Etude numérique et physique de l'interaction entre un fluide et un cylindre oscillant

Marion Duclercq^{1,2}, Daniel Broc¹, Olivier Cadot²

¹CEA,DEN,DM2S,SEMT,EMSI : laboratoire d'études de mécanique sismique ²ENSTA ParisTech : UME - dynamique des fluides et acoustique

Problème et modélisation

- 2 Résolution numérique
- 3 Etude physique globale
- 4 Etude des variations temporelles de *F*_{cyl}
- 5 Conclusions

Système étudié

- Problème 2D
- Cylindre soumis à un déplacement sinusoïdal transverse
- Fluide réel initialement au repos

Quelle est la dynamique de l'écoulement généré par le cylindre ? Quelle est la force de traînée F_{cyl} exercée par le fluide sur le cylindre ?

Equations de Navier-Stokes (incompressible)

$$\begin{pmatrix} \operatorname{div}(u) = 0 \\ \rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) = -\nabla p + \mu \,\Delta u$$

Problème adimensionnel

$$\begin{cases} \operatorname{div} (u) = 0\\ \frac{\partial u}{\partial t} + K_c u \cdot \nabla u = -K_c \nabla p + \frac{K_c}{R_e} \Delta u \\ \text{avec } R_e = \frac{U_0 d}{\nu} \quad \text{et } K_c = 2\pi \frac{D}{d} \\ \text{ainsi que } \beta = \frac{R_e}{K_c} = \frac{d^2}{\nu T} \end{cases} \quad \text{Plan} (K_c, R_e)$$

Equations de Navier-Stokes (incompressible)

$$\begin{pmatrix} \operatorname{div}(u) = 0 \\ \rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) = -\nabla p + \mu \,\Delta u$$

Problème adimensionnel

Problème et modélisation

Résolution numérique

- Formulation et maillage
- Discrétisations spatiale et temporelle

3 Etude physique globale

- 4 Etude des variations temporelles de F_{cyl}
- 5 Conclusions

• Conditions aux limites et initiales :

- H = 10d hauteur du domaine fluide
- L = 20d longueur du domaine fluide

 \Rightarrow calculs pour $K_c < 63$.

• Déformation d'un coin du maillage pour réduire le temps de croissance des instabilités.

• Conditions aux limites et initiales :

- H = 10d hauteur du domaine fluide
- L = 20d longueur du domaine fluide

 \Rightarrow calculs pour $K_c < 63$.

• Déformation d'un coin du maillage pour réduire le temps de croissance des instabilités.

Pas d'espace dx :

 Autour du cylindre : dx = 0.02 d donné par l'épaisseur de la couche limite pour une plaque plane oscillante :

$$e=rac{4}{\sqrt{2\pi}}\sqrt{rac{K_c}{R_e}}\,d$$

Iliadis (1998)

• Ailleurs : *dx* = 0.157 *d*

Pas de temps *dt* :

• Pour $K_c \ge 1$: dt donné par $U_0 \frac{d\tilde{t} T}{d\tilde{x} d} = \frac{K_c d\tilde{t}}{d\tilde{x}} = 0.35$ • Pour $K_c \le 1$: dt = 0.05T

Pas d'espace dx :

 Autour du cylindre : dx = 0.02 d donné par l'épaisseur de la couche limite pour une plaque plane oscillante :

$$e=rac{4}{\sqrt{2\pi}}\sqrt{rac{K_c}{R_e}}\,d$$

lliadis (1998)

• Ailleurs : *dx* = 0.157 *d*

Pas de temps *dt* :

• Pour
$$K_c \ge 1$$
: dt donné par $U_0 \frac{d\tilde{t} T}{d\tilde{x} d} = \frac{K_c d\tilde{t}}{d\tilde{x}} = 0.35$
• Pour $K_c \le 1$: $dt = 0.05T$

Problème et modélisation

- 2) Résolution numérique
- 3 Etude physique globale
 - 4 Etude des variations temporelles de F_{cyl}

5 Conclusions

Cas asymptotique $K_c \rightarrow 0$

Solution analytique de Stokes :

 $F_{cyl}^{Stokes}(t) = C_m \frac{\rho \pi d^2}{4} \frac{dU_{cyl}(t)}{dt} + C_d \rho dU_0 U_{cyl}(t)$ où C_m et C_d s'expriment à partir des fonctions de Bessel.

Analyse globale de F_{cyl}

Cas asymptotique $K_c \rightarrow 0$

Cas asymptotique $K_c \rightarrow +\infty$

Problème de Von Karman : $U_{cyl}(t) = U_0$ $F_{cyl} = C_x \frac{1}{2}\rho dU_0^2$ avec C_x : coefficient de traînée (empirique) Champ de vorticité pour K_c infini et R_e =200

Modèle global de F_{cyl}

œ

Décomposition de Morison (1950)

Dynamique de l'écoulement dans le plan (K_c, R_e)

Régimes d'écoulement identifiés par Tatsuno & Bearman (1990)

- A : lâché tourbillonnaire longitudinal symétrique
- D : lâché tourbillonnaire transverse en ∨
- E : lâché tourbillonnaire transverse avec basculements entre ∨ et ∧
- F : lâché tourbillonnaire en diagonale
- G : écoulement complexe avec des lâchés dans plusieurs directions.

Exemples de régimes d'écoulement

Régime D : lâché tourbillonnaire transverse en V

 $K_c = 6.25$ et $R_e = 150$ (Cast3M)

Kc=6.5 et Re=130 (Nehari 2004)

Régime F : lâché tourbillonnaire en diagonale

Dynamique de l'écoulement et spectre de F_{cyl}

Régimes d'écoulement identifiés par Tatsuno & Bearman (1990)

- A : lâché tourbillonnaire longitudinal symétrique
- D : lâché tourbillonnaire transverse en ∨
- E : lâché tourbillonnaire transverse avec basculements entre ∨ et ∧
- F : lâché tourbillonnaire en diagonale
- G : écoulement complexe avec des lâchés dans plusieurs directions.

Influence de R_e sur l'écoulement

Influence de R_e sur le spectre de F_{cvl}

Courbes de $|FFT(F_{cvl}(t))|$ en fonction de la fréquence pour $K_c=10$ et différents R_e

• Force en $|U_{cvl}(t)| U_{cvl}(t)$

250

200

150

100

50

- Apparition de phénomènes de couplages ٥ quand R_e augmente
- Enrichissement du contenu spectral pour les plus grands R_e

1) Problème et modélisation

2 Résolution numérique

3 Etude physique globale

Etude des variations temporelles de *F*_{cyl}

- Vorticité sur le cylindre
- Force et pression sur le cylindre
- Cas des grands (*K_c*, *R_e*)

Conclusions

Cas de R_e =40 et K_c =10 (régime A)

Cas de R_e =150 et K_c =6.25 (régime D)

Cas de R_e =200 et K_c =10 (régime F)

Cas de R_e =360 et K_c =10 (régime G)

- L'évolution de F_{cyl} est pilotée par celle de la zone de surpression au premier ordre.
- L'évolution de la zone de dépression régit les variations de F_{cyl} au second ordre, conditionnant l'existence d'un pic de F_{cyl}.

Cas de R_e =200 et K_c =6.25 (régime E)

- Alternance de différents modes
- "Mixage" des modes (un mode par demi-période)

Problème et modélisation

- 2 Résolution numérique
- 3 Etude physique globale
- 4 Etude des variations temporelles de F_{cyl}
- 5 Conclusions

Construction d'un programme de calculs :

- permettant de traiter différentes configurations (K_c, R_e);
- procurant beaucoup d'informations sur l'écoulement.

Résultats physiques :

- Caractérisation de différents régimes d'écoulement.
- Liens entre la structure de l'écoulement et F_{cyl}.