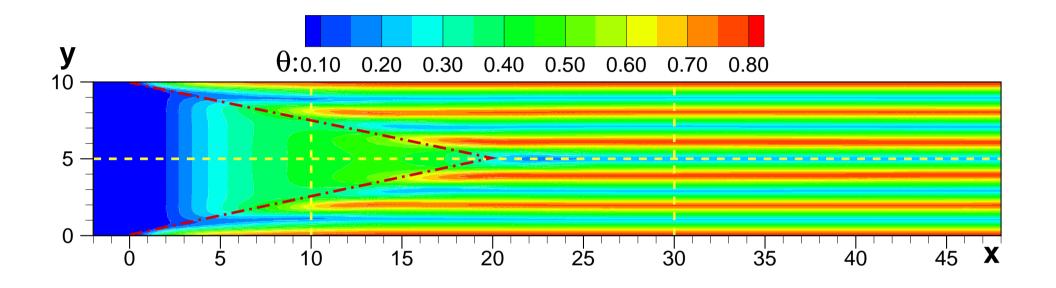
$$Pr = 0.7$$
 $Re = 50$ $Ra = 5000$ $A = 50$ $A_e = 2$ $B = 10$

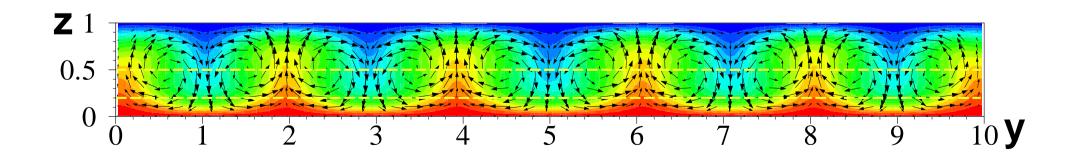
Conditions aux limites

Dynamiques : Profil établi (Poiseuille) en entrée, conditions de sortie "libres", vitesse nulle en paroi ;

Thermiques: $\theta = 0$ en entrée, conditions de sortie "libres", zone d'établissement adiabatique, puis chauffage par le bas, refroidissement par le haut.

Démarche : Solution du problème (III)





Démarche : Méthodes de résolution (IV)

4 méthodes de résolution et codes différents :

- FD1 Différences finies centrées, vectorisées, ADI, matrices tridiagonales, méthode de projection continue (Goda);
- **FE2** Éléments finis Q2/Q1, parallélisme distribué, décomposition de domaine (PETSc), méthode de projection continue (Guermond) ;
- FV3 Thétis, Volumes finis nodaux, vitesses aux faces, décentrement QUICK température, parallélisme distribué (Hypre), méthode de projection continue (Timmermans);
- **FE4** Castem, Éléments finis Q2/P1nc, parallélisme partagé, AGMG (Notay), méthode de projection algébrique (Quarteroni).

Démarche : Paramètres des contributeurs (V)

Contributor	$N_x \times N_y \times N_z$	Δt	User time	Consistency
	[symmetry]		[computer type	orders $lpha^\circ$
	-		(organism/lab)]	
MSME,	$400 \times 134 \times 40$	0.01	$36 \ min$ on 1 processor	2 for
FD1	$600 \times 200 \times 60$	0.01	$2\ h$ 20 on 1 processor	heta, u, v, w;
	$800 \times 268 \times 80$	0.002	$25\ h$ on 1 processor	2 for p
	$1200 \times 400 \times 120$	0.002	$100\;h$ on 1 processor	
	[no]		[NEC SX5 (IDRIS)]	
IUSTI, FE2	$601 \times 121 \times 41$	0.01	$19 \ min$ on 60 cores	3 for
	901 imes 181 imes 61	0.01	$1\ h$ 40 on 150 cores	heta, u, v, w;
	1351 imes 271 imes 91	0.005	$43\ h\ 15$ on 225 cores	2 for p
	[yes]		[IBM SP6 (IDRIS)]	
I2M	$601 \times 161 \times 41$	0.1	8 h on 152 cores	2 for
Institute,	$901 \times 241 \times 61$	0.1	$12\ h$ on 152 cores	heta, u, v, w;
FV3	1351 imes 361 imes 91	0.1	$56\ h$ on 152 cores	2 for p
	[yes]		[ALTIX ICE 8200 (I2M Inst.)]	
CEA, FE4	$601 \times 121 \times 49$	0.5	$200\ h$ on 8 cores	3 for
	751 imes 151 imes 61	0.5	400 h on 8 cores	heta, u, v, w;
	$801 \times 161 \times 65$	0.5	450 h on 8 cores	2 for p
	$1001 \times 201 \times 81$	0.5	$1600\ h$ on 8 cores	
	[yes]		[PC 8 cores (CEA)]	

Démarche : Valeurs de références calculées (VI)

Intégrales :

$$2E_c = \frac{1}{D} \iiint_D (u^2 + v^2 + w^2) dx dy dz$$

$$\Delta P_{io} = \frac{1}{S_i} \iiint_{S_i} P dy dz - \frac{1}{S_o} \iint_{S_o} P dy dz$$

$$T_m = \frac{1}{D} \iiint_D \theta dx dy dz$$

Flux : de chaleur et de quantité de mouvement à travers toutes les faces ;

Locales: extrema locaux sur les profils des variables primales (u, v, w, T) et du flux de chaleur (Nu) sur les faces à températures imposées.

Démarche : Calcul des Nusselt (VII)

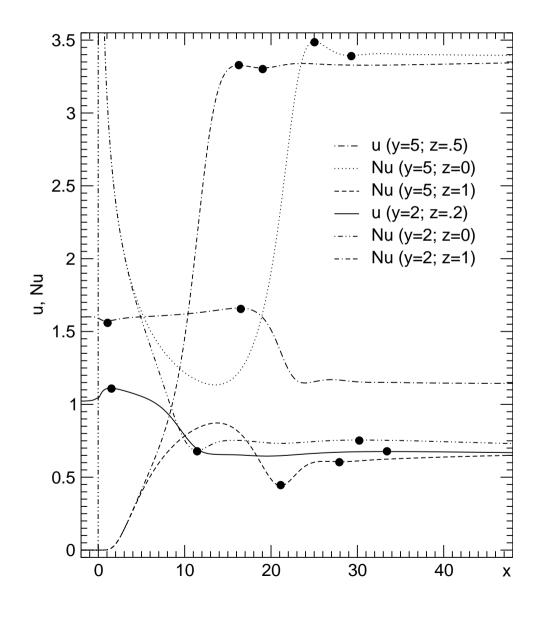
Nu calculé de deux manières par **FE4** :

Non consistante

$$Nu = -\frac{\partial \theta}{\partial n}$$

Consistante Par dualité : le flux (condition de Neumann) qu'il aurait fallu mettre à la place des conditions de Dirichlet pour obtenir la même solution.

Démarche : Exemple de profils (VIII)



Démarche : Extrapolation de Richardson (RE) (IX)

 $\{A1\}\ f_{exact}$ suffisamment régulière pour pouvoir écrire le **développement de Taylor** :

$$f_h = f_{exact} + C_{\alpha}h^{\alpha} + O(h^{\alpha+1})$$

 $\{A2\}$ h_i suffisamment petits pour avoir (convergence asymptotique) :

$$C_{\alpha}h_i^{\alpha} >> O(h_i^{\alpha+1})$$

(A3) raffinement uniforme en espace et en temps alors, pour trois grilles $\frac{h_1}{h_2} = \frac{h_2}{h_3}$:

$$\tilde{\alpha} = \frac{\ln\left(\frac{f_{h_1} - f_{h_2}}{f_{h_2} - f_{h_3}}\right)}{\ln\left(\frac{h_1}{h_2}\right)}$$

$$\tilde{C}_{\alpha} = \frac{f_{h_2} - f_{h_3}}{h_2^{\tilde{\alpha}} - h_3^{\tilde{\alpha}}}$$

$$\tilde{f}^{ex} = f_{h_3} - \tilde{C}_{\alpha} h_3^{\tilde{\alpha}}$$

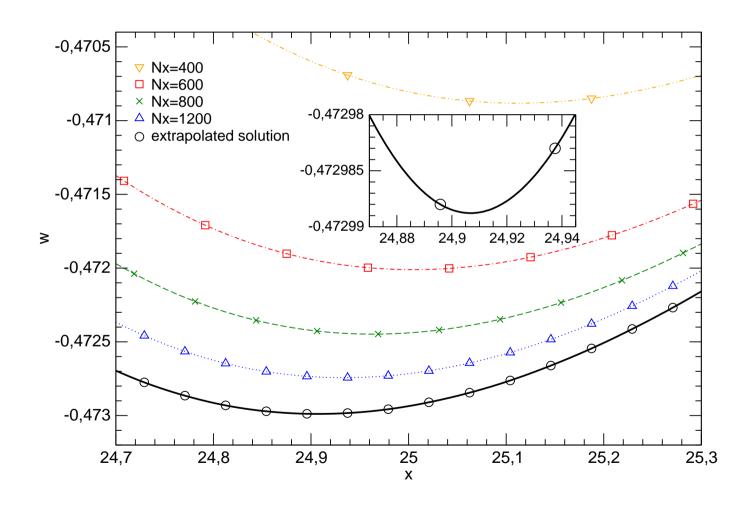
Démarche : Intérêts de l'extrapolation de Richardson (X)

Précision Éliminer le terme dominant de l'erreur de troncature, i.e. gagner un ordre ;

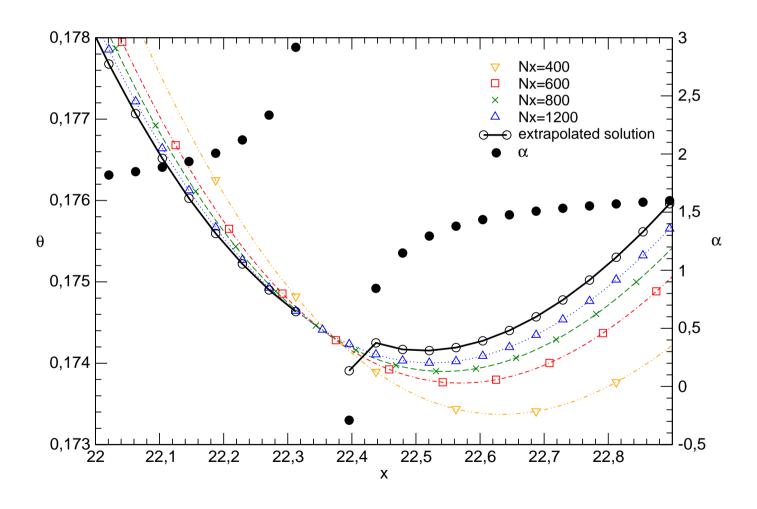
Estimation d'erreur C'est le terme dominant de l'erreur de troncature sur le maillage fin ;

Vérification Estimation des ordres de convergence.

Démarche : Exemple sur un profil (XI)



Démarche : Croisement des profils (XII)



Démarche : Remarque sur l'utilisation de RE (XIII)

De nombreux auteurs fixent le α dans le développement de Taylor à l'ordre de consistance α° du schéma utilisé.

Avantages:

- une grille en moins ;
- pas de problèmes quand les profils se croisent.

Inconvénient:

• pas de vérification de l'ordre de convergence.

Résultats : Quantités globales (I)

	FD1	FE2	FV3	FE4	References
					$ m f_{ref}\pm f_{marg}$
					$f_{prec} = rac{f_{marg}}{f_{ref}}$
$2E_c^{fg}$	1.292479	1.292452	1.292355	1.292461	
$2E_c^{ex}$	1.292446	1.292452	1.292455	1.292467 °	1.292453
$lpha_{E_c}$	2.22	2.92	2.00	-1.92	± 0.000008
d_{E_c}	2.55×10^{-5}	2.35×10^{-7}	-7.74×10^{-5}	-5.34×10^{-6} °	6.19×10^{-6}
ΔP_{io}^{fg}	14.41210	14.40784	14.40235	14.40694	
ΔP_{io}^{ex}	14.40647	14.40649	14.40678	14.40658 °	14.40670
$lpha_{igtriangle P_{io}}$	2.03	1.99	2.00	0.83	± 0.00024
$d_{\Delta P_{io}}$	3.91×10^{-4}	9.36×10^{-5}	-3.08×10^{-4}	2.55×10^{-5} °	1.67×10^{-5}
T_m^{fg}	0.448490	0.448625	0.448725	0.448659	
T_m^{ex}	0.448594	0.448604	0.448606	0.448613	0.448604
$lpha_{T_m}$	1.19	1.18	1.02	1.18	± 0.000010
d_{T_m}	-2.32×10^{-4}	4.68×10^{-5}	2.65×10^{-4}	1.04×10^{-4}	2.23×10^{-5}

Résultats : Quantités locales (II)

	FD1	FE2	FV3	FE4	References
					$ m f_{ref} \pm f_{marg}$
					$ m x_{ref} \pm x_{marg}$
					$f_{prec} = rac{f_{marg}}{f_{ref}}$
u_1	1.572726	1.572725	1.572713	1.572725	$(1572720\pm7) imes10^{-6}$
x_1	0.950	0.945	0.944	0.941	0.945 ± 0.005
α_1	2.00	3.47	2.05	* * *	
d_1	-1.2×10^{-4}	1.3×10^{-6}	3.2×10^{-5}		4.5×10^{-6}
Nu_{t2}	0.60675	0.60658	0.60615	0.60657	0.60645 ± 0.00030
x_2	28.085	28.085	28.074	28.081	28.080 ± 0.006
α_2	1.90	1.70	1.90	1.68	
d_2	-2.5×10^{-3}	1.2×10^{-3}	2.9×10^{-3}	1.4×10^{-3}	4.9×10^{-4}
Nu_{t2}^{cons}				0.60666	
x_2^{cons}				28.077	

Résultats : Résumé des comportements observés (III)

Méthodes FD1 et FV3 RE "marche" avec un ordre observé $\alpha=\alpha^\circ=2$ pour la plupart des quantités (sauf T_m)

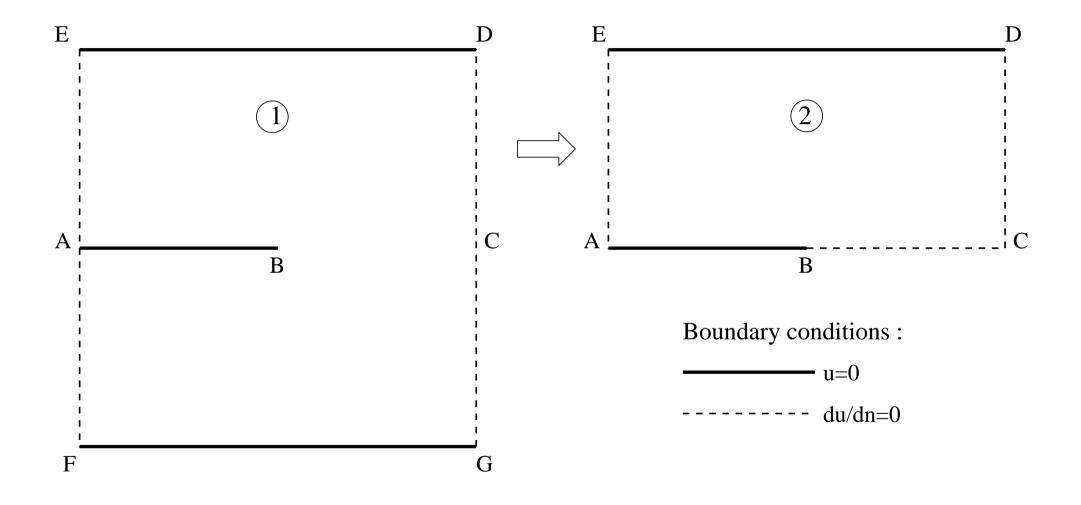
Méthodes FD1 et FV3 Solution extrapolée relativement éloignée de la solution sur la grille fine

Méthodes FE2 et FE4 Application de RE plus difficile, surtout pour FE4, exception faite de T_m et Nu (les quantités les plus imprécises)

Méthodes FE2 et FE4 Solution extrapolée relativement proche de la solution sur la grille fine

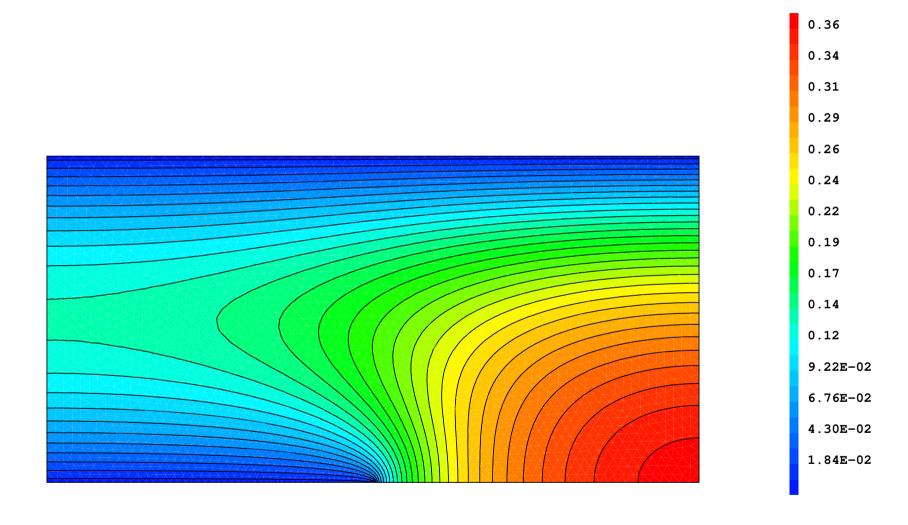
Toutes les méthodes ordre ≈ 1 pour T_m

Singularité : changement de conditions aux limites (I)



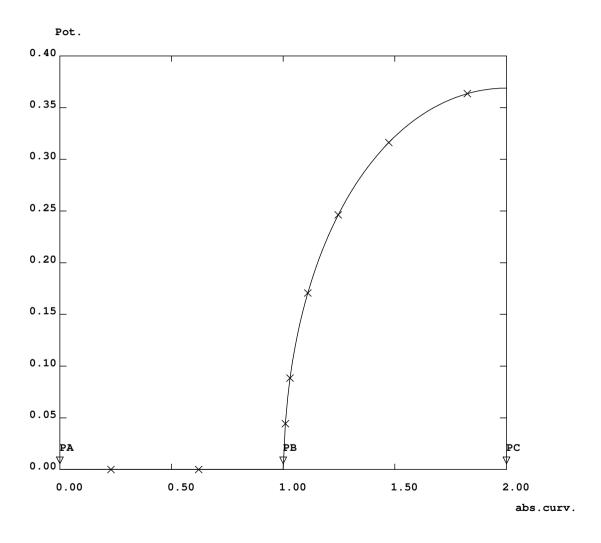
Singularité de pointe [Strang and Fix, 1988]

Singularité : exemple de solution (II)



Solution approchée de $-\Delta T = 1$.

Singularité : exemple de profil (III)



Profil de T sur la paroi du bas.

Singularité : dégradation de l'ordre de convergence (IV)

[Strang and Fix, 1988] nous dit (estimation a priori):

$$f_h = f_{exact} + C_{\beta}h^{\beta} + O(h^{\beta+1})$$

où:

$$\beta = \min(r, \alpha^{\circ})$$

$$\mathrm{Ici}\ r = 1\ \mathrm{et}\ \alpha^{\circ} = 2\ \mathrm{ou}\ 3 \Rightarrow \boxed{\beta = 1}$$

Note : la plupart des benchmarks présentent une singularité plus ou moins marquée : cavité à paroi défilante, marche descendante, cavité différentiellement chauffée.

Singularité : problèmes soulevés (V)

Problème 1 : à part pour T_m , on a des ordres observés différents de 1, proches de α° donc pas dans la zone de convergence asymptotique. Malgré tout, l'extrapolation de Richardson semble améliorer les résultats, particulièrement pour les méthodes d'ordre 2.

Problème 2 : comment définir la solution de référence ?

Analyse RE : Développement de Taylor (I)

Idée 1 : garder deux termes dans le développement de l'erreur

$$f_h(h, C_{\alpha^{\circ}}, \alpha^{\circ}, C_r, r) = f_{exact} + C_{\alpha^{\circ}}h^{\alpha^{\circ}} + C_rh^r + O(h^{1 + \max(\alpha^{\circ}, r)})$$

où:

- $C_{\alpha^{\circ}}h^{\alpha^{\circ}}$ terme dominant de l'erreur d'approximation de la partie **régulière** de la solution ;
- $C_r h^r$ terme dominant de l'erreur d'approximation de la partie **singulière** de la solution.

Idée 2 : $h \not\to 0$, i.e. travailler avec h_i fixées $\{h_1; h_2; h_3\} = \{h_1; \frac{h_1}{\tau}; \frac{h_1}{\tau^2}\}$ et examiner le comportement du processus d'extrapolation de Richardson lorsque $C_{\alpha^{\circ}}/C_r$ varie.

Analyse RE : fonction modèle (II)

Adimensionnement $\tilde{f}_h = \frac{f_h}{f_{exact}}$ et $\tilde{h} = \frac{h}{h_1}$

Fonction modèle

$$\tilde{f}_h(\tilde{h}, \tilde{C}_{\alpha^{\circ}}, \alpha^{\circ}, \tilde{C}_r, r) = 1 + \tilde{C}_{\alpha^{\circ}}\tilde{h}^{\alpha^{\circ}} + \tilde{C}_r\tilde{h}^r$$

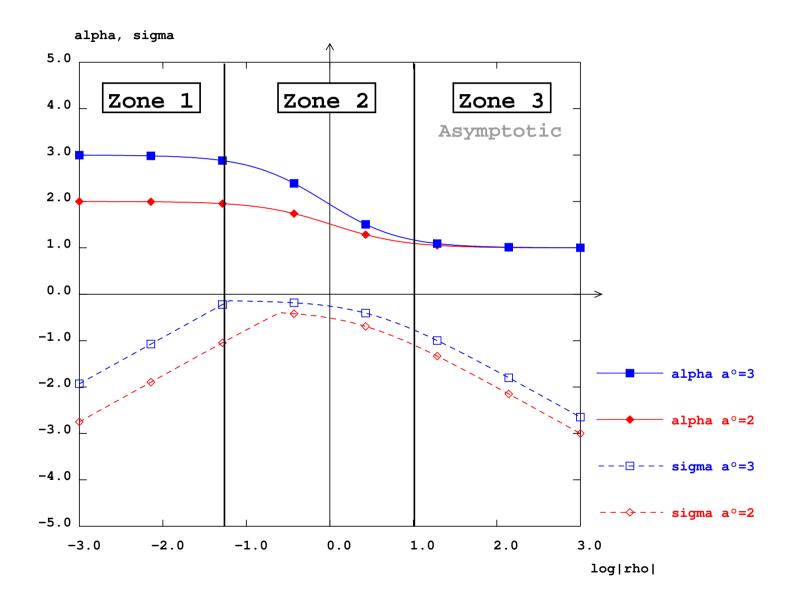
Paramètres fixés $\{h_i\}=\left\{1;\frac{1}{\tau};\frac{1}{\tau^2}\right\}$, $\tau=$ 2, $C_{\alpha^\circ}=$ 10⁻⁴ << 1, r= 1 ;

Paramètres variables $\rho = C_r/C_{\alpha^{\circ}}$, $\alpha^{\circ} = 2$ ou 3 ;

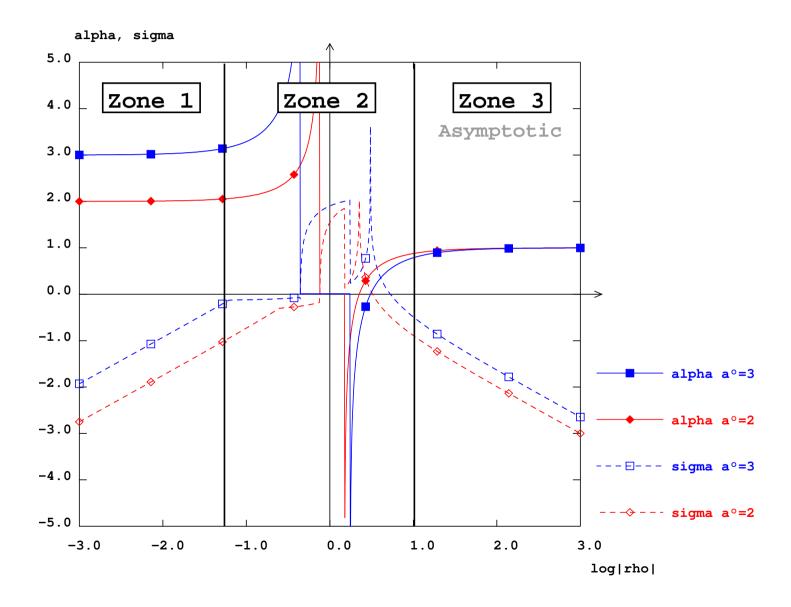
Quantités regardées α , Richardson efficiency ratio σ

$$\sigma = \log \frac{|f^{ex} - f_{exact}|}{\max \left(\left| C_{\alpha^{\circ}} h_3^{\alpha^{\circ}} \right|, \left| C_r h_3^{r} \right| \right)}$$

Analyse RE : $ho = C_r/C_{lpha^{\circ}} > 0$ (III)



Analyse RE : $ho = C_r/C_{lpha^{\circ}} < 0$ (IV)



Analyse RE : Analyse des graphes (V)

- 1. RE réduit efficacement les erreurs dans la zone 3, mais aussi dans la zone 1;
- 2. En zone 2, le comportement de RE dépend du signe de ρ , mais l'éventuelle réduction d'erreur est faible ;
- 3. La zone 2 est plus large pour les méthodes d'ordre 3 que pour les méthodes d'ordre 2 ;
- 4. RE réduit plus efficacement l'erreur pour les méthodes d'ordre 2 que pour celles d'ordre 3.

Analyse RE : Explication des comportements observés (VI)

- ullet Remarque 1 : **FD1** et **FV3** en zone 1, sauf pour T_m ;
- Remarque 3 : application de RE plus difficile pour FE2 et FE4 (zone 2 large), mais moins d'améliorations à attendre (remarque 4);
- Remarque 2 : explication possible du meilleur comportement de **FE2** par rapport à **FE4** pour appliquer RE.

Analyse RE : Définition de la solution de référence (VII)

- Utilisation de la valeur extrapolée si $1 \le \alpha \le 2.5$ pour **FD1** et **FV3** et $1 \le \alpha \le 4$ pour **FE2** et **FE4** ;
- sinon utilisation de la valeur obtenue sur la grille la plus fine ;
- la valeur de référence est définie comme la moyenne arithmétique des 4 valeurs et la marge d'incertitude par la demi-différence des valeurs extrêmes.

Conclusion

- Solution de référence précise (4 ou 5 chiffres significatifs) et bien documentée, pour un écoulement de convection mixte 3D;
- Analyse du rôle de la singularité sur l'utilisation pratique de l'extrapolation de Richardson.

Perspectives

- Vérifier que l'analyse effectuée est correcte ⇒ maillages plus fins ;
- Appel à benchmark [Medale and Nicolas, 2006] : cas instationnaire avec une condition de sortie libre plus difficile (2D, 3D ?) ;

$$Pr = 7$$
 $Re = 0.1$ $Ra = 2500$

• Quantification des erreurs sur Nu^{cons} .

Fin

Merci de votre attention.

Bibliographie

- [Strang and Fix, 1988] Strang, W. and Fix, G. (1988). An Analysis of the Finite Element Method. Wellesley-Cambridge Press, 2nd edition. chapter 8.
- [Medale and Nicolas, 2006] Medale, M. and Nicolas, X. (2006). Call for contributions: Towards numerical benchmark solutions for 3d mixed convection flows in rectangular channels heated from below. *International Journal of Thermal Sciences*, 45(4):331 333.
- [Nicolas et al., 2011c] Nicolas, X., Medale, M., Glockner, S., and Gounand, S. (2011c). Benchmark solution for a three-dimensional mixed-convection flow, part 1: Reference solutions. *Numerical Heat Transfer, Part B: Fundamentals*, 60(5):325–345.
- [Nicolas et al., 2011a] Nicolas, X., Gounand, S., Medale, M., and Glockner, S. (2011a). Benchmark solution for a three-dimensional mixed-convection flow, part 2: Analysis of richardson extrapolation in the presence of a singularity. *Numerical Heat Transfer, Part B: Fundamentals*, 60(5):346–369.
- [Nicolas et al., 2011b] Nicolas, X., Medale, M., Glockner, S., and Gounand, S. (2011b). Benchmark solution for a three-dimensional mixed-convection flow—detailed technical report. Technical report. http://www.sft.asso.fr/Local/sft/dir/user-3775/documents/DocumentsDivers/SFT_Report_benchmark_PRB_2011.pdf.

Annexe : Projection Algébrique (I)

Navier-Stokes incompressible continu

$$\begin{cases}
\frac{\partial u}{\partial t} + u \cdot \nabla u - \nu \Delta u + \nabla p &= f \\
\nabla \cdot u &= g
\end{cases}$$

Navier-Stokes discret

$$\begin{cases} A_u u + Gp = f \\ Du = g \end{cases}$$

Linéarisation et méthode incrémentale (Newton)

$$\begin{pmatrix} \mathsf{A}' & \mathsf{G} \\ \mathsf{D} & \mathsf{O} \end{pmatrix} \begin{pmatrix} \delta \boldsymbol{u} \\ \delta p \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} - \mathsf{A}_{\boldsymbol{u}_i} \boldsymbol{u}_i - \mathsf{G}p_i \\ g - \mathsf{D}\boldsymbol{u}_i \end{pmatrix} = \begin{pmatrix} \delta \boldsymbol{f} \\ \delta g \end{pmatrix}$$

Annexe : Projection Algébrique (II)

Factorisation LU par blocs (A inversible)

$$\begin{pmatrix} A & G \\ D & O \end{pmatrix} = \begin{pmatrix} A & 0 \\ D & -DA^{-1}G \end{pmatrix} \begin{pmatrix} I & A^{-1}G \\ 0 & I \end{pmatrix}$$

Approximation : $H \approx A^{-1}$

Factorisation LU d'une matrice tangente approchée

$$\begin{pmatrix} A & AHG \\ D & O \end{pmatrix} = \begin{pmatrix} A & 0 \\ D & -DHG \end{pmatrix} \begin{pmatrix} I & HG \\ 0 & I \end{pmatrix}$$

Annexe : Projection Algébrique (III)

Résolution par étapes (≡ méthode de splitting)

$$\begin{pmatrix} \begin{bmatrix} A \\ D \end{bmatrix} & 0 \\ -DHG \\ 2 \end{pmatrix} \underbrace{\begin{pmatrix} \begin{bmatrix} I \\ 4 \end{bmatrix} \\ 0 \end{bmatrix} \begin{bmatrix} I \\ I \end{bmatrix}_{3}} = \begin{pmatrix} \delta f \\ \delta g \end{pmatrix}$$
$$\begin{pmatrix} \delta \tilde{u} \\ \delta \tilde{p} \end{pmatrix}$$

Etape		
1	A $\delta ilde{u} = \delta f$	Vérification du bilan des forces
2	$-DHG\;\delta\tilde{p} = \delta g - D\;\delta\tilde{u}$	Calcul du multiplicateur de Lagrange
3	$\delta p = \delta \tilde{p}$	(Laplacien discret de pression)
4	$\delta u = \delta \tilde{u} - HG \; \delta p$	Vérification de la contrainte (bilan de masse)

Annexe : Projection Algébrique (IV)

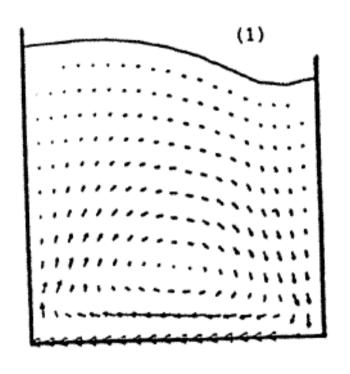
Avantages:

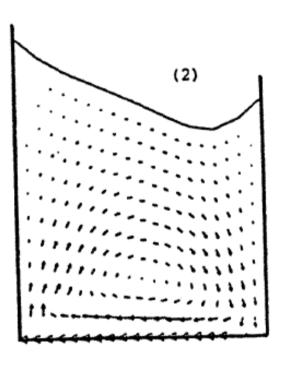
- Méthode efficace pour Navier-Stokes incompressible instationnaire 3D;
- Vérification de la contrainte (bilan de masse).

Inconvénients:

• Convergence lente si δt grand (perte d'efficacité si H \approx A⁻¹).

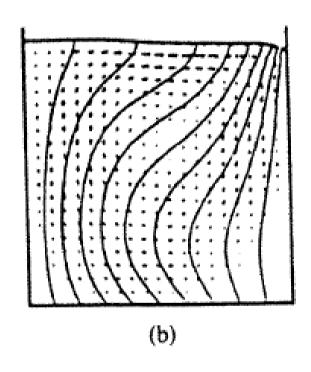
Annexe : Benchmark surface libre (V)

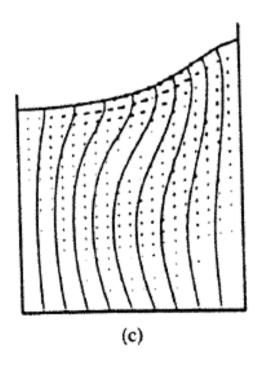




Benchmark stationnaire avec tension de surface [Cuvelier and Schulkes, 1990]

Annexe : Benchmark surface libre (VI)





Benchmark stationnaire avec effet Marangoni [Cuvelier and Schulkes, 1990]