

CLUB CAST3M2008

MODÉLISATION DE LA PROPAGATION DE FISSURE DANS LES MATÉRIAUX VISCOÉLASTIQUES ORTHOTROPES

Présenté par: Rostand MOUTOU PITTI

Le 21 novembre 2008, Paris

Groupe d'Etude des Matériaux Hétérogènes (GEMH)

Université de Limoges

Centre Universitaire Génie Civil, 19300 Egletons

Contexte et Objectifs

Modélisation de la propagation de fissure par CASTEM

Propagation des défauts (cinématiques mixtes) Mécanique de la rupture, viscoélasticité

Drohlómatique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
Troviemaiique	une fissure stationnaire	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

Calcul d'une structure fissurée

Critères de rupture :

* Facteurs d'intensité des contraintes découplés(K_I, K_{II}).

Modélisation :

* Approche locale (K_I, K_{II}).

* Approche énergétique (G, J) : champ lointain

Modélisation par éléments finis

- * Champ lointain: J (Rice, 1968), G0 (Destuynder, 1983), T et A (Bui)
- * Avantages: Précision, champs singuliers

Problèmes des invariants intégraux

- * Paramètre global
- * Pas d'informations sur le couplage des modes de rupture

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	<u>une fissure stationnaire</u>	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

Intégrale M en statique

Généralisation au comportement viscoélastique

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	une_fissure_stationnaire	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

$$M\theta_{v}^{p}(u,v) = \frac{1}{2} \int_{\Omega} \left(\sigma_{ij}^{p}(u) \cdot v_{i,k}^{p} - \sigma_{ij,k}^{p}(v) \cdot u_{i}^{p} \right) \theta_{k,j} \cdot n_{j} d\Gamma_{1} \quad \text{avec} \quad p = (0,1,\dots,M)$$

Solution semi analytique (taux de restitution d'énergie) $G_{1}(t) = \frac{1}{8} \cdot [2 \cdot C_{1}(t) - C_{1}(2t)] \cdot ({}^{u}K_{1}^{0})^{2} \qquad G_{2}(t) = \frac{1}{8} \cdot [2 \cdot C_{2}(t) - C_{2}(2t)] \cdot ({}^{u}K_{2}^{0})^{2}$ Facteurs d'intensité des contraintes élastiques en mode I et II

Formulation incrémentale

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	<u>une_fissure_stationnaire</u>	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

Modélisation numérique

Maillage déformé (a = 50 mm)

Intégrale M en propagation

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	une fissure stationnaire	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

Taux de restitution d'énergie

$$G_v^p = {}^{1}G_v^p + {}^{2}G_v^p = C_1^p \frac{\left({}^{u}K_1^p\right)^2}{8} + C_2^p \frac{\left({}^{u}K_{II}^p\right)^2}{8}$$

$${}^{1}G_v = \sum_p {}^{1}G_v^p \text{ et } {}^{2}G_v = \sum_p {}^{2}G_v^p$$

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	une fissure stationnaire	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

Résultats numériques (Castem)

Indépendance du domaine d'intégration ($\Delta a = 1$ mm; a = 30mm)

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	une fissure stationnaire	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

Taux de restitution d'énergie et vitesse de propagation (Δa = 8mm; a = 65mm)

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	une fissure stationnaire	_propagation de fissure_	l'éprouvette 2MCG	viscoélastique	perspectives

Taux de restitution d'énergie et longueur de fissure pour β =45° (Δa = 1mm ; C8)

Duchlámatique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
rroblemalique	une fissure stationnaire	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

Résultats numériques (Castem)

Maillage éléments finis

Maillage rayonnant en pointe de fissure

Déplacements virtuels (Maillage déformé)

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	une fissure stationnaire	propagation de fissure	l'éprouvette 2MCG	viscoélastique	perspectives

Taux de restitution d'énergie découplé

Comparaison numérique/expérimentale

Dispositif expérimental en mode l (β=0°, hêtre)

Problématique	Découplage des modes pour	Découplage des modes en	Conception de	Propagation	Conclusions et
	une fissure stationnaire	propagation de fissure	l'éprouvette 2MCG	<u>viscoélastique</u> _	perspectives

Algorithme d'amorçage de fissure et dichotomie

Conclusions et perspectives

Modélisation numérique de l'intégrale M pour une fissure stationnaire Modélisation numérique de M en propagation viscoélastique Conception numérique de l'éprouvette 2MCG et comparaison aux prédictions Propagation viscoélastique avec les phases d'amorçage et de propagation

Optimisation numérique de l'éprouvette 2MCG Modélisation numérique des intégrales T et A (champs thermiques) Propagation viscoélastique intégrant les phénomènes mécanosorptifs

CLUB CASTE3M2008

MODÉLISATION DE LA PROPAGATION DE FISSURE DANS LES MATÉRIAUX VISCOÉLASTIQUES ORTHOTROPES

Présenté par: Rostand MOUTOU PITTI

Le 21 novembre 2008, Paris

Groupe d'Etude des Matériaux Hétérogènes (GEMH) Université de Limoges

Centre Universitaire Génie Civil, 19300 Egletons