

DEN/SAC/DM2S/SEMT - S. PASCAL

01/02/2019 <N°>

The OPUS System

To maintain a waking state activity

Pre-conceptual design studies of what would be a NEP system in the range 100-500 kW^e \Rightarrow OPUS studies

Preliminary basic options

- Gas-cooled reactor
- Fast neutron spectrum

Basic core design

- Refractory material \Rightarrow to achieve high temperature (1300 K at the outlet)
- Fast neutron spectrum ⇒ to reduce the critical mass
- Coated fuel particles (BISO) embedded in hexagonal graphite fuel elements

Composite fuel modeling*

- Material heterogeneity simplification Equivalent Homogeneous Media
- Effective thermoelastic properties :
 - λ^* , E*, ν^* , α^* functions of { λ_i , E_i, ν_i , α_i }_{1 \le i \le n} and phase proportions { c_i }_{1 \le i \le n}
- <u>Local strains and stresses</u> : $\underline{\underline{\varepsilon}}_{i} = \mathcal{A}_{i} : (\underline{\underline{E}} - \underline{\underline{E}}^{th} - \underline{\underline{E}}^{ir}) + \sum_{i} \mathcal{P}_{ij} : (\underline{\underline{\varepsilon}}_{j}^{th} + \underline{\underline{\varepsilon}}_{j}^{ir}) \quad \text{avec} : \underline{\underline{E}}^{ir} = \sum_{i} \chi_{i} \mathcal{B}_{i} : \underline{\underline{\varepsilon}}_{i}^{ir}$ $\underline{\underline{\sigma}}_{i} = \mathcal{C}_{i} : (\underline{\underline{\varepsilon}}_{i} - \underline{\underline{\varepsilon}}_{i}^{th} - \underline{\underline{\varepsilon}}_{i}^{ir})$

(*) E. Hervé, A. Zaoui, "N-layered inclusion-based micromechanical modelling", Int. J. Engng Sci., 31 (1993) 1-10.

DEN/SAC/DM2S/SEMT - S. PASCAL

Nuclear fuel

Composite fuel modeling: validation & ongoing studies

Fuel Element cross-section modelling

Thermomechanical modelling

Heterogeneous media modelling

- (F. Di Paola PhD Thesis)
- Mesh generation

Local stress and strain fields

DEN/SAC/DM2S/SEMT - S. PASCAL

01/02/2019

Geometry / Finite Element Mesh

1/12th of the Reactor

01/02/2019

1D-thermohydraulic / 3D-thermal coupling

Thermohydraulic:

- 1D modelling: Mass conservation & Energy balance, but pressure drop neglected
- He-Xe proportion parameterized
- State law: ideal gas law
- Boundary conditions

 $T_{inlet} = 880K$

- $MF_{inlet} = 3.8 kg/s \Rightarrow T_{oulet} = 1300 K$
- Convective heat exchange: Colburn or Dittus-Bolter $Nu = 0.023 Re^{0.8} Pr^{(1/3 \text{ or } 0.4)} \Rightarrow h = Nu \lambda_{He}(T_m)/d$

Thermal:

- 3D modelling: core = continuous media
- Thermal loading: Power density fit to TRIPOLI results

$$p(r,z) = p_{max}J_0(lpha r)cos(eta ilde{z}),$$
 jokw

Boundary conditions:

- Convective heat exchange with the coolant gas on: Channel / outer Core / inner Pressure Vessel surfaces

- Radiant heat exchange between: outer Core / inner PV surfaces & outer PV surface

Temperature

 $T_{outlet} = 1300K$

Temperature (K) Structures & Coolant gas

Results & Evolution from 0 to 2000 EFPD

Structures				
	0 JEPP	2 000 JEPP		
Température maximale	1 807	1 870		
Extrema en sortie du cœur (centre > périphérie)	$1\ 807 imes 1\ 203$	1 870 🗴 1 137		
et écart / gradient radial	604 / 2 279 K.m ⁻¹	735 / 2 774 K.m ⁻¹		
Extrema assemblage le plus chaud	$1\ 807 > 1\ 427$	$1\ 870 > 1\ 417$		
et écart / gradient axial	$380 / 792 \text{ K.m}^{-1}$	453 / 944 K.m ⁻¹		
Extrema baffle	$1 \ 302 > 1 \ 130$	$1\ 280 > 1\ 076$		
Extrema cuve	946 > 906	926 > 894		
Gaz caloporteur				
Température maximale	1 474	1 491		
Température moyenne en sortie du cœur	1 301.6	1 302,1		
Extrema en sortie du cœur (centre > périphérie)	1 474 🗴 1 153	1 491 🖉 1 124		
et écart entre le canal le plus chaud et le plus froid	321	367		
Extrema dans le canal le plus chaud	$1\ 474 > 953$	1 491 > 936		
et écart / gradient axial	$521 / 1 \ 085 \ \mathrm{K.m^{-1}}$	555 / 1 156 K.m ⁻¹		

Due to the decrease of thermal conductivity under

irradiation :

Thermal conductivity Vs. Temperature & Irradiation Dose

DEN/SAC/DM2S/SEMT - S. PASCAL

01/02/2019

Thermohydraulic-Thermal Simulations : Summary

Main results

- T_{max} : 1909K \rightarrow 2001K (~1730°C) !
- Max. Temp. *¬* under irradiation due to *¬* Graphite Thermal Conductivity
- Radiant Heat Exchange \supseteq PV Temperature Gradients (Δ T \supseteq ~20K)
- Convective Heat Exchange Analogy not fully satisfying: Experimental data on He-Xe coolant in such conditions ?

Modelling improvements

- Thermal modelling: reactor core modelled as a continuous media but temperature jumps at the fuel element interface should be very important...
- Thermohydraulic BC: mass flow prescribed at the core inlet but coolant flow should not uniformly distributed over the channels ⇒ thermal gradients could be even more important in the core

Remark on the Simulation Tool

Temperature field of the reactor fully determined in 3D by setting only 3 parameters:
 ⇒ Inlet Coolant Temp. / Inlet Mass Flow / Thermal Power of the Core

1.5 3.0 4.5 6.0 7.5 9.0 10.5 12. 13.5 15. 16.5 18. 19.5 21. 22.5 24.

DEN/SAC/DM2S/SEMT - S. PASCAL

01/02/2019

Mechanics: Pressure Vessel

Temps	σ_{VM}	$\sigma_{ heta heta}$	σ_{zz}	Autres composantes
(JEPP)	(MPa)	(MPa)	(MPa)	(MPa)
0	$31 < \sigma_{VM} < 35$	$34,5<\sigma_{\theta\theta}<41,5$	$16 < \sigma_{zz} < 23$	$ \sigma < 6$
2 000	$32 < \sigma_{VM} < 35$	$34,5<\sigma_{\theta\theta}<41,0$	$16 < \sigma_{zz} < 22$	$ \sigma < 6$

Mechanics: Core Binder

with Top & Bottom Cinematic B.C.

8

Mechanics: Core Binder without Top & Bottom Cinematic B.C. 12 16 14 12 Contrainte (MPa) 10 σ_{zz} 8 6 4 2 0 -2 $^{-4}$ -12 -6 250 500 750 1250 1500 1750 2000 1000 -8 -10 Temps (JEPP) -12 -14Stresses (MPa) Vs. Time (EFPD) -16 0 JEPP 1 000 JEPP 2 000 JEPP $\sigma_{\theta\theta}$ (MPa) 16 14 12 10 8 6 4 2 0 -2 -4-6 -8 -10 -12 -14Deformed Shape : (x20) axially, -16 (x200) in the (O,r, θ) plane 0 JEPP 1 000 JEPP σ_{zz} (MPa) 2 000 JEPP

DEN/SAC/DM2S/SEMT - S. PASCAL

01/02/2019

DEN/SAC/DM2S/SEMT - S. PASCAL

01/02/2019

Mechanics: Fuel Elements

Effective stress $\sigma_{ heta heta}$ in the fuel element graphite matrix

DEN/SAC/DM2S/SEMT - S. PASCAL

Space Reactor Design: Main Conclusions

Thermal-Thermohydraulic

- T_{max} : 1909K \rightarrow 2001K (~1730°C)
- Temperature jumps and coolant flow distribution ⇒ T_{max} ~ 2300 K (~ 2000°C)
 ⇒ To optimize channel diameter to homogenize core temperature
- Temperature field fully determined over the reactor only by setting :
 ⇒ Inlet Coolant Temp. / Inlet Mass Flow / Thermal Power of the Core

Mechanics

- PV: Current design satisfied nominal static loading but: Mechanical design should more depend on dynamic loadings (lift-off)
- Core Binder: Δu (BC) ~ 1/10mm \Rightarrow design ok
- Fuel elements: Idem Core Binder and:
 - 100 kWe OPUS version seems feasible \Rightarrow fuel fabrication?
 - 500 kWe OPUS version needs fuel design improvements

Conversion Systems

O Brayton cycle

- He-Xe (85 g/mol)
- 3.6 kg/s

13 m

- DT_{core} = 427 °C
- h = 27 %
- 50 m² of radiator
- 14 bars
- 900 kg

O Hirn cycle

- Sulfur, Alkali metal, ...
- 1 kg/s (S)
- DT_{core} = 600 °C
- h > 50 %
- 7 m² of radiator
- 8 bars
- 620 kg

DEN/SAC/DM2S/SEMT - S. PASCAL

01/02/2019 <**N**°>